Numerical methods for ordinary differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester [u.a.]
Wiley
2008
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 463 S. Ill., graph. Darst. |
ISBN: | 9780470723357 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023219727 | ||
003 | DE-604 | ||
005 | 20111206 | ||
007 | t | ||
008 | 080318s2008 xxuad|| |||| 00||| eng d | ||
020 | |a 9780470723357 |9 978-0-470-72335-7 | ||
035 | |a (OCoLC)635178047 | ||
035 | |a (DE-599)BVBBV023219727 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-703 |a DE-29T |a DE-634 |a DE-11 |a DE-20 |a DE-824 |a DE-19 |a DE-898 |a DE-1050 |a DE-83 | ||
084 | |a SK 500 |0 (DE-625)143243: |2 rvk | ||
084 | |a SK 520 |0 (DE-625)143244: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a 65L06 |2 msc | ||
084 | |a 65L05 |2 msc | ||
084 | |a 65L20 |2 msc | ||
084 | |a 34A12 |2 msc | ||
100 | 1 | |a Butcher, John C. |d 1933- |e Verfasser |0 (DE-588)13615638X |4 aut | |
245 | 1 | 0 | |a Numerical methods for ordinary differential equations |c J. C. Butcher |
250 | |a 2. ed. | ||
264 | 1 | |a Chichester [u.a.] |b Wiley |c 2008 | |
300 | |a XIX, 463 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1991 |z Dublin |2 gnd-content | |
689 | 0 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405658&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016405658 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137506373894144 |
---|---|
adam_text | Contents
Preface
to the first edition
.................... xiii
Preface to the second edition
.................. xvii
1
Differential and Difference Equations
.......... 1
10
Differential Equation Problems
............... 1
100
Introduction to differential equations
...........
І
101
The Kepler problem
.................... 4
102
A problem arising from the method of lines
....... 7
103
The simple pendulum
.................... 10
10Ą
A chemical kinetics problem
................ 14
105
The Van
der Pol
equation and limit cycles
........ 16
106
The Lotka-Volterra problem and periodic orbits
..... 18
107
The
Euler
equations of rigid body rotation
........ 20
11
Differential Equation Theory
................. 22
110
Existence and uniqueness of solutions
.......... 22
111 Linear systems of differential equations
......... 24
112
Stiff differential equations
................. 26
12
Further Evolutionary Problems
............... 28
120
Many-body gravitational problems
............. 28
121
Delay problems and discontinuous solutions
....... 31
122
Problems evolving on a sphere
............... 32
123
Further Hamiltonian problems
............... 34
124
Further differential-algebraic problems
.......... 36
13
Difference Equation Problems
................ 38
130
Introduction to difference equations
............ 38
131
Ä
linear problem
...................... 38
132
The Fibonacci difference equation
............. 40
133
Three quadratic problems
................. 40
ISA Iterative solutions of a polynomial equation
....... 41
135
The arithmetic-geometric mean
.............. 43
CONTENTS
14
Difference Equation Theory
.................. 44
IAO
Linear difference equations
................ 44
1Ą1
Constant coefficients
.................... 45
1Ą2
Powers of matrices
..................... 46
Numerical Differential Equation Methods
....... 51
20
The
Euler
Method
........................ 51
200
Introduction to the
Euler
methods
............. 51
201
Some numerical experiments
............... 54
202
Calculations with stepsize control
............. 58
203
Calculations with mildly stiff problems
.......... 60
204
Calculations with the implicit
Euler
method
....... 63
21
Analysis of the
Euler
Method
................ 65
210
Formulation of the
Euler
method
............. 65
211
Local truncation error
................... 66
212
Global truncation error
................... 66
213
Convergence of the
Euler
method
............. 68
214
Order of convergence
.................... 69
215
Asymptotic error formula
................. 72
216
Stability characteristics
.................. 74
211
Local truncation error estimation
............. 79
218
Rounding error
....................... 80
22
Generalizations of the
Euler
Method
............ 85
220
Introduction
......................... 85
221
More computations in a step
............... 86
222
Greater dependence on previous values
.......... 87
223
Use of higher derivatives
.................. 88
22Ą
Multistep-multistage-multiderivative methods
...... 90
225
Implicit methods
...................... 91
226
Local error estimates
.................... 91
23
Runge-Kutta Methods
..................... 93
230
Historical introduction
................... 93
231
Second order methods
................... 93
232
The coefficient tableau
................... 94
233
Third order methods
.................... 95
234
Introduction to order conditions
.............. 95
235
Fourth order methods
................... 98
236
Higher orders
........................ 99
237
Implicit Runge-Kutta methods
.............. 99
238
Stability characteristics
.................. 100
Numerical examples
.................... 103
CONTENTS
vii
24 Linear Multistep
Methods...................
