The eukaryotic cell cycle:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Taylor & Francis
2008
|
Ausgabe: | 1. publ. |
Schriftenreihe: | SEB experimental biology series
59 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 301 S. Ill., graph. Darst. |
ISBN: | 9780415407816 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023222802 | ||
003 | DE-604 | ||
005 | 20081104 | ||
007 | t | ||
008 | 080319s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780415407816 |9 978-0-415-40781-6 | ||
035 | |a (OCoLC)176648911 | ||
035 | |a (DE-599)BVBBV023222802 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-703 |a DE-355 |a DE-11 | ||
050 | 0 | |a QH605 | |
082 | 0 | |a 571.8/4 |2 22 | |
084 | |a WE 2500 |0 (DE-625)148269: |2 rvk | ||
245 | 1 | 0 | |a The eukaryotic cell cycle |c ed. by John A. Bryant ... |
250 | |a 1. publ. | ||
264 | 1 | |a New York [u.a.] |b Taylor & Francis |c 2008 | |
300 | |a XVIII, 301 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Experimental biology reviews | |
490 | 1 | |a SEB experimental biology series |v 59 | |
650 | 4 | |a Cellules eucaryotes | |
650 | 4 | |a Cycle cellulaire | |
650 | 4 | |a Cell Cycle |x physiology | |
650 | 4 | |a Cell cycle | |
650 | 4 | |a DNA Replication |x physiology | |
650 | 4 | |a Eukaryotic Cells |x physiology | |
650 | 4 | |a Eukaryotic cells | |
650 | 0 | 7 | |a Zellzyklus |0 (DE-588)4129960-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eukaryontische Zelle |0 (DE-588)4153142-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Eukaryontische Zelle |0 (DE-588)4153142-5 |D s |
689 | 0 | 1 | |a Zellzyklus |0 (DE-588)4129960-7 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Bryant, John A. |e Sonstige |4 oth | |
830 | 0 | |a SEB experimental biology series |v 59 |w (DE-604)BV023082462 |9 59 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016408664&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016408664 |
Datensatz im Suchindex
_version_ | 1804137511068368896 |
---|---|
adam_text | Contents
Contributors
xi
Abbreviations
xiii
Preface
xvii
1.
Plant D-type cyclins: structure, roles and functions
1
Margit
Menges
and James A. H. Murray
1
Introduction
1
2
Phylogenetic analysis
5
3
Cyclin domains and other structural features
5
4
Cell-cycle-related gene expression of CYCD
12
5
Expression of D-type cyclins in cell suspension cultures
15
6
Role of CYCD during germination
17
7
Expression atlas
20
8
Concluding remarks
22
Acknowledgements
22
References
22
2.
Initiation of
DNA
replication
29
John A. Bryant and Dennis
Fränas
1
Introduction
29
2
General features of replicons
29
3
What is a replication origin? Some history
31
4
So, what is a replication origin?
32
5
What happens at an origin? The role of the
ORC
33
6
What happens at an origin? Activation or licensing of origins
34
7
What happens at origins: a brief look at plants
35
8
Flexibility in the use of origins
36
9
Concluding remarks
38
Acknowledgements
38
References
38
3.
McmlO and
DNA
replication in fission yeast
45
Karen Moore and Stephen
J
.
Aves
1
Introduction
45
2
Genetic characterisation in the cell cycle
45
3
Cellular localisation and chromatin binding in the cell cycle
46
4
Protein sequence and conserved domains
47
5
McmlO interactions
51
5.1
Multimerisation
51
5.2
Interactions with other proteins
51
6
McmlO and
ORC
51
7
McmlO and Mcml-J
56
vi
Contents
8 DNA replication
initiation
57
8.1 TopBPl 58
8.2
Summary of McmlO involvement in initiation
58
9
Replicative
helicase
58
10
Replisome
progression complex (RPC)
59
11
McmlO and
DNA polymerase-a-primase 60
12
McmlO
primase
activity
61
13
PCNA and
processive polymerases
62
14
Okazaki fragment processing
62
15
Chromatin silencing
62
16
Other McmlO interactions
63
17
Conclusions
64
Acknowledgements
64
References
65
4.
Copying the template
-
with a little help from my friends?
