Nanotechnology: 6 Nanoprobes
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 370 S. Ill., graph. Darst. 25 cm |
ISBN: | 9783527317332 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV023237416 | ||
003 | DE-604 | ||
005 | 20090220 | ||
007 | t | ||
008 | 080403s2009 ad|| |||| 00||| eng d | ||
020 | |a 9783527317332 |9 978-3-527-31733-2 | ||
035 | |a (OCoLC)635250135 | ||
035 | |a (DE-599)BVBBV023237416 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-20 |a DE-29T |a DE-703 |a DE-92 |a DE-210 |a DE-1102 |a DE-634 |a DE-83 |a DE-11 |a DE-91G | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
245 | 1 | 0 | |a Nanotechnology |n 6 |p Nanoprobes |c G. Schmid ... (eds.) |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2009 | |
300 | |a XVII, 370 S. |b Ill., graph. Darst. |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Fuchs, Harald |e Sonstige |4 oth | |
700 | 1 | |a Schmid, Günter |d 1937- |e Sonstige |0 (DE-588)13573097X |4 oth | |
773 | 0 | 8 | |w (DE-604)BV023237305 |g 6 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016423014&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016423014 |
Datensatz im Suchindex
_version_ | 1804137533228974080 |
---|---|
adam_text | Contents
Prefece
XIII
List of Contributors XV
1
Spin-Polarized Scanning Tunneling Microscopy
1
Mathias Cetzlaff
1.1
Introduction and Historical Background
1
1.2
Spin-Polarized Electron Tunneling: Considerations
Regarding Planar Junctions
2
1.3
Spin-Polarized Electron Tunneling in Scanning Tunneling
Microscopy (STM): Experimental Aspects
4
1.3.1
Probe Tips for Spin-Polarized Electron Tunneling
S
1.3.1.1
Ferromagnetic Probe Tips
5
1.3.1.2
Antiferromagnetic Probe Tips
8
1.3.1.3
Optically Pumped GaAs Probe Tips
10
1.3.1.4
Nonmagnetic Probe Tips
12
1.3.2
Modes of Operation
13
1.3.2.1
Constant Current Mode
13
1.3.2.2
Spectroscopy of the Differential Conductance
14
1.3.2.3
Local Tunneling
Magnetoresistance 14
1.4
Magnetic Arrangement of Ferromagnets
25
1.4.1
Rare-Earth Metals: Gd/W(110)
15
1.4.2
Transition Metals:
CoţOOOl)
17
1.5
Spin Structures of Antiferromagnets
18
1.5.1
Topological Anti-Ferromagnetism of Cr(OOl)
19
1.5.2
Magnetic Spin Structure of Mn with Atomic Resolution
23
1.6
Magnetic Properties of Nanoscaled Wires
26
1.7
Nanoscale Elements with Magnetic Vortex Structures
29
1.8
Individual Atoms on Magnetic Surfaces
31
1.9
Domain Walls
35
1.10
Chiral Magnetic Order
39
References
42
VI
Contents
2
Nanoscale
Imaging and Force Analysis with Atomic
Force Microscopy
49
Hendrik Hölscher,
André
Schirmeisen, and Harald Fuchs
2.1
Principles of Atomic Force Microscopy
49
2.1.1
Basic Concept
49
2.1.2
Current Experimental Set-Ups
50
2.1.2.1
Sensors
50
2.1.2.2
Detection Methods
52
2.1.2.3
Scanning and Feedback System
53
2.1.3
Tip-Sample Forces in Atomic Force Microscopy
53
2.1.3.1
Van
der Waals
Forces
55
2.1.3.2
Capillary Forces
55
2.1.3.3 Pauli
or Ionic Repulsion
55
2.1.3.4
Elastic Forces
56
2.1.3.5
Frictional Forces
57
2.1.3.6
Chemical Binding Forces
57
2.1.3.7
Magnetic and Electrostatic Forces
57
2.2
Modes of Operation
58
2.2.1
Static or Contact Mode
58
2.2.1.1
Force versus Distance Curves
59
2.2.2
Dynamic Modes
60
2.3
Amplitude Modulation (Tapping Mode)
61
2.3.1
Experimental Set-Up of AM-Atomic Force Microscopy
