Sensing with ion channels:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Schriftenreihe: | Springer Series in Biophysics
11 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 304 S. Ill., graph. Darst. |
ISBN: | 9783540726838 3540726837 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023209257 | ||
003 | DE-604 | ||
005 | 20081009 | ||
007 | t | ||
008 | 080312s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 07,N22,0934 |2 dnb | ||
016 | 7 | |a 984068570 |2 DE-101 | |
020 | |a 9783540726838 |c Gb. : EUR 149.75 (freier Pr.), sfr 229.50 (freier Pr.) |9 978-3-540-72683-8 | ||
020 | |a 3540726837 |c Gb. : EUR 149.75 (freier Pr.), sfr 229.50 (freier Pr.) |9 3-540-72683-7 | ||
035 | |a (OCoLC)213489550 | ||
035 | |a (DE-599)DNB984068570 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-355 | ||
050 | 0 | |a QH603.I54 | |
082 | 0 | |a 571.6/4 |2 22 | |
084 | |a WE 5460 |0 (DE-625)148311: |2 rvk | ||
084 | |a 570 |2 sdnb | ||
245 | 1 | 0 | |a Sensing with ion channels |c Boris Martinac ed. |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XXIII, 304 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer Series in Biophysics |v 11 | |
650 | 4 | |a Ion Channels |x physiology | |
650 | 4 | |a Ion channels | |
650 | 4 | |a Mechanoreceptors | |
650 | 4 | |a Mechanoreceptors |x physiology | |
650 | 4 | |a Mechanotransduction, Cellular |x physiology | |
650 | 0 | 7 | |a Signaltransduktion |0 (DE-588)4318717-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ionenkanal |0 (DE-588)4138699-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Ionenkanal |0 (DE-588)4138699-1 |D s |
689 | 0 | 1 | |a Signaltransduktion |0 (DE-588)4318717-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Martinac, Boris |e Sonstige |4 oth | |
830 | 0 | |a Springer Series in Biophysics |v 11 |w (DE-604)BV000666176 |9 11 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016395353&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016395353 |
Datensatz im Suchindex
_version_ | 1804137490291884032 |
---|---|
adam_text | Contents
Contributors
................................................. xv
List of Abbreviations
.......................................... xix
1
Microbial Senses and Ion Channels
........................... 1
Ching
Kung,
Xin-Liang Zhou, Zhen-Wei
Su,
W.
John Haynes,
Sephan H. Loukin, and Yoshiro Saimi
1.1
The Microbial World
.................................... 2
1.1.1
Microbial Dominance
............................. 2
1.1.2
Molecular Mechanisms Invented and Conserved
in Microbes
..................................... 3
1.2
Microbial Senses
....................................... 5
1.3
Microbial Channels
..................................... 6
1.3.1
The Study of Microbial Ion Channels
................. 6
1.3.2
The Lack of Functional Understanding
of Microbial Channels
............................. 7
1.4
Prokaryotic Mechanosensitive Channels
..................... 8
1.5
Mechanosensitive Channels of Unicellular Eukaryotes
......... 9
1.5.1
A Brief History of
TRP
Channel Studies
.............. 9
1.5.2
Mechanosensitivity of
TRP
Channels
................. 10
1.5.3
Distribution of TRPs and their Unknown Oiigins
........ 11
1.5.4
TRP
Channel of Budding Yeast
...................... 13
1.5.5
Other Fungal
TRP Homologs
....................... 16
1.5.6
The Submolecular Basis of
TRP
Mechanosensitivity
-
a Crucial Question
................................ 16
1.6
Conclusion
............................................ 18
References
................................................. 19
2
Mechanosensitive Channels and Sensing Osmotic
Stimuli in Bacteria
......................................... 25
Paul Blount, Irene Iscla, and Yuezhou Li
2.1
Osmotic Regulation of Bacteria
............................ 26
2.1.1
Maintaining Cell
Turgor
with Compatible Solutes
....... 27
viu
Contents
2.1.2
Measuring Mechanosensitive Channel Activities
in Native Membranes
.............................. 28
2.1.3
Getting Solutes Out of the Cytoplasm: Cell Wall,
Turgor
and Elasticity
.............................. 30
2.2
MscL
................................................ 31
2.3
MscS
................................................. 34
2.4
How Do Bacterial Mechanosensitive Channels
Sense Osmolarity?
