Introduction to spintronics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 531 S. Ill., graph. Darst. |
ISBN: | 9780849331336 0849331331 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023224854 | ||
003 | DE-604 | ||
005 | 20140131 | ||
007 | t | ||
008 | 080320s2008 xxuad|| |||| 00||| eng d | ||
010 | |a 2008003602 | ||
020 | |a 9780849331336 |c alk. paper |9 978-0-8493-3133-6 | ||
020 | |a 0849331331 |9 0-8493-3133-1 | ||
035 | |a (OCoLC)144565550 | ||
035 | |a (DE-599)BVBBV023224854 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-20 |a DE-703 |a DE-92 |a DE-384 |a DE-355 |a DE-29T |a DE-11 |a DE-91G |a DE-188 |a DE-M347 | ||
050 | 0 | |a TK7874.887 | |
082 | 0 | |a 621.381 | |
084 | |a UP 6700 |0 (DE-625)146429: |2 rvk | ||
084 | |a ELT 399f |2 stub | ||
084 | |a PHY 723f |2 stub | ||
100 | 1 | |a Bandyopadhyay, Supriyo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to spintronics |c Supriyo Bandyopadhyay ; Marc Cahay |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2008 | |
300 | |a XVIII, 531 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Spintronics | |
650 | 0 | 7 | |a Spintronik |0 (DE-588)7755384-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetoelektronik |0 (DE-588)4532095-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Magnetoelektronik |0 (DE-588)4532095-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Spintronik |0 (DE-588)7755384-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Cahay, Marc |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016410694&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016410694 |
Datensatz im Suchindex
_version_ | 1804137514239262720 |
---|---|
adam_text | Contents
1
The Early History of Spin
1
1.1
Spin
................................ 1
1.2
The Bohr planetary model and space quantization
...... 3
1.3
The birth of spin
........................ 4
1.4
The Stern-Gerlach experiment
.................. 5
1.5
The advent of Spintronics
.................... 8
1.6
Problems
............................. 10
1.7
References
............................. 13
2
The Quantum Mechanics of Spin
17
2.1 Pauli
spin matrices
........................ 19
2.1.1
Eigenvectors of the
Pauli
matrices: spinors
...... 22
2.2
The
Pauli
Equation and spinors
................. 23
2.3
More on the
Pauli
Equation
................... 25
2.4
Extending the
Pauli
Equation
-
the Dirac Equation
...... 26
2.5
The time independent Dirac Equation
............. 30
2.5.1
Non-relativistic approximation to the Dirac Equation
. 30
2.5.2
Relationship between the non-relativistic approxima¬
tion to the Dirac Equation and the
Pauli
Equation
. . 31
2.6
Problems
............................. 33
2.7
Appendix
............................. 36
2.7.1
Working with spin operators
............... 36
2.7.2
Two useful theorems
................... 36
2.7.3
Applications of the Postulates of Quantum Mechanics
to a few spin problems
.................. 38
2.7.4
The
Heisenberg
Principle for spin components
..... 42
2.8
References
............................. 43
3
The Bloch Sphere
45
3.1
The spinor and the qubit
................... 45
3.2
The Bloch sphere concept
.................... 47
3.2.1
Preliminaries
....................... 47
3.2.2
Connection between the Bloch sphere concept and the
classical interpretation of the spin of electron
..... 50
3.2.3
Relationship with qubit
................. 51
3.2.4
Special spinors
...................... 53
ХШ
xiv
Introduction
to Spintronics
3.2.5
The spin flip matrix
................... 54
3.2.6
Excursions on the Bloch sphere: the
Pauli
matrices
revisited
.......................... 54
3.3
Problems
............................. 58
3.4
References
............................. 63
4
Evolution of a Spinor on the Bloch Sphere
65
4.1
Spin-1/2 particle in a constant magnetic field: Larmor preces¬
sion