61
2.3.1.1
Theory of AM-AFM
63
2.3.1.2
Reconstruction of the Tip-Sample Interaction
69
2.3.2
Frequency-Modulation or
Noncontact
Mode in Vacuum
70
2.3.2.1
Set-Up of FM-AFM
72
2.3.2.2
Origin of the Frequency Shift
73
2.3.2.3
Theory of FM-AFM
75
2.3.2.4
Applications of FM-AFM
77
2.3.2.5
Dynamic Force Spectroscopy
78
2.4
Summary
81
References
82
3
Probing Hydrodynamic Fluctuations with a Brownian Particle
89
Sylvia Jeney,
Branimir
Lukic,
Camilo
Guzman, and
László
Forró
3.1
Introduction
89
3.2
Theoretical Model of Brovmian Motion in an Optical Trap
90
3.2.1
The General
Langevin
Equation for a Brovmian Sphere in
an Incompressible Fluid
90
3.2.1.1
The Random Thermal Force Fth(t)
91
3.2.1.2
The Friction Force
FjĄt)
91
3.2.1.3
The External Force F«(t)
94
3.2.2
Solutions to the Different
Langevin
Equations for Cases
Observable by
ОТІ
94
Contents
VII
3.2.2.1
Free Brownian Motion
94
3.2.2.2
Optically Confined Brownian Motion
97
3.2.3
Time Scales of Brownian Motion
99
3.3
Experimental Aspects of Optical Trapping
Interferometry
100
3.3.1
Experimental Set-Up
200
3.3.1.1
Optical Trapping
Interferometry
and Microscopy Light Path
101
3.3.1.2
Sample Preparation
103
3.3.2
Position Signal Detection and Acquisition
І
03
3.3.3
Position Signal Processing
105
3.3.4
Temporal and Spatial Resolution of the Instrument
205
3.4
High-Resolution Analysis of Brownian Motion
208
3.4.1
Calibration of the Instrument
108
3.4.2
Influence of Different Parameters on Brownian Motion
209
3.4.2.1
Changing the Trap Stiffness
110
3.4.2.2
Changing the Fluid 111
3.4.2.3
Changing the Particle Density
223
3.4.3
Implications of the Existence of Long-time Tails in Nanoscale
Experiments
223
3.4.3.1
Single Particle Tracking by
ОТІ
2 24
3.4.3.2
Diffusion in
ОТІ
224
3.4.3.3
Thermal Noise Statistics
226
3.5
Summary and Outlook
226
References
228
4
Nanoscale Thermal and Mechanical Interactions Studies
using Heatable Probes
222
Bernd
Cotsmann, Mark A. Lantz,
Armin
Knoll, and
Urs Dürig
4.1
Introduction
122
4.2
Heated Probes
222
4.3
Scanning Thermal Microscopy (SThM)
226
4.4
Heat-Transfer Mechanisms
129
4.4.1
Heat Transport Through the Cantilever Legs and Air
229
4.4.2
Heat Transfer Through Radiation
232
4.4.3
Thermal Resistance of a Water Meniscus
132
АЛА
Heat Transfer Through a Silicon Tip
232
4.4.5
Thermal Spreading Resistance
138
4.4.6
Interface Thermal Resistance
239
4.4.7
Combined Heat Transport Through Tip, Interface and Sample
240
4.4.8
Heat-Transport Experiments Through a Tip-Surface
Point Contact
242
4.5
Thermomechanical Nanoindentation
244
4.6
Application in Data Storage: The Millipede Project
255
4.6.1
Writing
255
4.6.2
Reading
256
4.6.3
Erasing
256
VIII
Contents
4.6.4
Medium Endurance
158
4.6.5
Bit Retention
159
4.6.6
Tip Endurance
159
4.6.7
Data Rate
159
4.7
Nanotribology and Nanolithography Applications
161
4.7.1
Nanowear Testing
161
4.7.2
Nanolithography Applications
163
References
166
5
Materials Integration by Dip-Pen Nanolithography
171
Steven Lenhert,
Harald Fuchs,
and Chad A. Mirkin
5.1
Introduction
171
5.2
Ink Transport
172
5.2.1
Theoretical Models for Ink Transport
173
5.2.2
Experimental Parameters Affecting Ink Transport
176
5.2.2.1
Driving Forces
176
5.2.2.2
Covalent Reaction with the Substrate
276
5.2.2.3
