The Bartle-Dunford-Schwartz integral: integration with respect to a sigma-additive vector measure
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
2008
|
Schriftenreihe: | Monografie Matematyczny
69 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 301 S. |
ISBN: | 9783764386016 3764386010 9783764386023 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023223507 | ||
003 | DE-604 | ||
005 | 20080609 | ||
007 | t | ||
008 | 080319s2008 |||| 00||| eng d | ||
015 | |a 07,N38,0772 |2 dnb | ||
016 | 7 | |a 985454466 |2 DE-101 | |
020 | |a 9783764386016 |c Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.) |9 978-3-7643-8601-6 | ||
020 | |a 3764386010 |c Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.) |9 3-7643-8601-0 | ||
020 | |a 9783764386023 |9 978-3-7643-8602-3 | ||
024 | 3 | |a 9783764386016 | |
028 | 5 | 2 | |a 12102761 |
035 | |a (OCoLC)175285193 | ||
035 | |a (DE-599)DNB985454466 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-11 |a DE-83 | ||
050 | 0 | |a QA312 | |
082 | 0 | |a 515.7 |2 22 | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a 28B05 |2 msc | ||
100 | 1 | |a Panchapagesan, Thiruvaiyaru V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Bartle-Dunford-Schwartz integral |b integration with respect to a sigma-additive vector measure |c T. V. Panchapagesan |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2008 | |
300 | |a XV, 301 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Monografie Matematyczny |v 69 | |
650 | 4 | |a Vector-valued measures | |
650 | 0 | 7 | |a Integrationstheorie |0 (DE-588)4138369-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorwertiges Maß |0 (DE-588)4187472-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Integrationstheorie |0 (DE-588)4138369-2 |D s |
689 | 0 | 1 | |a Vektorwertiges Maß |0 (DE-588)4187472-9 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Monografie Matematyczny |v 69 |w (DE-604)BV000003532 |9 69 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016409365&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016409365 |
Datensatz im Suchindex
_version_ | 1804137512178810880 |
---|---|
adam_text | Contents
Preface
ix
1 Preliminaries
1.1 Banach space-valued measures .................... 1
1.2 lcHs-valued measures.......................... 11
2 Basic Properties of the Bartle-Dunford-Schwartz Integral
2.1 (KL) m-integrability.......................... 17
2.2 (BDS) m-integrability......................... 26
3 £p-spaces, 1 p oo
3.1 Theseminormsmp(-,T) on £pM(m), 1 p oo......... 33
3.2 Completeness of £pM(m) and £pI(m), 1 p oo,
and of C00 (m) ............................. 42
3.3 Characterizations of £pI(ra) ,l p oo .............. 47
3.4 Other convergence theorems for £p(m), l p oo......... 54
3.5 Relations between the spaces £p(m)................. 63
4 Integration With Respect to lcHs-valued Measures
4.1 (KL) m-integrability (m lcHs-valued)................. 65
4.2 (BDS) m-integrability (m lcHs-valued)................ 78
4.3 The locally convex spaces jCp.A i(m), £pM(a(V),m),
£pI(m)and £pl(a{P),m), 1 p oo................ 85
4.4 Completeness of £pM(m),£pl(m), CpM((r{V),m)
and £pl(a(V), m), for suitable X................... 91
4.5 Characterizations of £p-spaces, convergence
theorems and relations between £p-spaces..............101
4.6 Separability of £p(m) and £p(a(V), m), 1 p oo,
m lcHs-valued..............................109
viii Contents
5 Applications to Integration in Locally Compact Hausdorff Spaces - Part I
5.1 Generalizations of the Vitali-Carathéodory
Integrability Criterion Theorem.................... 117
5.2 The Baire version of the Dieudonné-Grothendieck
theorem and its vector-valued generalizations............ 121
5.3 Weakly compact bounded Radon operators
and prolongable Radon operators................... 138
6 Applications to Integration in Locally Compact Hausdorff Spaces - Part II
6.1 Generalized Lusin s Theorem and its variants............ 153
6.2 Lusin measurability of functions and sets .............. 159
6.3 Theorems of integrability criteria................... 165
6.4 Additional convergence theorems................... 187
6.5 Duals of £i(m) and C1(Ii)....................... 202
7 Complements to the Thomas Theory
7.1 Integration of complex functions with respect
to a Radon operator.......................... 213
7.2 Integration with respect to a weakly compact
bounded Radon operator........................ 221