105
24O
Historical introduction
................... 105
BAI
Adams methods
....................... 105
242
General form of linear multistep methods
........ 107
243
Consistency, stability and convergence
.......... 107
244
Predictor-corrector Adams methods
............ 109
245
The Milne device
......................
Ill
246
Starting methods
...................... 112
247
Numerical examples
.................... 113
25
Taylor Series Methods
..................... 114
250
Introduction to Taylor series methods
.......... 114
251
Manipulation of power series
............... 115
252
An example of a Taylor series solution
.......... 116
253
Other methods using higher derivatives
.......... 119
254
The use of
f
derivatives
.................. 120
255
Further numerical examples
................ 121
26
Hybrid Methods
......................... 122
260
Historical introduction
................... 122
261
Pseudo
Runge-Kutta methods
............... 123
262
Generalized linear multistep methods
........... 124
263
General linear methods
................... 124
264
Numerical examples
.................... 127
27
Introduction to Implementation
............... 128
270
Choice of method
...................... 128
271
Variable stepsize
...................... 130
272
Interpolation
........................ 131
273
Experiments with the Kepler problem
........... 132
274
Experiments with a discontinuous problem
........ 133
3
Runge-Kutta Methods
..................... 137
30
Preliminaries
........................... 137
300
Rooted trees
......................... 137
301
Functions on trees
..................... 139
302
Some combinatorial questions
............... 141
303
The use of labelled trees
.................. 144
304
Enumerating non-rooted trees
............... 144
305
Differentiation
....................... 146
306
Taylor s theorem
...................... 148
31
Order Conditions
........................ 150
310
Elementary differentials
.................. 150
311
The Taylor expansion of the exact solution
....... 153
312
Elementary weights
..................... 155
313
The Taylor expansion of the approximate solution
.... 159
314
Independence of the elementary differentials
....... 160
315
Conditions for order
.................... 162
CONTENTS
316 Order
conditions
for scalar
problems
...........162
317
Independence, of elementary weights
...........163
318
Local truncation error
...................165
319
Global truncation error
...................166
32
Low Order Explicit Methods
.................170
320
Methods of orders less than
4...............170
321
Simplifying assumptions
..................171
322
Methods of order
4.....................175
323
New methods from old
...................181
324
Order barriers
.......................187
325
Methods of order
5.....................190
326
Methods of order
6.....................192
327
Methods of orders greater than
6.............195
33
Runge-Kutta Methods with Error Estimates
......198
330
Introduction
.........................198
331
Richardson error estimates
................198
332
Methods with built-in estimates
..............201
333
A class of error-estimating methods
...........202
334
The methods of
Fehlberg..................208
335
The methods of
Verner
...................210
336
The methods of Dormand and Prince
...........211
34
Implicit Runge-Kutta Methods
...............213
340
Introduction
.........................213
341
Solvability of implicit equations
..............214
342
Methods based on Gaussian quadrature
..........215
343
Reflected methods
......................219
344
Methods based on Radau and Lobatto quadrature
.... 222
35
Stability of Implicit Runge-Kutta Methods
.......230
350
A-stability
;
А(ог)-
stability and L-stability
.........230
351
Criteria for A-stability
...................230
352
Padé
approximations to the exponential function
.... 232
353
A-stability of Gauss and related methods
........238
354
Order stars
.........................240
355
Order arrows and the Ehle barrier
............243
356
AN-stability
.........................245
357
Non-linear stability
.....................248
358
BN-stability of collocation methods
............252
359
The V and
W
transformations
..............254
36
Implementable Implicit
Runge—
Kutta Methods
.....259
360
Implementation of implicit Runge-Kutta methods
.... 259
361
Diagonally implicit Runge-Kutta methods
........261
362
The importance of high stage order
............262
363
Singly implicit methods
..................266
364
Generalizations of singly implicit methods
........271
365
Effective order and DESIRE methods
...........273
CONTENTS ix
37 Symplectic Runge-Kutta