Noncovalent Driving Forces
177
5.2.2.4
Tip Geometry and Substrate Roughness
277
5.2.2.5
Humidity and Meniscus Formation
278
5.2.2.6
External Driving Forces
279
5.2.2.7
Thermal DPN
279
5.2.2.8
Electrochemical DPN
280
5.3
Parallel DPN
282
5.3.1
Passive Arrays
282
5.3.2
Active Arrays
282
5.4
Tip Coating
282
5.4.1
Methods for Inking Multiple Tips with the Same Ink
282
5.4.2
Ink Wells
283
5.4.3
Fountain Pens
284
5.4.4
Nanopipettes
284
5.5
Characterization
285
5.6
Applications Based on Materials Integration by DPN
287
5.6.1
Selective Deposition
287
5.6.2
Combinatorial Chemistry
189
5.6.3
Biological Arrays
190
5.7
Conclusions
293
References
293
6
Scanning Ion Conductance Microscopy of Cellular and
Artificial Membranes
297
Matthias
Böcker, Harald
Fuchs,
and
Turnan
E. Schäffer
6.1
Introduction
297
6.1.1
Scanning Ion Conductance Microscopy
298
6.2
Methods
299
Contents
IX
6.2.1 The Basic
Set-Up
199
6.2.2 Nanopipettes 200
6.3
Description of Current-Distance Behavior
201
6.4
Imaging with SICM
202
6.4.1
Modulated Scan Technique
202
6.4.2
Cellular Membranes
203
6.4.3
Artificial Membranes
204
6.4.4
SICM with Shear Force Distance Control
206
6.5
Outlook
207
References
209
7
Nanoanalysis by Atom Probe Tomography
213
Cuido
Schmitz
7.1
Introduction
213
7.2
Historical Development
215
7.3
The Physical Principles of the Method
216
7.3.1
Field Ionization and Evaporation
216
7.3.2
Ion Trajectories and Image Magnification
220
7.3.3 Tomographie
Reconstruction
223
73
A Accuracy of the
Tomographie
Reconstruction
226
7.4
Experimental Realization of Measurements
230
7.4.1
Position-Sensitive Ion Detector Systems
230
7.4.2
Instrumental Design of
3-D
Atom Probes
233
7.4.3
Specimen Preparation
236
7.5
Exemplary Studies Using Atom Probe Tomography
238
7.5.1
Nucleation of the First Product Phase
239
7.5.2
Thermal Stability of Giant
Magnetoresistance
Sensor Layers
242
7.5.3
Influence of Grain Boundaries and Curved Interfaces
245
7.6
Approaching Nonconductive Materials: Pulsed Laser Atom
Probe Tomography
248
7.6.1
The Limitations of High-Voltage Pulsing
248
7.6.2
The Mechanism of Pulsed Laser Evaporation
249
7.6.3
Application to Microelectronic Devices
252
References
255
8
Cryoelectron Tomography: Visualizing the Molecular Architecture
of Cells
259
Dennis R. Thomas and Wolfgang
Baumeister
8.1
Introduction
259
8.2
Basic Principles and Challenges of Electron Tomography
260
8.3
Automated Cryoelectron Tomography
262
8.4
Resolution, Signal-to-Noise Ratio and Visualization
ofTomograms
263
8.5
Merging High Resolution with Low: The Molecular Interpretation
of Cryotomograms
265
Contents
8.5.1
Specific
Labeling
266
8.5.2
Pattern Recognition
268
8.6
Creating Template Libraries
269
8.7
Outlook
270
References
270
9
Time-Resolved Two-Photon
Photoemission
on Surfaces
and Nanoparticles
273
Martin Aeschlimann and Helmut
Zacharias
9.1
Introduction
273
9.2
Theoretical Background
274
9.2.1
Electron-Electron Interaction
275
9.2.2
Plasmonic Processes
276
9.2.3
Two-Temperature Model
277
9.2.4
Electron-Phonon Coupling
278
9.3
Experimental
280
9.4
Relaxation of Excited Carriers
285
9.5
Volume Excitation in Metallic Nanostructures Investigated
byTR-PEEM
289
9.6
Long-lived Resonances in
Adsórbate/
Substrate Systems
293
9.7
Outlook: Spatial and Temporal Control of Nano-Optical Fields