71
John A. Bryant
1
Introduction: the end of the beginning
71
2
Initiation by
DNA
polymerase-a-primase
73
3
Multiple
DNA
polymerases
74
4
Primer-recognition proteins
74
5
Primer-recognition protein is something else
75
6
Phosphoglycerate kinase as a moonlighting protein
76
7
Why do cells have primer-recognition protein?
77
Acknowledgements
78
References
78
5.
G2/M transition in eukaryotes
81
Dennis
Fränas
1
Introduction
81
2
cdc2 and cyclins
81
3
Cdc25
83
4
WEE1
84
5
CKIs/ICKs/KRPs
85
6
SUCl/CKSl
86
7
Spatial expression of G2/M proteins
86
8
Checkpoints
87
9
Hormonal regulation of G2/M
88
10
Conclusions
89
Acknowledgements
90
References
90
6.
Many faces of
separase
regulation
99
Andrew
J
.
Holland and Stephen S. Taylor
1
Introduction
99
2
Securin: a dual role in
separase
regulation
100
3
Separase
localisation
101
4
Multiple mechanisms to regulate cohesin cleavage
101
4.1
Substrate modification
102
4.2
Two mechanisms for inhibiting
separase
in vertebrates
103
Contents
vii
5
Securin and cyclin Bl play redundant roles in inhibiting
separase
during mitosis
104
6
Securin and cyclin
В
1
-independent mechanisms to regulate cohesin cleavage
105
7
A role for the separase-cyclin Bl complex during meiosis
106
8
Sequential binding of
separase
to securin then cyclin
В
1 107
9
Summary
108
10
Addendum
108
References
109
7.
The centrosome in the eukaryotic cell
113
Nina Peel and
Renata Basto
1
Introduction
113
2
The origin of the centrosome and the basal body
113
3
The spindle pole body
114
4
Centrosome inheritance
115
5
Centrosome duplication
117
5.1
The centrosome cycle
117
5.2
Cell cycle control of centrosome duplication
118
5.3
Building a daughter centriole
119
6
De novo
centriole assembly
121
7
Centrosome functions
122
7.1
The centrosome as a microtubule nucleating centre
122
7.2
The
interphase
centrosome
122
7.3
Centrosome maturation
123
7.4
Cell division without centrosomes
124
7.5
The centrosome in cytokinesis
125
8
Centrosome and cell cycle regulation
126
9
Centrosomes and polarity
127
9.1
C. elegans
polarity
127
9.2
Cell migration
127
9.3
Asymmetric cell division
129
10
Centrosomes and cancer
131
11
Conclusion
132
Acknowledgements
132
References
132
8.
Division versus differentiation in the early Xenopus embryo
145
Anna Philpott
1
Introduction
145
2
Studying the role of cell cycle regulators in controlling differentiation
in the early embryo
145
2.1
Xenopus as an experimental model system
145
2.2
Cyclin-dependent kinase inhibitors
147
2.3
Primary neurogenesis in Xenopus
147
2.4
Cdki XIC1 is required for primary neurogenesis in Xenopus
149
2.5
XIC1 promotes primary neurogenesis independently from its ability to
inhibit the cell cycle
151
2.6
XIC1 is also required for differentiation of embryonic muscle
153
2.7
Overexpression of cyclins and Cdks during early Xenopus development
155
2.8
Lateral inhibition regulates spacing of primary neurons
159
3
Conclusions
162
Acknowledgements
162
References
162
vin
Contents
9.
Endoreduplication control
during plant development
167
Elena
Caro,
Bénédicte
Desvoyes, Elena Ramirez-Parra,
María de la Paz
Sanchez and Crisanto Gutierrez
1
Introduction
167
2
Cell cycle regulators and the endocycle switch
167
3
Endoreduplication during
organogénesis
and development
172
3.1
Seed development and germination
172
3.2
Hypocotyl
173
3.3
Leaf
175
3.4
Trichomes
177
Acknowledgements
179
References
179
10.
Chromatin modifications and nucleotide excision repair
189
Raymond Waters, Simon H. Reed, Yachuan Yu and Yumin
Teng
1
Introduction
189
2
Histone acetylation and
NER
at MFA2
193
3 DNA
in nucleosome cores at MFA2 becomes more accessible to restriction
after UV: a possible measure of chromatin remodelling
194
4
Post-UV chromatin modifications in the repressed MFA2 promoter do
not trigger transcriptional activation of MFA2
194
5
UV-stimulated chromatin modifications at MFA2 are independent of
RAD4p or RAD14p
195
6
Absence of
TUPI
repressor
can suppress the requirement for RAD16
during global genome repair at the
MFÄ2
promoter
195
7
How do these observations relate to events in the rest of the genome?