Methods
.............275
370
Maintaining quadratic invariants
.............275
371
Examples of
symplectic
methods
..............276
372
Order conditions
......................277
573
Experiments with
symplectic
methods
...........278
38
Algebraic Properties of Runge-Kutta Methods
.....280
380
Motivation
.........................280
381
Equivalence classes of Runge-Kutta methods
......281
382
The group of Runge-Kutta methods
............284
383
The Runge-Kutta group
..................287
384
A homomorphism between two groups
..........290
385
A generalization of G%
...................291
386
Recursive formula for the product
.............292
387
Some special elements of
G
................297
388
Some subgroups and quotient groups
...........300
389
An algebraic interpretation of effective order
.......302
39
Implementation Issues
.....................308
390
Introduction
.........................308
391
Optimal sequences
.....................308
392
Acceptance and rejection of steps
.............310
393
Error per step versus error per unit step
.........311
394
Control-theoretic considerations
..............312
395
Solving the implicit equations
...............313
4
Linear Multistep Methods
..................317
40
Preliminaries
...........................317
400 Fundamentals
........................317
401 Starting methods
......................318
402
Convergence
.........................319
403
Stability
...........................320
404
Consistency
.........................320
405
Necessity of conditions for convergence
..........322
406
Sufficiency of conditions for convergence
.........324
41
The Order of Linear Multistep Methods
..........329
410 Criteria
f
or order
......................329
411 Derivation of methods
...................330
Ą12
Backward difference methods
...............332
42
Errors and Error Growth
...................333
420
Introduction
.........................333
421 Further remarks on error growth
.............335
422
The underlying one-step method
.............337
423
Weakly stable methods
...................339
Ą2Ą
Variable stepsize
......................340
; CONTENTS
43
Stability Characteristics
....................342
430
Introduction
.........................342
431
Stability regions
.......................344
432
Examples of the boundary locus method
.........346
433
An example of the
Schur
criterion
............349
434
Stability of predictor-corrector methods
.........349
44
Order and Stability Barriers
.................352
440
Survey of barrier results
..................352
441 Maximum order for a convergent k-step method
.....353
44^
Order stars for linear multistep methods
.........356
44З
Order arrows for linear multistep methods
........358
45
One-Leg Methods and G-stability
..............360
450
The one-leg counterpart to a linear multistep method
. . 360
451 The concept of G-stability
.................361
452
Transformations relating one-leg and linear multistep
methods
...........................364
453
Effective order interpretation
...............365
454
Concluding remarks on G-stability
............365
46
Implementation Issues
.....................366
460
Survey of implementation considerations
.........366
461
Representation of data
...................367
462
Variable stepsize for Nordsieck methods
.........371
463
Local error estimation
...................372
5
General Linear Methods
....................373
50
Representing Methods in General Linear Form
.....373
500
Multivalue-multistage methods
..............373
501
Transformations of methods
................375
502
Runge-Kutta methods as general linear methods
.....376
503
Linear multistep methods as general linear methods
. . . 377
504
Some known unconventional methods
...........380
505
Some recently discovered general linear methods
.....382
51
Consistency, Stability and Convergence
..........385
510
Definitions of consistency and stability
..........385
511
Govariance of methods
...................386
512
Definition of convergence
.................387
513
The necessity of stability
.................388
514
The necessity of consistency
................389
515
Stability and consistency imply convergence
.......390
52
The Stability of General Linear Methods
.........397
520
Introduction
.........................397
521
Methods with maximal stability order
...........398
522
Outline proof of the Butcher-
Chipman
conjecture
. . . 402
523
Non-linear stability
.....................405
524
Reducible linear multistep methods and G-stability
. . . 407
525
G-symplectic methods
...................408
CONTENTS xi
53
The Order of
General Linear
Methods...........