................................ 65
4.1.1
Rotation on the Bloch sphere
.............. 67
4.2
Preparing to derive the
Rabi
formula
.............. 69
4.3
The
Rabi
formula
......................... 74
4.3.1
Spin flip time
....................... 77
4.4
Problems
............................. 80
4.5
References
............................. 88
5
The Density Matrix
89
5.1
The density matrix concept: case of a pure state
.......89
5.2
Properties of the density matrix
................. 90
5.3
Pure versus mixed state
.....................94
5.4
Concept of the Bloch ball
.................... 97
5.5
Time evolution of the density matrix: case of mixed state
. . 99
5.6
The relaxation times T and T2 and the Bloch equations
. . . 103
5.7
Problems
.............................116
5.8
References
.............................128
6
Spin Orbit Interaction
129
6.1
Spin orbit interaction in a solid
.................132
6.1.1
Rashba interaction
....................132
6.1.2
Dresselhaus interaction
..................134
6.2
Problems
.............................135
6.3
References
.............................137
7
Magneto-Electric Subbands in Quantum Confined Structures
in the Presence of Spin-Orbit Interaction
139
7.1
Dispersion relations of spin resolved magneto-electric subbands
and eigenspinors in a two-dimensional electron gas in the pres¬
ence of spin-orbit interaction
..................139
7.1.1
Magnetic field in the plane of the 2-DEG
.......142
7.1.2
Magnetic field perpendicular to the plane of the
2-
DEG
............................150
7.2
Dispersion relations of spin resolved magneto-electric subbands
and eigenspinors in a one-dimensional electron gas in the pres¬
ence of spin-orbit interaction
..................151
7.2.1
Magnetic field directed along the wire axis (x-axis)
. . 153
Table
of Contents
xv
7.2.2
Spin components
.....................155
7.2.3
Magnetic field perpendicular to wire axis and along
the electric field causing Rashba effect (i.e., along y-
axis)
............................159
7.2.4
Spin components
.....................165
7.3
Magnetic field perpendicular to wire axis and the electric field
causing Rashba effect (i.e., along the z-axis)
..........165
7.3.1
Spin components
..................... 168
7.3.2
Special case
........................ 168
7.4
Eigenenergies of spin resolved subbands and eigenspinors in a
quantum dot in the presence of spin-orbit interaction
..... 168
7.5
Why are the dispersion relations important?
.......... 174
7.6
The three types of Hall Effect
.................. 174
7.6.1
Quantum spin-Hall Effect
................ 185
7.7
Problems
............................. 188
7.8
References
............................. 192
8
Spin Relaxation
195
8.1
The spin-independent spin-orbit magnetic field
........197
8.2
Spin relaxation mechanisms
...................200
8.2.1
Elliott-Yafet mechanism
.................200
8.2.2
D yakonov
Perel
mechanism
..............203
8.2.3
Bir-Aronov-Pikus mechanism
..............209
8.2.4
Hyperfine interactions with nuclear spins
........210
8.3
Spin relaxation in a quantum dot
................211
8.3.1
Longitudinal and transverse spin relaxation times in
a quantum dot
......................213
8.4
The Spin Galvanic Effect
.....................217
8.5
Problems
.............................220
8.6
References
.............................229
9
Exchange Interaction
233
9.1
Identical particles and the
Pauli
Exclusion Principle
.....233
9.1.1
The Helium atom
.....................234
9.1.2
The Heitler-London model of the Hydrogen molecule
. 243
9.2
Hartree
and Hartree-Fock approximations
...........246
9.3
The role of exchange in ferromagnetism
............248
9.3.1
The Bloch model of ferromagnetism
..........248
9.3.2
The
Heisenberg
model of ferromagnetism
.......249
9.4
The
Heisenberg
Hamiltonían...................