197
8
Summary
198
Acknowledgements
198
References
198
11. DNA
ligase
-
a means to an end joining
203
Clifford M. Bray, Paul
A. Sunderland,
Wanda M. Waterworth and
Christopher E. West
1
Introduction
203
2
Properties of
DNA
ligase
proteins
204
2.1
Protein interactions and catalysis
204
2.2
Expression patterns
205
3
Plant
DNA
ligases
206
4
The importance of controlling cellular levels of
DNA
ligases
207
5
Phosphorylation status and cell cycle regulation of
DNA
ligase
activity
208
6
Intracellular targeting of
DNA
ligase
isoforms in Ambidopsis
209
6.1
Three AtLIGl transcripts with a common open reading frame
210
6.2
AtLIGl isoforms are targeted to the nucleus and mitochondria but
not the
chloroplast
210
6.3
Nucleotide context around alternative start
codons
influences
production of AtLIGl isoforms
211
6.4
Length of the AtLIGl
5 -UTR
is a minor contributor to AtLIGl
isoform
production
213
7
An evolutionarily conserved mechanism regulates
DNA
ligase
isoform
production in eukaryotic cells
213
Contents
ix
Acknowledgements
214
References
214
12.
Cell cycle checkpoint-guarded routes to catenation-induced
chromosomal instability
219
Paul].
Smith,
Suet-Feung Chin, Kerenza Njoh, Imtiaz A. Khan,
Michael]. Chappell and Rachel J.
Errington
1
Introduction
219
2
Aneuploidy and cancer
220
3
Decatenation checkpoint
221
3.1
Decatenation checkpoint and
DNA topoisomerase
II modulation
221
3.2
NCI database survey of tumour cell responses to catalytic inhibitors
of
DNA
topoisomerase II
222
3.3
p53 and catenation stress
225
4
Diversion of cells into polyploidy/CIN by ICRF-l
93 225
4.1
Primary
fibroblasts
and transformed lymphoblasts
225
4.2
Single cell tracking of cell cycle progress in ICRF-193-treated p53
mutant lymphoma cells
228
4.3
Cellular escape from catenation stress by incomplete mitosis
231
4.4
Cellular escape from catenation stress by endocycle routing
233
5
Mathematical modelling of cell cycle and the challenge for the analysis
of
CIN
evolution
235
6
Conclusions
237
Acknowledgements
237
References
237
13.
The spindle checkpoint: how do cells delay anaphase onset?
243
Matylda
M.
Sczaniecka and Kevin
G. Hardwick
1
Introduction
243
2
Sensing bi-orientation
243
3
Checkpoint signal transduction
245
4
Kinetochore generation of anaphase inhibitors?
246
5
The mitotic checkpoint complex
247
6
APC regulation
247
7
The role of Mad3 and the importance of KEN boxes
248
8
Other regulatory mechanisms
251
9
Summary
252
Acknowledgements
253
References
253
14.
A mechanism coupling cell division and the control of apoptosis
257
Lindsey A. Allan and Paul R. Clarke
1
Introduction
257
2
Role of caspase-9 in apoptosis
258
3
Regulation of caspase-9
259
4
Phosphorylation of caspase-9 during the cell cycle
260
5
Caspase-9 is phosphorylated by CDKl-cyclin Bl during mitosis
260
6
Phosphorylation of caspase-9 restrains apoptosis during mitosis
260
7
Interplay between the spindle assembly checkpoint and caspase-9 activation
261
8
Phosphorylation of caspase-9 sets a threshold for apoptosis during the cell cycle
261
Contents
9
Caspase-9 activation after prolonged arrest in mitosis
263
10
Summary
. 264
Acknowledgements
264
References
264
15.
The cytoskeleton and the control of organelle dynamics in the
apoptotic execution phase
267
Virginie M. S.
Betin andjon
D.