298
References
300
10
Nanoplasmonics
307
Cerala
Steiner
10.1
Introduction
307
10.2
Single Clusters
308
10.3
Nanoshells
312
10.4
Layer of Clusters
312
10.5
Surface-Enhanced Spectroscopy
316
10.5.1
Surface-Enhanced Raman Scattering
316
10.5.2
Surface-Enhanced Fluorescence
319
10.5.3
Surface-Enhanced Infrared Absorption Spectroscopy
320
10.6
Biosensing
321
References
323
11
Impedance Analysis of Cell Junctions
325
Joachim Wegener
11.1
A Short Introduction to Cell Junctions of Animal Cells
325
11.1.1
Cell Junctions for Mechanical Stability of the Tissue
326
11.1.1.1
Adherens Junctions
327
11.1.1.2
Desmosomes
327
11.1.1.3
Focal Contacts
327
11.1.1.4
Hemi-Desmosomes
328
11.1.1.5
Less-Prominent Types of Mechanical Junctions
328
Contents
XI
11.1.2
Cell Junctions Sealing Extracellular Pathways: Tight
Junctions
328
11.1.3
Communicating Junctions: Gap Junctions and Synapses
329
11.1.3.1
Chemical Synapses
329
11.1.3.2
Gap Junctions
329
11.2
Established Physical Techniques to Study Cell Junctions
330
11.2.1
Cell-Matrix Junctions
330
11.2.1.1
Scanning Probe Techniques
330
11.2.1.2
Nonscanning Microscopic Techniques
331
11.2.1.3
Fluorescence Interference Contrast Microscopy
331
11.2.1.4
Total Internal Reflection (Aqueous) Fluorescence Microscopy
331
11.2.1.5
Quartz Crystal
Microbalance
332
11.2.1.6
Other Techniques
332
11.2.2
Cell-Cell Junctions
333
11.2.2.1
Tight Junctions
333
11.2.2.2
Gap Junctions
334
11.3
Impedance Spectroscopy
335
11.3.1
Fundamental Relationships in Impedance Analysis
336
11.3.2
Data Representation and Analysis
337
11.4
Impedance Analysis of Cell Junctions
340
11.4.1
General Remarks about Experimental Issues
340
11.4.1.1
Two-Probe versus Four-Probe Measurement
340
11.4.1.2
Introducing Electrodes for Impedance Readings into
an Animal Cell Culture
340
11.4.1.3
Experimental Set-Up
343
11.4.2
Time-Resolved Impedance Measurements at Designated
Frequencies
344
11.4.2.1
De novo
Formation of Cell-Matrix and Cell-Cell Junctions
347
11.4.2.2
Modulation of Established Cell Junctions
350
11.4.3
Modeling the Complex Impedance of Cell-Covered Electrodes
352
11.4.4
Spectroscopie
Characterization of Cell-Cell and Cell—Matrix
Junctions
354
References
356
Index
359
|
adam_txt |
Contents
Prefece
XIII
List of Contributors XV
1
Spin-Polarized Scanning Tunneling Microscopy
1
Mathias Cetzlaff
1.1
Introduction and Historical Background
1
1.2
Spin-Polarized Electron Tunneling: Considerations
Regarding Planar Junctions
2
1.3
Spin-Polarized Electron Tunneling in Scanning Tunneling
Microscopy (STM): Experimental Aspects
4
1.3.1
Probe Tips for Spin-Polarized Electron Tunneling
S
1.3.1.1
Ferromagnetic Probe Tips
5
1.3.1.2
Antiferromagnetic Probe Tips
8
1.3.1.3
Optically Pumped GaAs Probe Tips
10
1.3.1.4
Nonmagnetic Probe Tips
12
1.3.2
Modes of Operation
13
1.3.2.1
Constant Current Mode
13
1.3.2.2
Spectroscopy of the Differential Conductance
14
1.3.2.3
Local Tunneling
Magnetoresistance 14
1.4
Magnetic Arrangement of Ferromagnets
25
1.4.1
Rare-Earth Metals: Gd/W(110)
15
1.4.2
Transition Metals:
CoţOOOl)
17
1.5
Spin Structures of Antiferromagnets
18
1.5.1
Topological Anti-Ferromagnetism of Cr(OOl)
19
1.5.2
Magnetic Spin Structure of Mn with Atomic Resolution
23
1.6
Magnetic Properties of Nanoscaled Wires