...................................... 38
2.5
Perspective: Other Mechanosensitive Channels
from Bacteria and Other Organisms
........................ 40
References
................................................. 41
3
Roles of Ion Channels in the Environmental Responses
of Plants
.................................................. 47
Takuya
Fumichi,
Tomonori Kawano, Hitoshi Tatsumi,
and Masahiro Sokabe
3.1
Introduction
........................................... 48
3.2
Long-Distance Signal
Translocation
in Plants
................. 49
3.3
Calcium-Permeable Channels in Plants
...................... 53
3.3.1
Cyclic Nucleotide-Gated Cation Channel
.............. 53
3.3.2
Ionotropic
Glutamate
Receptor
...................... 56
3.3.3
Voltage-Dependent
Ca2+-Permeable
Channels
........... 57
3.3.4
Plant Two Pore Channel
1.......................... 58
3.3.5
Mechanosensitive Nonselective Cation Channel
......... 60
3.4
Conclusions
........................................... 62
References
................................................. 62
4
Ion Channels, Cell Volume, Cell Proliferation and Apoptotic
Cell Death
................................................ 69
Florian Lang,
Erich Gulbins,
Ildikó Szabó,
Alexey Vereninov,
and
Stephan
M.
Huber
4.1
Introduction
......................................... 70
4.2
Cell Volume Regulatory Ion Transport
.................... 70
4.3
Stimulation of ICRAC During Cell Proliferation
.............. 71
4.4
Inhibition of ICRAC During CTWS-Induced Lymphocyte Death
.. 72
4.5
Activation of Ca2+ Entry in Apoptosis and Eryptosis
......... 72
4.6
Activation of K+ Channels in Cell Proliferation
............. 73
4.7
Inhibition of K+ Channels in Apoptosis
................... 73
4.8
Stimulation of K+ Channels in Apoptosis
.................. 74
4.9
Activation of
Anion
Channels in Cell Proliferation
.......... 74
4.10
Activation of
Anion
and Osmolyte Channels in Apoptosis
.... 75
4.11
Conclusions
......................................... 76
References
................................................ 77
Contents ix
5 TRPV Ion Channels
and Sensory Transduction of Osmotic
and Mechanical Stimuli in Mammals
.......................... 85
Wolfgang Liedtke
5.1
Introduction: Response to Osmotic and Mechanical Stimuli
-
a Function of TRPV Ion Channels Apparent Since the
Birth of this Subfamily
................................. 86
5.2
In Vivo Findings Implicate Products of the trpvl Gene
in Osmo-Mechano Transduction
........................... 87
5.3
Tissue Culture Cell Data Implicate TRPV2 in
Osmo-Mechanotransduction
.............................. 89
5.4
In Vivo Mouse- and Tissue Culture-Data Implicate the
trpv4 Gene in Osmo-Mechanotransduction, Including
Hydromineral Homeostasis and Pain
........................ 89
5.5
Recent Developments in Regards to trpv4 Function:
Regulation of TRPV4 Channels by N-glycosylation,
Critical Role of TRPV4 in Cellular
Volume Regulation and in Lung Injury
...................... 91
5.6
Mammalian TRPV4 Directs Osmotic Avoidance Behavior
in
C. elegans
........................................... 93
5.6.1
Cloning of the
C. elegans
Gene osm-9
-
the Other
Founding Member of the trpv Gene Family
............ 93
5.6.2
TRPV4 Expression in ASH Rescues osm-9 Mechanical
and Osmotic Deficits
.............................. 93
5.6.3
Proposed TRPV4 Transduction Mechanism in
osm-9 ash::trpv4 Worms
........................... 95
5.7
Outlook for Future Research on TRPV Channels
.............. 96
References
................................................. 97
6
Mechanisms of
Thermosensation
in
TRP
Channels
.............. 101
Karel
Talavera,
Thomas Voets, and
Bernd Nilius
6.1
Introduction
........................................... 102
6.2
A Short Description of the
TRP
Channel Superfamily
.......... 102
6.3
Mechanisms of Thermosensitivity in ThermoTRPs
............ 104
6.3.1
Some Theoretical Basics of Ion Channel
Thermodynamics
................................. 104
6.3.2
Thermodynamics of Channel Gating in the Presence
of an External Field: Voltage-Gated Channels
.......... 107
6.3.3
The Principle of Temperature-Dependent Gating in
TRPV1 and TRPM8
............................... 108
6.3.4
Heat-Induced Activation of TRPM4 and TRPM5:
Sweet Confirmation of the Principle
.................. 113
6.4
Most ThermoTRPs are Little Understood
.................... 114
6.4.1
ThermoTRPVs are Still Hot