Lane
1
Introduction
267
1.1
Apoptotic
commitment signalling: the prelude to the execution phase
268
2
Cell reorganisation during the apoptotic execution phase
270
2.1
Execution phase events and the central role of actin/myosin II
270
2.2
Apoptotic cell release
270
2.3
Apoptotic surface blebbing
271
2.4
Apoptotic fragmentation
272
3
Organelle dynamics and function during apoptosis
272
3.1
Mitochondria
272
3.2
Endoplasmic reticulum
273
3.3
Golgi apparatus
274
3.4
Lysosomes
277
3.5
The nucleus
277
3.6
Membrane trafficking
277
4
Roles for microtubules during the apoptotic execution phase
278
4.1
Kinetics of apoptotic microtubule assembly
278
4.2
Early apoptotic microtubule disassembly and changes in organelle dynamics
279
4.3
The apoptotic microtubule array and apoptotic organelle dynamics
281
4.4
Apoptotic microtubules and cellular dynamics
282
5
Concluding remarks
283
Acknowledgements
283
References
283
Index
291
|
adam_txt |
Contents
Contributors
xi
Abbreviations
xiii
Preface
xvii
1.
Plant D-type cyclins: structure, roles and functions
1
Margit
Menges
and James A. H. Murray
1
Introduction
1
2
Phylogenetic analysis
5
3
Cyclin domains and other structural features
5
4
Cell-cycle-related gene expression of CYCD
12
5
Expression of D-type cyclins in cell suspension cultures
15
6
Role of CYCD during germination
17
7
Expression atlas
20
8
Concluding remarks
22
Acknowledgements
22
References
22
2.
Initiation of
DNA
replication
29
John A. Bryant and Dennis
Fränas
1
Introduction
29
2
General features of replicons
29
3
What is a replication origin? Some history
31
4
So, what is a replication origin?
32
5
What happens at an origin? The role of the
ORC
33
6
What happens at an origin? Activation or licensing of origins
34
7
What happens at origins: a brief look at plants
35
8
Flexibility in the use of origins
36
9
Concluding remarks
38
Acknowledgements
38
References
38
3.
McmlO and
DNA
replication in fission yeast
45
Karen Moore and Stephen
J
.
Aves
1
Introduction
45
2
Genetic characterisation in the cell cycle
45
3
Cellular localisation and chromatin binding in the cell cycle
46
4
Protein sequence and conserved domains
47
5
McmlO interactions
51
5.1
Multimerisation
51
5.2
Interactions with other proteins
51
6
McmlO and
ORC
51
7
McmlO and Mcml-J
56
vi
Contents
8 DNA replication
initiation
57
8.1 TopBPl 58
8.2
Summary of McmlO involvement in initiation
58
9
Replicative
helicase
58
10
Replisome
progression complex (RPC)
59
11
McmlO and
DNA polymerase-a-primase 60
12
McmlO
primase
activity
61
13
PCNA and
processive polymerases
62
14
Okazaki fragment processing
62
15
Chromatin silencing
62
16
Other McmlO interactions
63
17
Conclusions
64
Acknowledgements
64
References
65
4.
Copying the template
-
with a little help from my friends?
71
John A. Bryant
1
Introduction: the end of the beginning
71
2
Initiation by
DNA
polymerase-a-primase
73
3
Multiple
DNA
polymerases
74
4
Primer-recognition proteins
74
5
Primer-recognition protein is something else
75
6
Phosphoglycerate kinase as a moonlighting protein
76
7
Why do cells have primer-recognition protein?
77
Acknowledgements
78
References
78
5.
G2/M transition in eukaryotes
81
Dennis
Fränas
1
Introduction
81
2
cdc2 and cyclins
81
3
Cdc25
83
4
WEE1
84
5
CKIs/ICKs/KRPs
85
6
SUCl/CKSl
86
7
Spatial expression of G2/M proteins
86
8
Checkpoints
87
9
Hormonal regulation of G2/M
88
10
Conclusions
89
Acknowledgements
90
References
90
6.
Many faces of
separase
regulation
99
Andrew
J
.