26
1.7
Nanoscale Elements with Magnetic Vortex Structures
29
1.8
Individual Atoms on Magnetic Surfaces
31
1.9
Domain Walls
35
1.10
Chiral Magnetic Order
39
References
42
VI
Contents
2
Nanoscale
Imaging and Force Analysis with Atomic
Force Microscopy
49
Hendrik Hölscher,
André
Schirmeisen, and Harald Fuchs
2.1
Principles of Atomic Force Microscopy
49
2.1.1
Basic Concept
49
2.1.2
Current Experimental Set-Ups
50
2.1.2.1
Sensors
50
2.1.2.2
Detection Methods
52
2.1.2.3
Scanning and Feedback System
53
2.1.3
Tip-Sample Forces in Atomic Force Microscopy
53
2.1.3.1
Van
der Waals
Forces
55
2.1.3.2
Capillary Forces
55
2.1.3.3 Pauli
or Ionic Repulsion
55
2.1.3.4
Elastic Forces
56
2.1.3.5
Frictional Forces
57
2.1.3.6
Chemical Binding Forces
57
2.1.3.7
Magnetic and Electrostatic Forces
57
2.2
Modes of Operation
58
2.2.1
Static or Contact Mode
58
2.2.1.1
Force versus Distance Curves
59
2.2.2
Dynamic Modes
60
2.3
Amplitude Modulation (Tapping Mode)
61
2.3.1
Experimental Set-Up of AM-Atomic Force Microscopy
61
2.3.1.1
Theory of AM-AFM
63
2.3.1.2
Reconstruction of the Tip-Sample Interaction
69
2.3.2
Frequency-Modulation or
Noncontact
Mode in Vacuum
70
2.3.2.1
Set-Up of FM-AFM
72
2.3.2.2
Origin of the Frequency Shift
73
2.3.2.3
Theory of FM-AFM
75
2.3.2.4
Applications of FM-AFM
77
2.3.2.5
Dynamic Force Spectroscopy
78
2.4
Summary
81
References
82
3
Probing Hydrodynamic Fluctuations with a Brownian Particle
89
Sylvia Jeney,
Branimir
Lukic,
Camilo
Guzman, and
László
Forró
3.1
Introduction
89
3.2
Theoretical Model of Brovmian Motion in an Optical Trap
90
3.2.1
The General
Langevin
Equation for a Brovmian Sphere in
an Incompressible Fluid
90
3.2.1.1
The Random Thermal Force Fth(t)
91
3.2.1.2
The Friction Force
FjĄt)
91
3.2.1.3
The External Force F«(t)
94
3.2.2
Solutions to the Different
Langevin
Equations for Cases
Observable by
ОТІ
94
Contents
VII
3.2.2.1
Free Brownian Motion
94
3.2.2.2
Optically Confined Brownian Motion
97
3.2.3
Time Scales of Brownian Motion
99
3.3
Experimental Aspects of Optical Trapping
Interferometry
100
3.3.1
Experimental Set-Up
200
3.3.1.1
Optical Trapping
Interferometry
and Microscopy Light Path
101
3.3.1.2
Sample Preparation
103
3.3.2
Position Signal Detection and Acquisition
І
03
3.3.3
Position Signal Processing
105
3.3.4
Temporal and Spatial Resolution of the Instrument
205
3.4
High-Resolution Analysis of Brownian Motion
208
3.4.1
Calibration of the Instrument
108
3.4.2
Influence of Different Parameters on Brownian Motion
209
3.4.2.1
Changing the Trap Stiffness
110
3.4.2.2
Changing the Fluid 111
3.4.2.3
Changing the Particle Density
223
3.4.3
Implications of the Existence of Long-time Tails in Nanoscale
Experiments
223
3.4.3.1
Single Particle Tracking by
ОТІ
2 24
3.4.3.2
Diffusion in
ОТІ
224
3.4.3.3
Thermal Noise Statistics
226
3.5
Summary and Outlook
226
References
228
4
Nanoscale Thermal and Mechanical Interactions Studies
using Heatable Probes
222
Bernd
Cotsmann, Mark A. Lantz,
Armin
Knoll, and
Urs Dürig
4.1
Introduction
122
4.2
Heated Probes
222
4.3
Scanning Thermal Microscopy (SThM)
226
4.4
Heat-Transfer Mechanisms
129
4.4.1
Heat Transport Through the Cantilever Legs and Air
229
4.4.2
Heat Transfer Through Radiation
232
4.4.3
Thermal Resistance of a Water Meniscus