........................ 114
x
Contents
6.4.2 TRPAl Channels:
Close
Cousins
with Different
Thermosensation
................................. 116
6.4.3
Last, But Not Least: TRPM2
........................ 116
6.5
Concluding Remarks
.................................... 117
References
................................................. 117
7
TRPC Family of Ion Channels and Mechanotransduction
........ 121
Owen P. Hamill and
Rosario
Maroto
7.1
Introduction
........................................... 122
7.2
Distinguishing Direct from Indirect MS Mechanisms
.......... 123
7.2.1
Stretch Activation of Channels in the Patch
............ 123
7.2.2
Osmotic Swelling and Cell Inflation
.................. 123
7.2.3
Gating Kinetics
.................................. 124
7.2.4
The Use of MS Enzyme Inhibitors
................... 125
7.2.5
Reconstitution
of MS Channel Activity in
Liposomes
.... 125
7.3
Extrinsic Regulation of Stretch Sensitivity
................... 126
7.4
Stretch Sensitivity and Functional MT
...................... 126
7.5
General Properties of TRPCs
.............................. 127
7.5.1
TRPC Expression
................................. 127
7.5.2
TRPC Activation and Function: Mechanisms
of
SOC
and ROC
................................. 128
7.5.3
TRPC-TRPC Interactions
.......................... 129
7.5.4
TRPC Interactions with Scaffolding Proteins
........... 130
7.5.5
TRPC Single Channel Conductance
.................. 131
7.5.6
TRPC Pharmacology
.............................. 133
7.6
Evidence of Specific TRPC Mechanosensitivity
............... 133
7.6.1
TRPCÍ
......................................... 133
7.6.2
TRPC2
......................................... 138
7.6.3
TRPC3
......................................... 139
7.6.4
TRPC4
......................................... 139
7.6.5
TRPC5
......................................... 140
7.6.6
TRPC6
......................................... 141
7.6.7
TRPC7
......................................... 144
7.7
Conclusions
........................................... 145
References
................................................. 147
8
Mediano-
and Chemo-Sensory Polycystins
..................... 161
Amanda
Patel,
Patrick Delmas, and
Eric Honoré
8.1
Introduction
............................................ 162
8.2
Role of the
Heteromer PKD1/PKD2
in Mechanotransduction
..... 164
8.3
Role of the
Heteromer PKD1L3/PKD2L1
in
Chemoreception
......................................... 168
References
.................................................. 171
Contents xi
9
Biophysics of CNG Ion Channels
............................ 175
Peter H. Barry, Wei Qu, and Andrew J. Moorhouse
9.1
Introduction
........................................... 176
9.2
Physiological Function of Retinal and Olfactory CNG Channels.
. 176
9.2.1
Visual Transduction
............................... 176
9.2.2
Olfactory Transduction
............................ 179
9.3
Subunit
Composition of CNG Channels
..................... 180
9.4
Structure of the CNG Channel Pore
........................ 182
9.5
Activation of CNG Channels
.............................. 183
9.6
Permeation and Selectivity of CNG Channels
................. 186
9.6.1
General Methodologies for Permeation Measurements
... 187
9.6.2
Permeation Parameters in Native and
Recombinant
CNG Channels
................................... 188
9.6.3
Structural Basis of Ion Permeation and Selectivity in
Recombinant CNG
Channels
........................ 194
9.7
Conclusion
............................................ 197
References
................................................ 197
10
Sensory Transduction in Caenorhabditis
elegans
................ 201
Austin L. Brown, Daniel
Ramot,
and Miriam B. Goodman
10.1
Introduction
.......................................... 202
10.1.1
C. elegans
as a Simple Sensation-Action Machine
...... 202
10.1.2
The Senses of the Worm
.......................... 203
10.1.3
Methods Used to Study Sensory Transduction
Genes in
C. elegans
.............................. 205
10.1.4
Ion Channel Families That Sense in the Worm
......... 205
10.2
Mechanosensation and Mechanotransduction
................ 206
10.2.1
Somatosensation
................................ 206
10.2.2
Nose Touch
.................................... 210
10.2.3
Proprioception
.................................. 211
10.2.4
Male-Specific Mechanotransduction
................. 211
10.3