410
530
Possible definitions of order
................410
531
Local and global truncation errors
.............412
532
Algebraic analysis of order
.................413
533
An example of the algebraic approach to order
......414
53Ą
The order of a G-symplectic method
...........416
535
The underlying one-step method
.............417
54
Methods with Runge-Kutta stability
............420
ОАО
Design criteria for general linear methods
........420
541
The types of DIMSIM methods
..............420
542
Runge-Kutta stability
...................423
543
Almost Runge-Kutta methods
...............426
544
Third order, three-stage ARK methods
..........429
545
Fourth order, four-stage ARK methods
..........431
546
A fifth order, five-stage method
..............433
547
ARK methods for stiff problems
..............434
55
Methods with Inherent
Runge—Kutta
Stability
.....436
550
Doubly companion matrices
................436
551
Inherent Runge-Kutta stability
..............438
552
Conditions for zero spectral radius
............440
553
Derivation of methods with IRK stability
.........442
554
Methods with property
F
..................445
555
Some non-stiff methods
..................446
556
Some stiff methods
.....................447
557
Scale and modify for stability
...............448
558
Scale and modify for error estimation
..........450
References
................................453
Index
....................................459
|
adam_txt |
Contents
Preface
to the first edition
. xiii
Preface to the second edition
. xvii
1
Differential and Difference Equations
. 1
10
Differential Equation Problems
. 1
100
Introduction to differential equations
.
І
101
The Kepler problem
. 4
102
A problem arising from the method of lines
. 7
103
The simple pendulum
. 10
10Ą
A chemical kinetics problem
. 14
105
The Van
der Pol
equation and limit cycles
. 16
106
The Lotka-Volterra problem and periodic orbits
. 18
107
The
Euler
equations of rigid body rotation
. 20
11
Differential Equation Theory
. 22
110
Existence and uniqueness of solutions
. 22
111 Linear systems of differential equations
. 24
112
Stiff differential equations
. 26
12
Further Evolutionary Problems
. 28
120
Many-body gravitational problems
. 28
121
Delay problems and discontinuous solutions
. 31
122
Problems evolving on a sphere
. 32
123
Further Hamiltonian problems
. 34
124
Further differential-algebraic problems
. 36
13
Difference Equation Problems
. 38
130
Introduction to difference equations
. 38
131
Ä
linear problem
. 38
132
The Fibonacci difference equation
. 40
133
Three quadratic problems
. 40
ISA Iterative solutions of a polynomial equation
. 41
135
The arithmetic-geometric mean
. 43
CONTENTS
14
Difference Equation Theory
. 44
IAO
Linear difference equations
. 44
1Ą1
Constant coefficients
. 45
1Ą2
Powers of matrices
. 46
Numerical Differential Equation Methods
. 51
20
The
Euler
Method
. 51
200
Introduction to the
Euler
methods
. 51
201
Some numerical experiments
. 54
202
Calculations with stepsize control
. 58
203
Calculations with mildly stiff problems
. 60
204
Calculations with the implicit
Euler
method
. 63
21
Analysis of the
Euler
Method
. 65
210
Formulation of the
Euler
method
. 65
211
Local truncation error
. 66
212
Global truncation error
. 66
213
Convergence of the
Euler
method
. 68
214
Order of convergence
. 69
215
Asymptotic error formula
. 72
216
Stability characteristics
. 74
211
Local truncation error estimation
. 79
218
Rounding error
. 80
22
Generalizations of the
Euler
Method
. 85
220
Introduction
. 85
221
More computations in a step
. 86
222
Greater dependence on previous values
. 87
223
Use of higher derivatives
. 88
22Ą
Multistep-multistage-multiderivative methods
. 90
225
Implicit methods
. 91
226
Local error estimates
. 91
23
Runge-Kutta Methods
. 93
230
Historical introduction
. 93
231
Second order methods
. 93
232
The coefficient tableau
. 94
233
Third order methods
. 95
234
Introduction to order conditions
. 95
235
Fourth order methods
. 98
236
Higher orders
. 99
237
Implicit Runge-Kutta methods
. 99
238
Stability characteristics
. 100
Numerical examples
. 103
CONTENTS
vii
24 Linear Multistep
Methods.