250
9.5
Problems
.............................251
9.6
References
.............................255
xvi
Introduction to Spintronics
10
Spin Transport in Solids
257
10.1
The drift-diffusion model
.....................257
10.1.1
Derivation of the simplified steady state spin drift-
diffusion equation
.....................261
10.2
The semiclassical model
.....................264
10.2.1
Spin transport in a quantum wire: Monte Carlo sim¬
ulation
...........................265
10.2.2
Monte Carlo simulation
.................267
10.2.3
Specific examples: temporal decay of spin polarization
268
10.2.4
Specific examples: spatial decay of spin polarization
. 270
10.2.5
Upstream transport
...................270
10.3
Concluding remarks
.......................274
10.4
Problems
.............................275
10.5
References
.............................275
11
Passive
Spintronic
Devices and Related Concepts
277
11.1
Spin valve
.............................277
11.2
Spin injection efficiency
.....................279
11.2.1
Stoner-
Wohlfarth model of a ferromagnet
.......280
11.2.2
A simple two resistor model to understand the spin
valve
............................284
11.2.3
More advanced treatment of the spin valve
......287
11.2.4
A transfer matrix model
.................294
11.2.5
Application of the
Jullière
formula to extract the spin
diffusion length in a paramagnet from spin valve ex¬
periments
.........................309
11.2.6
Spin valve experiments
..................309
11.3
Hysteresis in spin valve magnetoresistance
...........310
11.4
Giant magnetoresistance
.....................314
11.4.1
Applications of the spin valve and GMR effects
.... 318
11.5
Spin accumulation
........................322
11.6
Spin injection across a ferromagnet/metal interface
......327
11.7
Spin injection in a spin valve
..................332
11.8
Spin extraction at the interface between a ferromagnet and a
semiconductor
...........................338
11.9
Problems
.............................343
11.10
References
.............................346
12
Hybrid Spintronics: Active Devices Based on Spin and Charge
351
12.1
Spin-based transistors
......................351
12.2
Spin field effect transistors (SPENFET)
.............353
12.2.1
Sub-threshold slope
....................359
12.2.2
The effect of non-idealities
................361
12.2.3
The quantum well SPINFET
..............364
Table of Contents
xvii
12.2.4
The SPINFET based on the Dresselhaus spin-orbit
interaction
.........................365
12.3
Device performance of SPINFETs
................369
12.3.1
Comparison between MISFET and SPINFET
.....370
12.3.2
Comparison between
HEMT
and SPINFET
......372
12.4
Power dissipation estimates
...................374
12.5
Other types of SPINFETs
....................374
12.5.1
The non-ballistic SPINFET
............... 374
12.5.2
The spin relaxation transistor
.............. 377
12.6
The importance of the spin injection efficiency
......... 379
12.7
Transconductance, gain, bandwidth and isolation
....... 383
12.7.1
Silicon SPINFETs
.................... 384
12.8
Spin Bipolar Junction Transistors (SBJT)
........... 385
12.9
GMR-based transistors
...................... 387
12.9.1
The all-metal spin transistor
..............387
12.9.2
The spin valve transistor
.................390
12.10
Concluding remarks
.......................393
12.11
Problems
.............................394
12.12
References
.............................395
13
Monolithic Spintronics: All-spin logic processors
399
13.1
Monolithic spintronics
......................399
13.1.1
Bit stability and fidelity
.................400
13.2
Reading and writing single spin
.................401
13.3
Single Spin Logic
.........................402
13.3.1
The universal Single Electron Logic gate: the
NAND
gate
............................402
13.3.2
The input dependent ground states of the
NAND
gate
404
13.3.3
Ground state computing with spins
...........412
13.4
Energy dissipation issues
.....................416
13.4.1
Energy dissipated in the gate during switching
.... 416
13.4.2
Energy dissipated in the clocking circuit
........421
13.5
Comparison between hybrid and monolithic spintronics
.... 421
13.6
Concluding remarks
.......................422
13.7
Problems
.............................422
13.8
References
.............................424
14
Quantum Computing with Spins
429
14.1
The quantum inverter
......................429
14.2
Can the
NAND
gate be switched without dissipating energy?