Holland and Stephen S. Taylor
1
Introduction
99
2
Securin: a dual role in
separase
regulation
100
3
Separase
localisation
101
4
Multiple mechanisms to regulate cohesin cleavage
101
4.1
Substrate modification
102
4.2
Two mechanisms for inhibiting
separase
in vertebrates
103
Contents
vii
5
Securin and cyclin Bl play redundant roles in inhibiting
separase
during mitosis
104
6
Securin and cyclin
В
1
-independent mechanisms to regulate cohesin cleavage
105
7
A role for the separase-cyclin Bl complex during meiosis
106
8
Sequential binding of
separase
to securin then cyclin
В
1 107
9
Summary
108
10
Addendum
108
References
109
7.
The centrosome in the eukaryotic cell
113
Nina Peel and
Renata Basto
1
Introduction
113
2
The origin of the centrosome and the basal body
113
3
The spindle pole body
114
4
Centrosome inheritance
115
5
Centrosome duplication
117
5.1
The centrosome cycle
117
5.2
Cell cycle control of centrosome duplication
118
5.3
Building a daughter centriole
119
6
De novo
centriole assembly
121
7
Centrosome functions
122
7.1
The centrosome as a microtubule nucleating centre
122
7.2
The
interphase
centrosome
122
7.3
Centrosome maturation
123
7.4
Cell division without centrosomes
124
7.5
The centrosome in cytokinesis
125
8
Centrosome and cell cycle regulation
126
9
Centrosomes and polarity
127
9.1
C. elegans
polarity
127
9.2
Cell migration
127
9.3
Asymmetric cell division
129
10
Centrosomes and cancer
131
11
Conclusion
132
Acknowledgements
132
References
132
8.
Division versus differentiation in the early Xenopus embryo
145
Anna Philpott
1
Introduction
145
2
Studying the role of cell cycle regulators in controlling differentiation
in the early embryo
145
2.1
Xenopus as an experimental model system
145
2.2
Cyclin-dependent kinase inhibitors
147
2.3
Primary neurogenesis in Xenopus
147
2.4
Cdki XIC1 is required for primary neurogenesis in Xenopus
149
2.5
XIC1 promotes primary neurogenesis independently from its ability to
inhibit the cell cycle
151
2.6
XIC1 is also required for differentiation of embryonic muscle
153
2.7
Overexpression of cyclins and Cdks during early Xenopus development
155
2.8
Lateral inhibition regulates spacing of primary neurons
159
3
Conclusions
162
Acknowledgements
162
References
162
vin
Contents
9.
Endoreduplication control
during plant development
167
Elena
Caro,
Bénédicte
Desvoyes, Elena Ramirez-Parra,
María de la Paz
Sanchez and Crisanto Gutierrez
1
Introduction
167
2
Cell cycle regulators and the endocycle switch
167
3
Endoreduplication during
organogénesis
and development
172
3.1
Seed development and germination
172
3.2
Hypocotyl
173
3.3
Leaf
175
3.4
Trichomes
177
Acknowledgements
179
References
179
10.
Chromatin modifications and nucleotide excision repair
189
Raymond Waters, Simon H. Reed, Yachuan Yu and Yumin
Teng
1
Introduction
189
2
Histone acetylation and
NER
at MFA2
193
3 DNA
in nucleosome cores at MFA2 becomes more accessible to restriction
after UV: a possible measure of chromatin remodelling
194
4
Post-UV chromatin modifications in the repressed MFA2 promoter do
not trigger transcriptional activation of MFA2
194
5
UV-stimulated chromatin modifications at MFA2 are independent of
RAD4p or RAD14p
195
6
Absence of
TUPI
repressor
can suppress the requirement for RAD16
during global genome repair at the
MFÄ2
promoter
195
7
How do these observations relate to events in the rest of the genome?
197
8
Summary
198
Acknowledgements
198
References
198
11. DNA
ligase
-
a means to an end joining
203
Clifford M. Bray, Paul
A. Sunderland,
Wanda M. Waterworth and
Christopher E. West
1
Introduction
203
2
Properties of
DNA
ligase
proteins
204
2.1
Protein interactions and catalysis
204
2.2
Expression patterns
205
3
Plant
DNA
ligases
206
4
The importance of controlling cellular levels of
DNA
ligases
207
5
Phosphorylation status and cell cycle regulation of
DNA
ligase
activity
208
6
Intracellular targeting of
DNA
ligase
isoforms in Ambidopsis
209
6.1
Three AtLIGl transcripts with a common open reading frame
210
6.2
AtLIGl isoforms are targeted to the nucleus and mitochondria but
not the
chloroplast
210
6.3
Nucleotide context around alternative start
codons
influences
production of AtLIGl isoforms
211
6.4
Length of the AtLIGl
5'-UTR
is a minor contributor to AtLIGl
isoform
production
213
7
An evolutionarily conserved mechanism regulates
DNA
ligase
isoform
production in eukaryotic cells
213
Contents
ix
Acknowledgements
214
References
214
12.