105
24O
Historical introduction
. 105
BAI
Adams methods
. 105
242
General form of linear multistep methods
. 107
243
Consistency, stability and convergence
. 107
244
Predictor-corrector Adams methods
. 109
245
The Milne device
.
Ill
246
Starting methods
. 112
247
Numerical examples
. 113
25
Taylor Series Methods
. 114
250
Introduction to Taylor series methods
. 114
251
Manipulation of power series
. 115
252
An example of a Taylor series solution
. 116
253
Other methods using higher derivatives
. 119
254
The use of
f
derivatives
. 120
255
Further numerical examples
. 121
26
Hybrid Methods
. 122
260
Historical introduction
. 122
261
Pseudo
Runge-Kutta methods
. 123
262
Generalized linear multistep methods
. 124
263
General linear methods
. 124
264
Numerical examples
. 127
27
Introduction to Implementation
. 128
270
Choice of method
. 128
271
Variable stepsize
. 130
272
Interpolation
. 131
273
Experiments with the Kepler problem
. 132
274
Experiments with a discontinuous problem
. 133
3
Runge-Kutta Methods
. 137
30
Preliminaries
. 137
300
Rooted trees
. 137
301
Functions on trees
. 139
302
Some combinatorial questions
. 141
303
The use of labelled trees
. 144
304
Enumerating non-rooted trees
. 144
305
Differentiation
. 146
306
Taylor's theorem
. 148
31
Order Conditions
. 150
310
Elementary differentials
. 150
311
The Taylor expansion of the exact solution
. 153
312
Elementary weights
. 155
313
The Taylor expansion of the approximate solution
. 159
314
Independence of the elementary differentials
. 160
315
Conditions for order
. 162
CONTENTS
316 Order
conditions
for scalar
problems
.162
317
Independence, of elementary weights
.163
318
Local truncation error
.165
319
Global truncation error
.166
32
Low Order Explicit Methods
.170
320
Methods of orders less than
4.170
321
Simplifying assumptions
.171
322
Methods of order
4.175
323
New methods from old
.181
324
Order barriers
.187
325
Methods of order
5.190
326
Methods of order
6.192
327
Methods of orders greater than
6.195
33
Runge-Kutta Methods with Error Estimates
.198
330
Introduction
.198
331
Richardson error estimates
.198
332
Methods with built-in estimates
.201
333
A class of error-estimating methods
.202
334
The methods of
Fehlberg.208
335
The methods of
Verner
.210
336
The methods of Dormand and Prince
.211
34
Implicit Runge-Kutta Methods
.213
340
Introduction
.213
341
Solvability of implicit equations
.214
342
Methods based on Gaussian quadrature
.215
343
Reflected methods
.219
344
Methods based on Radau and Lobatto quadrature
. 222
35
Stability of Implicit Runge-Kutta Methods
.230
350
A-stability
;
А(ог)-
stability and L-stability
.230
351
Criteria for A-stability
.230
352
Padé
approximations to the exponential function
. 232
353
A-stability of Gauss and related methods
.238
354
Order stars
.240
355
Order arrows and the Ehle barrier
.243
356
AN-stability
.245
357
Non-linear stability
.248
358
BN-stability of collocation methods
.252
359
The V and
W
transformations
.254
36
Implementable Implicit
Runge—
Kutta Methods
.259
360
Implementation of implicit Runge-Kutta methods
. 259
361
Diagonally implicit Runge-Kutta methods
.261
362
The importance of high stage order
.262
363
Singly implicit methods
.266
364
Generalizations of singly implicit methods
.271
365
Effective order and DESIRE methods
.273
CONTENTS ix
37 Symplectic Runge-Kutta
Methods
.275
370
Maintaining quadratic invariants