Thermotransduction
.................................... 212
10.3.1
C. elegans
Temperature-Guided Behaviors
............ 212
10.3.2
A Neural Circuit for Detecting and Processing
Temperature
.................................... 213
10.3.3
cGMP Signaling is Critical for AFD
Thermotransduction
.............................. 213
10.3.4
Subcellular Localization of the Transduction
Apparatus
...................................... 214
10.3.5
Similarities to Vertebrate Vision
.................... 215
10.4
Chemosensation and Cnemotransduction
................... 215
10.4.1
CNG Channels in Cnemotransduction
............... 215
10.4.2
TRP
Channels in Chemotransduction
................ 216
10.4.3
Oxygen Sensing and Aerotaxis
..................... 216
xii
Contents
10.5 Polymodal
Channels and Nociception
..................... 217
10.6
Conclusion
........................................... 218
References
................................................ 218
11
Epithelial Sodium and Acid-Sensing Ion Channels
.............. 225
Stephan Kellenberger
11.1
Introduction
.......................................... 226
11.2
Overview of the ENaC/DEG Channel Family
............... 226
11.3
Localisation and Physiological Role
....................... 228
11.3.1
The Epithelial Na+ Channel
........................ 228
11.3.2
Acid-Sensing Ion Channels
........................ 230
11.4
Structural Aspects
..................................... 233
11.4.1
Primary Structure and Membrane Topology
of Channel Subunits
.............................. 233
11.4.2
Multimene
Channels and
Subunit Stoichiometry
....... 233
11.5
Ion Conduction and Channel Pore
......................... 235
11.5.1
Biophysical and Pharmacological Properties
.......... 235
11.5.2
Structure-Function Relationship of the Ion
Permeation Pathway
............................. 236
11.6
Channel Gating and Regulation
........................... 237
11.6.1
Channel Gating
................................. 237
11.6.2
Regulation of Channel Expression and Function
....... 238
11.6.3
Gating and Regulatory Domains
.................... 240
11.7
Conclusions
.......................................... 241
References
................................................ 242
12
P2X3 Receptors and Sensory Transduction
.................... 247
Charles Kennedy
12.1
Introduction
.......................................... 248
12.2
P2X Receptor Subtypes
................................. 248
12.2.1
Discovery of Subtypes
............................ 248
12.2.2
Homomeric P2X Receptors
........................ 249
12.2.3
Heteromeric P2X Receptors
....................... 251
12.3
P2X Receptors in Sensory Nerves
......................... 252
12.3.1
Sensory Nerves
................................. 253
12.3.2
P2X Receptor Expression in Sensory Nerves
.......... 253
12.3.3
Functional Expression in Sensory Nerves
............. 254
12.4
Physiological Roles for Sensory P2X Receptors
............. 257
12.4.1
Filling of the Urinary Bladder
...................... 257
12.4.2
Sensing of Blood O, and CO, Levels
................ 258
12.5
ATP and P2X3 Receptors in Chronic Neuropathic
and Inflammatory Pain
................................. 258
Contents
xijj
12.5.1 Down Regulation
of
P2X3
Receptors
................ 258
12.5.2 A-317491 -
a P2X, Antagonist.....................
260
12.6
Mechanisms Underlying Chronic Pain
..................... 260
References
................................................ 263
13
Voltage-Gated Calcium Channels in Nociception
............... 267
Takahiro Yasuda and David J. Adams
13.1
Introduction
.......................................... 268
13.2
Calcium Channel Structure, Gene Family and
Subunit
Composition
................................... 268
13.2.1
Gene Family of a, Subunits
....................... 270
13.2.2
Membrane Topology and Functional Motifs
of oCj Subunits
.................................. 271
13.2.3
Auxiliary
β
and
α,δ
Subunits
...................... 273
13.2.4
Regulation of Macroscopic Current Amplitude
by Auxiliary Subunits
............................ 274
13.3
Physiological Roles of Calcium Channels in
Neuronal
Function
..................................... 276
13.4
N-Type Calcium Channel Diversity
....................... 277
13.4.1
N-Type Calcium Channel Splice Variants
............. 278
13.4.2
N-Type Calcium Channel Sensitivity
to
ω
-Conotoxins
.................................