132
АЛА
Heat Transfer Through a Silicon Tip
232
4.4.5
Thermal Spreading Resistance
138
4.4.6
Interface Thermal Resistance
239
4.4.7
Combined Heat Transport Through Tip, Interface and Sample
240
4.4.8
Heat-Transport Experiments Through a Tip-Surface
Point Contact
242
4.5
Thermomechanical Nanoindentation
244
4.6
Application in Data Storage: The 'Millipede' Project
255
4.6.1
Writing
255
4.6.2
Reading
256
4.6.3
Erasing
256
VIII
Contents
4.6.4
Medium Endurance
158
4.6.5
Bit Retention
159
4.6.6
Tip Endurance
159
4.6.7
Data Rate
159
4.7
Nanotribology and Nanolithography Applications
161
4.7.1
Nanowear Testing
161
4.7.2
Nanolithography Applications
163
References
166
5
Materials Integration by Dip-Pen Nanolithography
171
Steven Lenhert,
Harald Fuchs,
and Chad A. Mirkin
5.1
Introduction
171
5.2
Ink Transport
172
5.2.1
Theoretical Models for Ink Transport
173
5.2.2
Experimental Parameters Affecting Ink Transport
176
5.2.2.1
Driving Forces
176
5.2.2.2
Covalent Reaction with the Substrate
276
5.2.2.3
Noncovalent Driving Forces
177
5.2.2.4
Tip Geometry and Substrate Roughness
277
5.2.2.5
Humidity and Meniscus Formation
278
5.2.2.6
External Driving Forces
279
5.2.2.7
Thermal DPN
279
5.2.2.8
Electrochemical DPN
280
5.3
Parallel DPN
282
5.3.1
Passive Arrays
282
5.3.2
Active Arrays
282
5.4
Tip Coating
282
5.4.1
Methods for Inking Multiple Tips with the Same Ink
282
5.4.2
Ink Wells
283
5.4.3
Fountain Pens
284
5.4.4
Nanopipettes
284
5.5
Characterization
285
5.6
Applications Based on Materials Integration by DPN
287
5.6.1
Selective Deposition
287
5.6.2
Combinatorial Chemistry
189
5.6.3
Biological Arrays
190
5.7
Conclusions
293
References
293
6
Scanning Ion Conductance Microscopy of Cellular and
Artificial Membranes
297
Matthias
Böcker, Harald
Fuchs,
and
Turnan
E. Schäffer
6.1
Introduction
297
6.1.1
Scanning Ion Conductance Microscopy
298
6.2
Methods
299
Contents
IX
6.2.1 The Basic
Set-Up
199
6.2.2 Nanopipettes 200
6.3
Description of Current-Distance Behavior
201
6.4
Imaging with SICM
202
6.4.1
Modulated Scan Technique
202
6.4.2
Cellular Membranes
203
6.4.3
Artificial Membranes
204
6.4.4
SICM with Shear Force Distance Control
206
6.5
Outlook
207
References
209
7
Nanoanalysis by Atom Probe Tomography
213
Cuido
Schmitz
7.1
Introduction
213
7.2
Historical Development
215
7.3
The Physical Principles of the Method
216
7.3.1
Field Ionization and Evaporation
216
7.3.2
Ion Trajectories and Image Magnification
220
7.3.3 Tomographie
Reconstruction
223
73
A Accuracy of the
Tomographie
Reconstruction
226
7.4
Experimental Realization of Measurements
230
7.4.1
Position-Sensitive Ion Detector Systems
230
7.4.2
Instrumental Design of
3-D
Atom Probes
233
7.4.3
Specimen Preparation
236
7.5
Exemplary Studies Using Atom Probe Tomography
238
7.5.1
Nucleation of the First Product Phase
239
7.5.2
Thermal Stability of Giant
Magnetoresistance
Sensor Layers
242
7.5.3
Influence of Grain Boundaries and Curved Interfaces
245
7.6
Approaching Nonconductive Materials: Pulsed Laser Atom
Probe Tomography
248
7.6.1
The Limitations of High-Voltage Pulsing
248
7.6.2
The Mechanism of Pulsed Laser Evaporation
249
7.6.3
Application to Microelectronic Devices
252
References
255
8
Cryoelectron Tomography: Visualizing the Molecular Architecture