434
14.3
Universal reversible gate: the Toffoli-Fredkin gate
.......439
14.3.1
Dynamics of the
Т
-F
gate
................441
14.4
A-matrix
..............................442
14.5
Quantum gates
..........................442
Introduction to Spintronics
14.5.1
The strange nature of true quantum gates: the square
root of NOT gate
....................443
14.6
Qubits
...............................444
14.7
Superposition states
.......................446
14.8
Quantum parallelism
.......................447
14.9
Universal quantum gates
.....................449
14.9.1
2-qubit universal quantum gates
............450
14.10
A 2-qubit spintronic universal quantum gate
........450
14.10.1
The silicon quantum computer based on nuclear spins
450
14.10.2
Quantum dot-based spintronic model of universal quan¬
tum gate
..........................452
14.11
Conclusion
................ .............454
14.12
Problems
.............................455
14.13
References
.............................455
15
A Quantum Mechanics Primer
459
15.1
Blackbody
radiation and quantization of electromagnetic en¬
ergy
................................459
15.1.1
Blackbody
radiation
...................459
15.2
The concept of the photon
....................460
15.3
Wave-particle duality and the
De Broglie
wavelength
.....463
15.4
Postulates of quantum mechanics
................466
15.4.1
Interpretation of the
Heisenberg
Uncertainty Princi¬
ple
.............................472
15.4.2
Time evolution of expectation values: the
Ehrenfest
Theorem
..........................475
15.5
Some elements of semiconductor physics: particular applica¬
tions in nanostructures
......................477
15.5.1
Density of states: bulk
(3-D)
to quantum dot (0-D)
. . 477
15.6
The Rayleigh-Ritz variational procedure
............491
15.7
The transfer matrix formalism
..................496
15.7.1
Linearly independent solutions of the
Schrödinger
equa¬
tion
............................497
15.7.2
Concept of Wronskian
..................498
15.7.3
Concept of transfer matrix
................499
15.7.4
Cascading rule for transfer matrices
..........499
15.8
Problems
.............................504
15.9
References
.............................505
|
adam_txt |
Contents
1
The Early History of Spin
1
1.1
Spin
. 1
1.2
The Bohr planetary model and space quantization
. 3
1.3
The birth of "spin"
. 4
1.4
The Stern-Gerlach experiment
. 5
1.5
The advent of Spintronics
. 8
1.6
Problems
. 10
1.7
References
. 13
2
The Quantum Mechanics of Spin
17
2.1 Pauli
spin matrices
. 19
2.1.1
Eigenvectors of the
Pauli
matrices: spinors
. 22
2.2
The
Pauli
Equation and spinors
. 23
2.3
More on the
Pauli
Equation
. 25
2.4
Extending the
Pauli
Equation
-
the Dirac Equation
. 26
2.5
The time independent Dirac Equation
. 30
2.5.1
Non-relativistic approximation to the Dirac Equation
. 30
2.5.2
Relationship between the non-relativistic approxima¬
tion to the Dirac Equation and the
Pauli
Equation
. . 31
2.6
Problems
. 33
2.7
Appendix
. 36
2.7.1
Working with spin operators
. 36
2.7.2
Two useful theorems
. 36
2.7.3
Applications of the Postulates of Quantum Mechanics
to a few spin problems
. 38
2.7.4
The
Heisenberg
Principle for spin components
. 42
2.8
References
. 43
3
The Bloch Sphere
45
3.1
The spinor and the "qubit"
. 45
3.2
The Bloch sphere concept
. 47
3.2.1
Preliminaries
. 47
3.2.2
Connection between the Bloch sphere concept and the
classical interpretation of the spin of electron
. 50
3.2.3
Relationship with qubit
. 51
3.2.4
Special spinors
. 53
ХШ
xiv
Introduction
to Spintronics
3.2.5
The spin flip matrix
. 54
3.2.6
Excursions on the Bloch sphere: the
Pauli
matrices
revisited
. 54
3.3
Problems
. 58
3.4
References
. 63
4
Evolution of a Spinor on the Bloch Sphere
65
4.1
Spin-1/2 particle in a constant magnetic field: Larmor preces¬
sion
. 65
4.1.1
Rotation on the Bloch sphere
. 67
4.2
Preparing to derive the
Rabi
formula
. 69
4.3
The
Rabi
formula
. 74
4.3.1
Spin flip time
. 77
4.4
Problems
. 80
4.5
References
. 88
5
The Density Matrix
89
5.1
The density matrix concept: case of a pure state
.89
5.2
Properties of the density matrix
. 90
5.3
Pure versus mixed state
.94
5.4
Concept of the Bloch ball
. 97
5.5
Time evolution of the density matrix: case of mixed state
. . 99
5.6
The relaxation times T\ and T2 and the Bloch equations
. . . 103
5.7
Problems
.116
5.8
References
.128
6
Spin Orbit Interaction
129
6.1
Spin orbit interaction in a solid
.132
6.1.1
Rashba interaction
.132
6.1.2
Dresselhaus interaction
.134
6.2
Problems
.135
6.3
References
.137
7
Magneto-Electric Subbands in Quantum Confined Structures
in the Presence of Spin-Orbit Interaction
139
7.1
Dispersion relations of spin resolved magneto-electric subbands
and eigenspinors in a two-dimensional electron gas in the pres¬
ence of spin-orbit interaction
.139
7.1.1
Magnetic field in the plane of the 2-DEG
.142
7.1.2
Magnetic field perpendicular to the plane of the
2-
DEG
.150
7.2
Dispersion relations of spin resolved magneto-electric subbands
and eigenspinors in a one-dimensional electron gas in the pres¬
ence of spin-orbit interaction
.151
7.2.1
Magnetic field directed along the wire axis (x-axis)
. . 153
Table
of Contents
xv
7.2.2
Spin components
.155
7.2.3
Magnetic field perpendicular to wire axis and along
the electric field causing Rashba effect (i.e., along y-
axis)
.159
7.2.4
Spin components
.165
7.3
Magnetic field perpendicular to wire axis and the electric field
causing Rashba effect (i.e., along the z-axis)
.165
7.3.1
Spin components
. 168
7.3.2
Special case
. 168
7.4
Eigenenergies of spin resolved subbands and eigenspinors in a
quantum dot in the presence of spin-orbit interaction
. 168
7.5
Why are the dispersion relations important?