.275
371
Examples of
symplectic
methods
.276
372
Order conditions
.277
573
Experiments with
symplectic
methods
.278
38
Algebraic Properties of Runge-Kutta Methods
.280
380
Motivation
.280
381
Equivalence classes of Runge-Kutta methods
.281
382
The group of Runge-Kutta methods
.284
383
The Runge-Kutta group
.287
384
A homomorphism between two groups
.290
385
A generalization of G%
.291
386
Recursive formula for the product
.292
387
Some special elements of
G
.297
388
Some subgroups and quotient groups
.300
389
An algebraic interpretation of effective order
.302
39
Implementation Issues
.308
390
Introduction
.308
391
Optimal sequences
.308
392
Acceptance and rejection of steps
.310
393
Error per step versus error per unit step
.311
394
Control-theoretic considerations
.312
395
Solving the implicit equations
.313
4
Linear Multistep Methods
.317
40
Preliminaries
.317
400 Fundamentals
.317
401 Starting methods
.318
402
Convergence
.319
403
Stability
.320
404
Consistency
.320
405
Necessity of conditions for convergence
.322
406
Sufficiency of conditions for convergence
.324
41
The Order of Linear Multistep Methods
.329
410 Criteria
f
or order
.329
411 Derivation of methods
.330
Ą12
Backward difference methods
.332
42
Errors and Error Growth
.333
420
Introduction
.333
421 Further remarks on error growth
.335
422
The underlying one-step method
.337
423
Weakly stable methods
.339
Ą2Ą
Variable stepsize
.340
; CONTENTS
43
Stability Characteristics
.342
430
Introduction
.342
431
Stability regions
.344
432
Examples of the boundary locus method
.346
433
An example of the
Schur
criterion
.349
434
Stability of'predictor-corrector methods
.349
44
Order and Stability Barriers
.352
440
Survey of barrier results
.352
441 Maximum order for a convergent k-step method
.353
44^
Order stars for linear multistep methods
.356
44З
Order arrows for linear multistep methods
.358
45
One-Leg Methods and G-stability
.360
450
The one-leg counterpart to a linear multistep method
. . 360
451 The concept of G-stability
.361
452
Transformations relating one-leg and linear multistep
methods
.364
453
Effective order interpretation
.365
454
Concluding remarks on G-stability
.365
46
Implementation Issues
.366
460
Survey of implementation considerations
.366
461
Representation of data
.367
462
Variable stepsize for Nordsieck methods
.371
463
Local error estimation
.372
5
General Linear Methods
.373
50
Representing Methods in General Linear Form
.373
500
Multivalue-multistage methods
.373
501
Transformations of methods
.375
502
Runge-Kutta methods as general linear methods
.376
503
Linear multistep methods as general linear methods
. . . 377
504
Some known unconventional methods
.380
505
Some recently discovered general linear methods
.382
51
Consistency, Stability and Convergence
.385
510
Definitions of consistency and stability
.385
511
Govariance of methods
.386
512
Definition of convergence
.387
513
The necessity of stability
.388
514
The necessity of consistency
.389
515
Stability and consistency imply convergence
.390
52
The Stability of General Linear Methods
.397
520
Introduction
.397
521
Methods with maximal stability order
.398
522
Outline proof of the Butcher-
Chipman
conjecture
. . . 402
523
Non-linear stability
.405
524
Reducible linear multistep methods and G-stability
. . . 407
525
G-symplectic methods
.408
CONTENTS xi
53
The Order of
General Linear
Methods.