of Cells
259
Dennis R. Thomas and Wolfgang
Baumeister
8.1
Introduction
259
8.2
Basic Principles and Challenges of Electron Tomography
260
8.3
Automated Cryoelectron Tomography
262
8.4
Resolution, Signal-to-Noise Ratio and Visualization
ofTomograms
263
8.5
Merging High Resolution with Low: The Molecular Interpretation
of Cryotomograms
265
Contents
8.5.1
Specific
Labeling
266
8.5.2
Pattern Recognition
268
8.6
Creating Template Libraries
269
8.7
Outlook
270
References
270
9
Time-Resolved Two-Photon
Photoemission
on Surfaces
and Nanoparticles
273
Martin Aeschlimann and Helmut
Zacharias
9.1
Introduction
273
9.2
Theoretical Background
274
9.2.1
Electron-Electron Interaction
275
9.2.2
Plasmonic Processes
276
9.2.3
Two-Temperature Model
277
9.2.4
Electron-Phonon Coupling
278
9.3
Experimental
280
9.4
Relaxation of Excited Carriers
285
9.5
Volume Excitation in Metallic Nanostructures Investigated
byTR-PEEM
289
9.6
Long-lived Resonances in
Adsórbate/
Substrate Systems
293
9.7
Outlook: Spatial and Temporal Control of Nano-Optical Fields
298
References
300
10
Nanoplasmonics
307
Cerala
Steiner
10.1
Introduction
307
10.2
Single Clusters
308
10.3
Nanoshells
312
10.4
Layer of Clusters
312
10.5
Surface-Enhanced Spectroscopy
316
10.5.1
Surface-Enhanced Raman Scattering
316
10.5.2
Surface-Enhanced Fluorescence
319
10.5.3
Surface-Enhanced Infrared Absorption Spectroscopy
320
10.6
Biosensing
321
References
323
11
Impedance Analysis of Cell Junctions
325
Joachim Wegener
11.1
A Short Introduction to Cell Junctions of Animal Cells
325
11.1.1
Cell Junctions for Mechanical Stability of the Tissue
326
11.1.1.1
Adherens Junctions
327
11.1.1.2
Desmosomes
327
11.1.1.3
Focal Contacts
327
11.1.1.4
Hemi-Desmosomes
328
11.1.1.5
Less-Prominent Types of Mechanical Junctions
328
Contents
XI
11.1.2
Cell Junctions Sealing Extracellular Pathways: Tight
Junctions
328
11.1.3
Communicating Junctions: Gap Junctions and Synapses
329
11.1.3.1
Chemical Synapses
329
11.1.3.2
Gap Junctions
329
11.2
Established Physical Techniques to Study Cell Junctions
330
11.2.1
Cell-Matrix Junctions
330
11.2.1.1
Scanning Probe Techniques
330
11.2.1.2
Nonscanning Microscopic Techniques
331
11.2.1.3
Fluorescence Interference Contrast Microscopy
331
11.2.1.4
Total Internal Reflection (Aqueous) Fluorescence Microscopy
331
11.2.1.5
Quartz Crystal
Microbalance
332
11.2.1.6
Other Techniques
332
11.2.2
Cell-Cell Junctions
333
11.2.2.1
Tight Junctions
333
11.2.2.2
Gap Junctions
334
11.3
Impedance Spectroscopy
335
11.3.1
Fundamental Relationships in Impedance Analysis
336
11.3.2
Data Representation and Analysis
337
11.4
Impedance Analysis of Cell Junctions
340
11.4.1
General Remarks about Experimental Issues
340
11.4.1.1
Two-Probe versus Four-Probe Measurement
340
11.4.1.2
Introducing Electrodes for Impedance Readings into
an Animal Cell Culture
340
11.4.1.3
Experimental Set-Up
343
11.4.2
Time-Resolved Impedance Measurements at Designated
Frequencies
344
11.4.2.1
De novo
Formation of Cell-Matrix and Cell-Cell Junctions
347
11.4.2.2
Modulation of Established Cell Junctions
350
11.4.3
Modeling the Complex Impedance of Cell-Covered Electrodes
352
11.4.4
Spectroscopie
Characterization of Cell-Cell and Cell—Matrix
Junctions
354
References
356
Index