. 174
7.6
The three types of Hall Effect
. 174
7.6.1
Quantum spin-Hall Effect
. 185
7.7
Problems
. 188
7.8
References
. 192
8
Spin Relaxation
195
8.1
The spin-independent spin-orbit magnetic field
.197
8.2
Spin relaxation mechanisms
.200
8.2.1
Elliott-Yafet mechanism
.200
8.2.2
D'yakonov
Perel'
mechanism
.203
8.2.3
Bir-Aronov-Pikus mechanism
.209
8.2.4
Hyperfine interactions with nuclear spins
.210
8.3
Spin relaxation in a quantum dot
.211
8.3.1
Longitudinal and transverse spin relaxation times in
a quantum dot
.213
8.4
The Spin Galvanic Effect
.217
8.5
Problems
.220
8.6
References
.229
9
Exchange Interaction
233
9.1
Identical particles and the
Pauli
Exclusion Principle
.233
9.1.1
The Helium atom
.234
9.1.2
The Heitler-London model of the Hydrogen molecule
. 243
9.2
Hartree
and Hartree-Fock approximations
.246
9.3
The role of exchange in ferromagnetism
.248
9.3.1
The Bloch model of ferromagnetism
.248
9.3.2
The
Heisenberg
model of ferromagnetism
.249
9.4
The
Heisenberg
Hamiltonían.
250
9.5
Problems
.251
9.6
References
.255
xvi
Introduction to Spintronics
10
Spin Transport in Solids
257
10.1
The drift-diffusion model
.257
10.1.1
Derivation of the simplified steady state spin drift-
diffusion equation
.261
10.2
The semiclassical model
.264
10.2.1
Spin transport in a quantum wire: Monte Carlo sim¬
ulation
.265
10.2.2
Monte Carlo simulation
.267
10.2.3
Specific examples: temporal decay of spin polarization
268
10.2.4
Specific examples: spatial decay of spin polarization
. 270
10.2.5
Upstream transport
.270
10.3
Concluding remarks
.274
10.4
Problems
.275
10.5
References
.275
11
Passive
Spintronic
Devices and Related Concepts
277
11.1
Spin valve
.277
11.2
Spin injection efficiency
.279
11.2.1
Stoner-
Wohlfarth model of a ferromagnet
.280
11.2.2
A simple two resistor model to understand the spin
valve
.284
11.2.3
More advanced treatment of the spin valve
.287
11.2.4
A transfer matrix model
.294
11.2.5
Application of the
Jullière
formula to extract the spin
diffusion length in a paramagnet from spin valve ex¬
periments
.309
11.2.6
Spin valve experiments
.309
11.3
Hysteresis in spin valve magnetoresistance
.310
11.4
Giant magnetoresistance
.314
11.4.1
Applications of the spin valve and GMR effects
. 318
11.5
Spin accumulation
.322
11.6
Spin injection across a ferromagnet/metal interface
.327
11.7
Spin injection in a spin valve
.332
11.8
Spin extraction at the interface between a ferromagnet and a
semiconductor
.338
11.9
Problems
.343
11.10
References
.346
12
Hybrid Spintronics: Active Devices Based on Spin and Charge
351
12.1
Spin-based transistors
.351
12.2
Spin field effect transistors (SPENFET)
.353
12.2.1
Sub-threshold slope
.359
12.2.2
The effect of non-idealities
.361
12.2.3
The quantum well SPINFET
.364
Table of Contents
xvii
12.2.4
The SPINFET based on the Dresselhaus spin-orbit
interaction
.365
12.3
Device performance of SPINFETs
.369
12.3.1
Comparison between MISFET and SPINFET
.370
12.3.2
Comparison between
HEMT
and SPINFET
.372
12.4
Power dissipation estimates
.374
12.5
Other types of SPINFETs
.374
12.5.1
The non-ballistic SPINFET
. 374
12.5.2
The spin relaxation transistor
. 377
12.6
The importance of the spin injection efficiency
. 379
12.7
Transconductance, gain, bandwidth and isolation
. 383
12.7.1
Silicon SPINFETs
. 384
12.8
Spin Bipolar Junction Transistors (SBJT)
. 385
12.9
GMR-based transistors
. 387
12.9.1
The all-metal spin transistor
.387
12.9.2
The spin valve transistor
.390
12.10
Concluding remarks
.393
12.11
Problems
.394
12.12
References
.395
13
Monolithic Spintronics: All-spin logic processors
399
13.1
Monolithic spintronics
.399
13.1.1
Bit stability and fidelity
.400
13.2