Cell cycle checkpoint-guarded routes to catenation-induced
chromosomal instability
219
Paul].
Smith,
Suet-Feung Chin, Kerenza Njoh, Imtiaz A. Khan,
Michael]. Chappell and Rachel J.
Errington
1
Introduction
219
2
Aneuploidy and cancer
220
3
Decatenation checkpoint
221
3.1
Decatenation checkpoint and
DNA topoisomerase
II modulation
221
3.2
NCI database survey of tumour cell responses to catalytic inhibitors
of
DNA
topoisomerase II
222
3.3
p53 and catenation stress
225
4
Diversion of cells into polyploidy/CIN by ICRF-l
93 225
4.1
Primary
fibroblasts
and transformed lymphoblasts
225
4.2
Single cell tracking of cell cycle progress in ICRF-193-treated p53
mutant lymphoma cells
228
4.3
Cellular escape from catenation stress by incomplete mitosis
231
4.4
Cellular escape from catenation stress by endocycle routing
233
5
Mathematical modelling of cell cycle and the challenge for the analysis
of
CIN
evolution
235
6
Conclusions
237
Acknowledgements
237
References
237
13.
The spindle checkpoint: how do cells delay anaphase onset?
243
Matylda
M.
Sczaniecka and Kevin
G. Hardwick
1
Introduction
243
2
Sensing bi-orientation
243
3
Checkpoint signal transduction
245
4
Kinetochore generation of anaphase inhibitors?
246
5
The mitotic checkpoint complex
247
6
APC regulation
247
7
The role of Mad3 and the importance of KEN boxes
248
8
Other regulatory mechanisms
251
9
Summary
252
Acknowledgements
253
References
253
14.
A mechanism coupling cell division and the control of apoptosis
257
Lindsey A. Allan and Paul R. Clarke
1
Introduction
257
2
Role of caspase-9 in apoptosis
258
3
Regulation of caspase-9
259
4
Phosphorylation of caspase-9 during the cell cycle
260
5
Caspase-9 is phosphorylated by CDKl-cyclin Bl during mitosis
260
6
Phosphorylation of caspase-9 restrains apoptosis during mitosis
260
7
Interplay between the spindle assembly checkpoint and caspase-9 activation
261
8
Phosphorylation of caspase-9 sets a threshold for apoptosis during the cell cycle
261
Contents
9
Caspase-9 activation after prolonged arrest in mitosis
263
10
Summary
. 264
Acknowledgements
264
References
264
15.
The cytoskeleton and the control of organelle dynamics in the
apoptotic execution phase
267
Virginie M. S.
Betin andjon
D.
Lane
1
Introduction
267
1.1
Apoptotic
commitment signalling: the prelude to the execution phase
268
2
Cell reorganisation during the apoptotic execution phase
270
2.1
Execution phase events and the central role of actin/myosin II
270
2.2
Apoptotic cell release
270
2.3
Apoptotic surface blebbing
271
2.4
Apoptotic fragmentation
272
3
Organelle dynamics and function during apoptosis
272
3.1
Mitochondria
272
3.2
Endoplasmic reticulum
273
3.3
Golgi apparatus
274
3.4
Lysosomes
277
3.5
The nucleus
277
3.6
Membrane trafficking
277
4
Roles for microtubules during the apoptotic execution phase
278
4.1
Kinetics of apoptotic microtubule assembly
278
4.2
Early apoptotic microtubule disassembly and changes in organelle dynamics
279
4.3
The apoptotic microtubule array and apoptotic organelle dynamics
281
4.4
Apoptotic microtubules and cellular dynamics
282
5
Concluding remarks
283
Acknowledgements
283
References
283
Index
291 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023222802 |
callnumber-first | Q - Science |
callnumber-label | QH605 |
callnumber-raw | QH605 |
callnumber-search | QH605 |
callnumber-sort | QH 3605 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WE 2500 |
ctrlnum | (OCoLC)176648911 (DE-599)BVBBV023222802 |
dewey-full | 571.8/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.8/4 |
dewey-search | 571.8/4 |
dewey-sort | 3571.8 14 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01895nam a2200505 cb4500</leader><controlfield tag="001">BV023222802</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081104 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080319s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780415407816</subfield><subfield code="9">978-0-415-40781-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)176648911</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023222802</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH605</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.8/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 2500</subfield><subfield code="0">(DE-625)148269:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The eukaryotic cell cycle</subfield><subfield code="c">ed. by John A. Bryant ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Taylor & Francis</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 301 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Experimental biology reviews</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">SEB experimental biology series</subfield><subfield code="v">59</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellules eucaryotes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cycle cellulaire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Cycle</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell cycle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA Replication</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotic Cells</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Eukaryotic cells</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zellzyklus</subfield><subfield code="0">(DE-588)4129960-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eukaryontische Zelle</subfield><subfield code="0">(DE-588)4153142-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eukaryontische Zelle</subfield><subfield code="0">(DE-588)4153142-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zellzyklus</subfield><subfield code="0">(DE-588)4129960-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bryant, John A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">SEB experimental biology series</subfield><subfield code="v">59</subfield><subfield code="w">(DE-604)BV023082462</subfield><subfield code="9">59</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016408664&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016408664</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV023222802 |
illustrated | Illustrated |
index_date | 2024-07-02T20:16:43Z |
indexdate | 2024-07-09T21:13:27Z |
institution | BVB |
isbn | 9780415407816 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016408664 |
oclc_num | 176648911 |
open_access_boolean | |
owner | DE-12 DE-703 DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-12 DE-703 DE-355 DE-BY-UBR DE-11 |
physical | XVIII, 301 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Taylor & Francis |
record_format | marc |
series | SEB experimental biology series |
series2 | Experimental biology reviews SEB experimental biology series |
spelling | The eukaryotic cell cycle ed. by John A. Bryant ... 1. publ. New York [u.a.] Taylor & Francis 2008 XVIII, 301 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Experimental biology reviews SEB experimental biology series 59 Cellules eucaryotes Cycle cellulaire Cell Cycle physiology Cell cycle DNA Replication physiology Eukaryotic Cells physiology Eukaryotic cells Zellzyklus (DE-588)4129960-7 gnd rswk-swf Eukaryontische Zelle (DE-588)4153142-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Eukaryontische Zelle (DE-588)4153142-5 s Zellzyklus (DE-588)4129960-7 s b DE-604 Bryant, John A. Sonstige oth SEB experimental biology series 59 (DE-604)BV023082462 59 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016408664&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The eukaryotic cell cycle SEB experimental biology series Cellules eucaryotes Cycle cellulaire Cell Cycle physiology Cell cycle DNA Replication physiology Eukaryotic Cells physiology Eukaryotic cells Zellzyklus (DE-588)4129960-7 gnd Eukaryontische Zelle (DE-588)4153142-5 gnd |
subject_GND | (DE-588)4129960-7 (DE-588)4153142-5 (DE-588)4143413-4 |
title | The eukaryotic cell cycle |
title_auth | The eukaryotic cell cycle |
title_exact_search | The eukaryotic cell cycle |
title_exact_search_txtP | The eukaryotic cell cycle |
title_full | The eukaryotic cell cycle ed. by John A. Bryant ... |
title_fullStr | The eukaryotic cell cycle ed. by John A. Bryant ... |
title_full_unstemmed | The eukaryotic cell cycle ed. by John A. Bryant ... |
title_short | The eukaryotic cell cycle |
title_sort | the eukaryotic cell cycle |
topic | Cellules eucaryotes Cycle cellulaire Cell Cycle physiology Cell cycle DNA Replication physiology Eukaryotic Cells physiology Eukaryotic cells Zellzyklus (DE-588)4129960-7 gnd Eukaryontische Zelle (DE-588)4153142-5 gnd |
topic_facet | Cellules eucaryotes Cycle cellulaire Cell Cycle physiology Cell cycle DNA Replication physiology Eukaryotic Cells physiology Eukaryotic cells Zellzyklus Eukaryontische Zelle Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016408664&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV023082462 |
work_keys_str_mv | AT bryantjohna theeukaryoticcellcycle |