359 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)13573097X |
building | Verbundindex |
bvnumber | BV023237416 |
classification_rvk | ZN 3700 |
ctrlnum | (OCoLC)635250135 (DE-599)BVBBV023237416 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01354nam a2200337 cc4500</leader><controlfield tag="001">BV023237416</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090220 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080403s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527317332</subfield><subfield code="9">978-3-527-31733-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635250135</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023237416</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanotechnology</subfield><subfield code="n">6</subfield><subfield code="p">Nanoprobes</subfield><subfield code="c">G. Schmid ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 370 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fuchs, Harald</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmid, Günter</subfield><subfield code="d">1937-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)13573097X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV023237305</subfield><subfield code="g">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016423014&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016423014</subfield></datafield></record></collection> |
id | DE-604.BV023237416 |
illustrated | Illustrated |
index_date | 2024-07-02T20:22:40Z |
indexdate | 2024-07-09T21:13:48Z |
institution | BVB |
isbn | 9783527317332 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016423014 |
oclc_num | 635250135 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-29T DE-703 DE-92 DE-210 DE-1102 DE-634 DE-83 DE-11 DE-91G DE-BY-TUM |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-29T DE-703 DE-92 DE-210 DE-1102 DE-634 DE-83 DE-11 DE-91G DE-BY-TUM |
physical | XVII, 370 S. Ill., graph. Darst. 25 cm |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Nanotechnology 6 Nanoprobes G. Schmid ... (eds.) Weinheim Wiley-VCH 2009 XVII, 370 S. Ill., graph. Darst. 25 cm txt rdacontent n rdamedia nc rdacarrier Nanotechnologie (DE-588)4327470-5 gnd rswk-swf Nanotechnologie (DE-588)4327470-5 s DE-604 Fuchs, Harald Sonstige oth Schmid, Günter 1937- Sonstige (DE-588)13573097X oth (DE-604)BV023237305 6 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016423014&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nanotechnology Nanotechnologie (DE-588)4327470-5 gnd |
subject_GND | (DE-588)4327470-5 |
title | Nanotechnology |
title_auth | Nanotechnology |
title_exact_search | Nanotechnology |
title_exact_search_txtP | Nanotechnology |
title_full | Nanotechnology 6 Nanoprobes G. Schmid ... (eds.) |
title_fullStr | Nanotechnology 6 Nanoprobes G. Schmid ... (eds.) |
title_full_unstemmed | Nanotechnology 6 Nanoprobes G. Schmid ... (eds.) |
title_short | Nanotechnology |
title_sort | nanotechnology nanoprobes |
topic | Nanotechnologie (DE-588)4327470-5 gnd |
topic_facet | Nanotechnologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016423014&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV023237305 |
work_keys_str_mv | AT fuchsharald nanotechnology6 AT schmidgunter nanotechnology6 |