410
530
Possible definitions of order
.410
531
Local and global truncation errors
.412
532
Algebraic analysis of order
.413
533
An example of the algebraic approach to order
.414
53Ą
The order of a G-symplectic method
.416
535
The underlying one-step method
.417
54
Methods with Runge-Kutta stability
.420
ОАО
Design criteria for general linear methods
.420
541
The types of DIMSIM methods
.420
542
Runge-Kutta stability
.423
543
Almost Runge-Kutta methods
.426
544
Third order, three-stage ARK methods
.429
545
Fourth order, four-stage ARK methods
.431
546
A fifth order, five-stage method
.433
547
ARK methods for stiff problems
.434
55
Methods with Inherent
Runge—Kutta
Stability
.436
550
Doubly companion matrices
.436
551
Inherent Runge-Kutta stability
.438
552
Conditions for zero spectral radius
.440
553
Derivation of methods with IRK stability
.442
554
Methods with property
F
.445
555
Some non-stiff methods
.446
556
Some stiff methods
.447
557
Scale and modify for stability
.448
558
Scale and modify for error estimation
.450
References
.453
Index
.459 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Butcher, John C. 1933- |
author_GND | (DE-588)13615638X |
author_facet | Butcher, John C. 1933- |
author_role | aut |
author_sort | Butcher, John C. 1933- |
author_variant | j c b jc jcb |
building | Verbundindex |
bvnumber | BV023219727 |
classification_rvk | SK 500 SK 520 SK 920 |
ctrlnum | (OCoLC)635178047 (DE-599)BVBBV023219727 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01870nam a2200457zc 4500</leader><controlfield tag="001">BV023219727</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111206 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080318s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470723357</subfield><subfield code="9">978-0-470-72335-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635178047</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023219727</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 520</subfield><subfield code="0">(DE-625)143244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65L06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65L05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65L20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">34A12</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Butcher, John C.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13615638X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical methods for ordinary differential equations</subfield><subfield code="c">J. C. Butcher</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 463 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1991</subfield><subfield code="z">Dublin</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405658&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016405658</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1991 Dublin gnd-content |
genre_facet | Konferenzschrift 1991 Dublin |
id | DE-604.BV023219727 |
illustrated | Illustrated |
index_date | 2024-07-02T20:15:29Z |
indexdate | 2024-07-09T21:13:23Z |
institution | BVB |
isbn | 9780470723357 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016405658 |
oclc_num | 635178047 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 DE-29T DE-634 DE-11 DE-20 DE-824 DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-1050 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-703 DE-29T DE-634 DE-11 DE-20 DE-824 DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-1050 DE-83 |
physical | XIX, 463 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley |
record_format | marc |
spelling | Butcher, John C. 1933- Verfasser (DE-588)13615638X aut Numerical methods for ordinary differential equations J. C. Butcher 2. ed. Chichester [u.a.] Wiley 2008 XIX, 463 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1991 Dublin gnd-content Gewöhnliche Differentialgleichung (DE-588)4020929-5 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405658&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Butcher, John C. 1933- Numerical methods for ordinary differential equations Numerisches Verfahren (DE-588)4128130-5 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4020929-5 (DE-588)1071861417 |
title | Numerical methods for ordinary differential equations |
title_auth | Numerical methods for ordinary differential equations |
title_exact_search | Numerical methods for ordinary differential equations |
title_exact_search_txtP | Numerical methods for ordinary differential equations |
title_full | Numerical methods for ordinary differential equations J. C. Butcher |
title_fullStr | Numerical methods for ordinary differential equations J. C. Butcher |
title_full_unstemmed | Numerical methods for ordinary differential equations J. C. Butcher |
title_short | Numerical methods for ordinary differential equations |
title_sort | numerical methods for ordinary differential equations |
topic | Numerisches Verfahren (DE-588)4128130-5 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
topic_facet | Numerisches Verfahren Gewöhnliche Differentialgleichung Konferenzschrift 1991 Dublin |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405658&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT butcherjohnc numericalmethodsforordinarydifferentialequations |