7.3 Integration with respect to a prolongable Radon operator..... 233
7.4 Baire versions of Proposition 4.8 and Theorem 4.9 of [T]...... 241
7.5 Weakly compact and prolongable Radon vector measures ..... 251
7.6 Relation between Lv(u) and Cp(mu), u a weakly compact
bounded Radon operator or a prolongable Radon operator..... 275
Bibliography................................... 287
Acknowledgment................................. 293
List of Symbols.................................. 295
Index....................................... 297
|
adam_txt |
Contents
Preface
ix
1 Preliminaries
1.1 Banach space-valued measures . 1
1.2 lcHs-valued measures. 11
2 Basic Properties of the Bartle-Dunford-Schwartz Integral
2.1 (KL) m-integrability. 17
2.2 (BDS) m-integrability. 26
3 £p-spaces, 1 p oo
3.1 Theseminormsmp(-,T) on £pM(m), 1 p oo. 33
3.2 Completeness of £pM(m) and £pI(m), 1 p oo,
and of C00 (m) . 42
3.3 Characterizations of £pI(ra) ,l p oo . 47
3.4 Other convergence theorems for £p(m), l p oo. 54
3.5 Relations between the spaces £p(m). 63
4 Integration With Respect to lcHs-valued Measures
4.1 (KL) m-integrability (m lcHs-valued). 65
4.2 (BDS) m-integrability (m lcHs-valued). 78
4.3 The locally convex spaces jCp.A'i(m), £pM(a(V),m),
£pI(m)and £pl(a{P),m), 1 p oo. 85
4.4 Completeness of £pM(m),£pl(m), CpM((r{V),m)
and £pl(a(V), m), for suitable X. 91
4.5 Characterizations of £p-spaces, convergence
theorems and relations between £p-spaces.101
4.6 Separability of £p(m) and £p(a(V), m), 1 p oo,
m lcHs-valued.109
viii Contents
5 Applications to Integration in Locally Compact Hausdorff Spaces - Part I
5.1 Generalizations of the Vitali-Carathéodory
Integrability Criterion Theorem. 117
5.2 The Baire version of the Dieudonné-Grothendieck
theorem and its vector-valued generalizations. 121
5.3 Weakly compact bounded Radon operators
and prolongable Radon operators. 138
6 Applications to Integration in Locally Compact Hausdorff Spaces - Part II
6.1 Generalized Lusin's Theorem and its variants. 153
6.2 Lusin measurability of functions and sets . 159
6.3 Theorems of integrability criteria. 165
6.4 Additional convergence theorems. 187
6.5 Duals of £i(m) and C1(Ii). 202
7 Complements to the Thomas Theory
7.1 Integration of complex functions with respect
to a Radon operator. 213
7.2 Integration with respect to a weakly compact
bounded Radon operator. 221
7.3 Integration with respect to a prolongable Radon operator. 233
7.4 Baire versions of Proposition 4.8 and Theorem 4.9 of [T]. 241
7.5 Weakly compact and prolongable Radon vector measures . 251
7.6 Relation between Lv(u) and Cp(mu), u a weakly compact
bounded Radon operator or a prolongable Radon operator. 275
Bibliography. 287
Acknowledgment. 293
List of Symbols. 295
Index. 297 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Panchapagesan, Thiruvaiyaru V. |
author_facet | Panchapagesan, Thiruvaiyaru V. |
author_role | aut |
author_sort | Panchapagesan, Thiruvaiyaru V. |
author_variant | t v p tv tvp |
building | Verbundindex |
bvnumber | BV023223507 |
callnumber-first | Q - Science |
callnumber-label | QA312 |
callnumber-raw | QA312 |
callnumber-search | QA312 |
callnumber-sort | QA 3312 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 430 SK 910 |
ctrlnum | (OCoLC)175285193 (DE-599)DNB985454466 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01988nam a2200505 cb4500</leader><controlfield tag="001">BV023223507</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080609 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080319s2008 |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N38,0772</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985454466</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764386016</subfield><subfield code="c">Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.)</subfield><subfield code="9">978-3-7643-8601-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764386010</subfield><subfield code="c">Gb. : EUR 85.49 (freier Pr.), sfr 139.00 (freier Pr.)