Reading and writing single spin
.401
13.3
Single Spin Logic
.402
13.3.1
The universal Single Electron Logic gate: the
NAND
gate
.402
13.3.2
The input dependent ground states of the
NAND
gate
404
13.3.3
Ground state computing with spins
.412
13.4
Energy dissipation issues
.416
13.4.1
Energy dissipated in the gate during switching
. 416
13.4.2
Energy dissipated in the clocking circuit
.421
13.5
Comparison between hybrid and monolithic spintronics
. 421
13.6
Concluding remarks
.422
13.7
Problems
.422
13.8
References
.424
14
Quantum Computing with Spins
429
14.1
The quantum inverter
.429
14.2
Can the
NAND
gate be switched without dissipating energy?
434
14.3
Universal reversible gate: the Toffoli-Fredkin gate
.439
14.3.1
Dynamics of the
Т
-F
gate
.441
14.4
A-matrix
.442
14.5
Quantum gates
.442
Introduction to Spintronics
14.5.1
The strange nature of true quantum gates: the 'square
root of NOT' gate
.443
14.6
Qubits
.444
14.7
Superposition states
.446
14.8
Quantum parallelism
.447
14.9
Universal quantum gates
.449
14.9.1
2-qubit universal quantum gates
.450
14.10
A 2-qubit "spintronic" universal quantum gate
.450
14.10.1
The silicon quantum computer based on nuclear spins
450
14.10.2
Quantum dot-based spintronic model of universal quan¬
tum gate
.452
14.11
Conclusion
.'.454
14.12
Problems
.455
14.13
References
.455
15
A Quantum Mechanics Primer
459
15.1
Blackbody
radiation and quantization of electromagnetic en¬
ergy
.459
15.1.1
Blackbody
radiation
.459
15.2
The concept of the photon
.460
15.3
Wave-particle duality and the
De Broglie
wavelength
.463
15.4
Postulates of quantum mechanics
.466
15.4.1
Interpretation of the
Heisenberg
Uncertainty Princi¬
ple
.472
15.4.2
Time evolution of expectation values: the
Ehrenfest
Theorem
.475
15.5
Some elements of semiconductor physics: particular applica¬
tions in nanostructures
.477
15.5.1
Density of states: bulk
(3-D)
to quantum dot (0-D)
. . 477
15.6
The Rayleigh-Ritz variational procedure
.491
15.7
The transfer matrix formalism
.496
15.7.1
Linearly independent solutions of the
Schrödinger
equa¬
tion
.497
15.7.2
Concept of Wronskian
.498
15.7.3
Concept of transfer matrix
.499
15.7.4
Cascading rule for transfer matrices
.499
15.8
Problems
.504
15.9
References
.505 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bandyopadhyay, Supriyo Cahay, Marc |
author_facet | Bandyopadhyay, Supriyo Cahay, Marc |
author_role | aut aut |
author_sort | Bandyopadhyay, Supriyo |
author_variant | s b sb m c mc |
building | Verbundindex |
bvnumber | BV023224854 |
callnumber-first | T - Technology |
callnumber-label | TK7874 |
callnumber-raw | TK7874.887 |
callnumber-search | TK7874.887 |
callnumber-sort | TK 47874.887 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | UP 6700 |
classification_tum | ELT 399f PHY 723f |
ctrlnum | (OCoLC)144565550 (DE-599)BVBBV023224854 |
dewey-full | 621.381 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.381 |
dewey-search | 621.381 |
dewey-sort | 3621.381 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Physik Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01686nam a2200457zc 4500</leader><controlfield tag="001">BV023224854</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140131 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080320s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008003602</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780849331336</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8493-3133-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0849331331</subfield><subfield