</subfield><subfield code="9">3-7643-8601-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764386023</subfield><subfield code="9">978-3-7643-8602-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783764386016</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12102761</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)175285193</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB985454466</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA312</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">28B05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Panchapagesan, Thiruvaiyaru V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Bartle-Dunford-Schwartz integral</subfield><subfield code="b">integration with respect to a sigma-additive vector measure</subfield><subfield code="c">T. V. Panchapagesan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 301 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Monografie Matematyczny</subfield><subfield code="v">69</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector-valued measures</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorwertiges Maß</subfield><subfield code="0">(DE-588)4187472-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Integrationstheorie</subfield><subfield code="0">(DE-588)4138369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Vektorwertiges Maß</subfield><subfield code="0">(DE-588)4187472-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Monografie Matematyczny</subfield><subfield code="v">69</subfield><subfield code="w">(DE-604)BV000003532</subfield><subfield code="9">69</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016409365&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016409365</subfield></datafield></record></collection> |
id | DE-604.BV023223507 |
illustrated | Not Illustrated |
index_date | 2024-07-02T20:17:01Z |
indexdate | 2024-07-09T21:13:28Z |
institution | BVB |
isbn | 9783764386016 3764386010 9783764386023 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016409365 |
oclc_num | 175285193 |
open_access_boolean | |
owner | DE-824 DE-11 DE-83 |
owner_facet | DE-824 DE-11 DE-83 |
physical | XV, 301 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Birkhäuser |
record_format | marc |
series | Monografie Matematyczny |
series2 | Monografie Matematyczny |
spelling | Panchapagesan, Thiruvaiyaru V. Verfasser aut The Bartle-Dunford-Schwartz integral integration with respect to a sigma-additive vector measure T. V. Panchapagesan Basel [u.a.] Birkhäuser 2008 XV, 301 S. txt rdacontent n rdamedia nc rdacarrier Monografie Matematyczny 69 Vector-valued measures Integrationstheorie (DE-588)4138369-2 gnd rswk-swf Vektorwertiges Maß (DE-588)4187472-9 gnd rswk-swf Integrationstheorie (DE-588)4138369-2 s Vektorwertiges Maß (DE-588)4187472-9 s DE-604 Monografie Matematyczny 69 (DE-604)BV000003532 69 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016409365&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Panchapagesan, Thiruvaiyaru V. The Bartle-Dunford-Schwartz integral integration with respect to a sigma-additive vector measure Monografie Matematyczny Vector-valued measures Integrationstheorie (DE-588)4138369-2 gnd Vektorwertiges Maß (DE-588)4187472-9 gnd |
subject_GND | (DE-588)4138369-2 (DE-588)4187472-9 |
title | The Bartle-Dunford-Schwartz integral integration with respect to a sigma-additive vector measure |
title_auth | The Bartle-Dunford-Schwartz integral integration with respect to a sigma-additive vector measure |
title_exact_search | The Bartle-Dunford-Schwartz integral integration with respect to a sigma-additive vector measure |
title_exact_search_txtP | The Bartle-Dunford-Schwartz integral integration with respect to a sigma-additive vector measure |
title_full | The Bartle-Dunford-Schwartz integral integration with respect to a sigma-additive vector measure T. V. Panchapagesan |
title_fullStr | The Bartle-Dunford-Schwartz integral integration with respect to a sigma-additive vector measure T. V. Panchapagesan |
title_full_unstemmed | The Bartle-Dunford-Schwartz integral integration with respect to a sigma-additive vector measure T. V. Panchapagesan |
title_short | The Bartle-Dunford-Schwartz integral |
title_sort | the bartle dunford schwartz integral integration with respect to a sigma additive vector measure |
title_sub | integration with respect to a sigma-additive vector measure |
topic | Vector-valued measures Integrationstheorie (DE-588)4138369-2 gnd Vektorwertiges Maß (DE-588)4187472-9 gnd |
topic_facet | Vector-valued measures Integrationstheorie Vektorwertiges Maß |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016409365&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003532 |
work_keys_str_mv | AT panchapagesanthiruvaiyaruv thebartledunfordschwartzintegralintegrationwithrespecttoasigmaadditivevectormeasure |