code="9">0-8493-3133-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)144565550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023224854</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-M347</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7874.887</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.381</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 6700</subfield><subfield code="0">(DE-625)146429:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 399f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 723f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bandyopadhyay, Supriyo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to spintronics</subfield><subfield code="c">Supriyo Bandyopadhyay ; Marc Cahay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 531 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spintronics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spintronik</subfield><subfield code="0">(DE-588)7755384-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetoelektronik</subfield><subfield code="0">(DE-588)4532095-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Magnetoelektronik</subfield><subfield code="0">(DE-588)4532095-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spintronik</subfield><subfield code="0">(DE-588)7755384-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cahay, Marc</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016410694&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016410694</subfield></datafield></record></collection> |
id | DE-604.BV023224854 |
illustrated | Illustrated |
index_date | 2024-07-02T20:17:34Z |
indexdate | 2024-07-09T21:13:30Z |
institution | BVB |
isbn | 9780849331336 0849331331 |
language | English |
lccn | 2008003602 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016410694 |
oclc_num | 144565550 |
open_access_boolean | |
owner | DE-20 DE-703 DE-92 DE-384 DE-355 DE-BY-UBR DE-29T DE-11 DE-91G DE-BY-TUM DE-188 DE-M347 |
owner_facet | DE-20 DE-703 DE-92 DE-384 DE-355 DE-BY-UBR DE-29T DE-11 DE-91G DE-BY-TUM DE-188 DE-M347 |
physical | XVIII, 531 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | CRC Press |
record_format | marc |
spelling | Bandyopadhyay, Supriyo Verfasser aut Introduction to spintronics Supriyo Bandyopadhyay ; Marc Cahay Boca Raton [u.a.] CRC Press 2008 XVIII, 531 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Spintronics Spintronik (DE-588)7755384-6 gnd rswk-swf Magnetoelektronik (DE-588)4532095-0 gnd rswk-swf Magnetoelektronik (DE-588)4532095-0 s DE-604 Spintronik (DE-588)7755384-6 s Cahay, Marc Verfasser aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016410694&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bandyopadhyay, Supriyo Cahay, Marc Introduction to spintronics Spintronics Spintronik (DE-588)7755384-6 gnd Magnetoelektronik (DE-588)4532095-0 gnd |
subject_GND | (DE-588)7755384-6 (DE-588)4532095-0 |
title | Introduction to spintronics |
title_auth | Introduction to spintronics |
title_exact_search | Introduction to spintronics |
title_exact_search_txtP | Introduction to spintronics |
title_full | Introduction to spintronics Supriyo Bandyopadhyay ; Marc Cahay |
title_fullStr | Introduction to spintronics Supriyo Bandyopadhyay ; Marc Cahay |
title_full_unstemmed | Introduction to spintronics Supriyo Bandyopadhyay ; Marc Cahay |
title_short | Introduction to spintronics |
title_sort | introduction to spintronics |
topic | Spintronics Spintronik (DE-588)7755384-6 gnd Magnetoelektronik (DE-588)4532095-0 gnd |
topic_facet | Spintronics Spintronik Magnetoelektronik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016410694&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bandyopadhyaysupriyo introductiontospintronics AT cahaymarc introductiontospintronics |