279
13.5
N-Type Calcium Channels in Nociception and
Neuropathic Pain
...................................... 280
13.5.1
Electrophysiology and a Role for N-Type
Calcium Channels in Sensory Neurons
............... 280
13.5.2
N-Type Calcium Channel Splice Variants in
Sensory Neurons
................................ 282
13.5.3
Pathophysiological Role of N-Type Calcium
Channels in Pain
-
Therapeutic Target for
Neuropathic Pain
................................ 283
13.5.4
Endogenous Modulation of N-Type
Calcium Channel-Mediated Nociception
............. 286
13.6
Conclusion
........................................... 287
References
................................................ 287
Index
................................................... 299
|
adam_txt |
Contents
Contributors
. xv
List of Abbreviations
. xix
1
Microbial Senses and Ion Channels
. 1
Ching
Kung,
Xin-Liang Zhou, Zhen-Wei
Su,
W.
John Haynes,
Sephan H. Loukin, and Yoshiro Saimi
1.1
The Microbial World
. 2
1.1.1
Microbial Dominance
. 2
1.1.2
Molecular Mechanisms Invented and Conserved
in Microbes
. 3
1.2
Microbial Senses
. 5
1.3
Microbial Channels
. 6
1.3.1
The Study of Microbial Ion Channels
. 6
1.3.2
The Lack of Functional Understanding
of Microbial Channels
. 7
1.4
Prokaryotic Mechanosensitive Channels
. 8
1.5
Mechanosensitive Channels of Unicellular Eukaryotes
. 9
1.5.1
A Brief History of
TRP
Channel Studies
. 9
1.5.2
Mechanosensitivity of
TRP
Channels
. 10
1.5.3
Distribution of TRPs and their Unknown Oiigins
. 11
1.5.4
TRP
Channel of Budding Yeast
. 13
1.5.5
Other Fungal
TRP Homologs
. 16
1.5.6
The Submolecular Basis of
TRP
Mechanosensitivity
-
a Crucial Question
. 16
1.6
Conclusion
. 18
References
. 19
2
Mechanosensitive Channels and Sensing Osmotic
Stimuli in Bacteria
. 25
Paul Blount, Irene Iscla, and Yuezhou Li
2.1
Osmotic Regulation of Bacteria
. 26
2.1.1
Maintaining Cell
Turgor
with Compatible Solutes
. 27
viu
Contents
2.1.2
Measuring Mechanosensitive Channel Activities
in Native Membranes
. 28
2.1.3
Getting Solutes Out of the Cytoplasm: Cell Wall,
Turgor
and Elasticity
. 30
2.2
MscL
. 31
2.3
MscS
. 34
2.4
How Do Bacterial Mechanosensitive Channels
Sense Osmolarity?
. 38
2.5
Perspective: Other Mechanosensitive Channels
from Bacteria and Other Organisms
. 40
References
. 41
3
Roles of Ion Channels in the Environmental Responses
of Plants
. 47
Takuya
Fumichi,
Tomonori Kawano, Hitoshi Tatsumi,
and Masahiro Sokabe
3.1
Introduction
. 48
3.2
Long-Distance Signal
Translocation
in Plants
. 49
3.3
Calcium-Permeable Channels in Plants
. 53
3.3.1
Cyclic Nucleotide-Gated Cation Channel
. 53
3.3.2
Ionotropic
Glutamate
Receptor
. 56
3.3.3
Voltage-Dependent
Ca2+-Permeable
Channels
. 57
3.3.4
Plant Two Pore Channel
1. 58
3.3.5
Mechanosensitive Nonselective Cation Channel
. 60
3.4
Conclusions
. 62
References
. 62
4
Ion Channels, Cell Volume, Cell Proliferation and Apoptotic
Cell Death
. 69
Florian Lang,
Erich Gulbins,
Ildikó Szabó,
Alexey Vereninov,
and
Stephan
M.
Huber
4.1
Introduction
. 70
4.2
Cell Volume Regulatory Ion Transport
. 70
4.3
Stimulation of ICRAC During Cell Proliferation
. 71
4.4
Inhibition of ICRAC During CTWS-Induced Lymphocyte Death
. 72
4.5
Activation of Ca2+ Entry in Apoptosis and Eryptosis
. 72
4.6
Activation of K+ Channels in Cell Proliferation
. 73
4.7
Inhibition of K+ Channels in Apoptosis
. 73
4.8
Stimulation of K+ Channels in Apoptosis
. 74
4.9
Activation of
Anion
Channels in Cell Proliferation
. 74
4.10
Activation of
Anion
and Osmolyte Channels in Apoptosis
. 75
4.11
Conclusions
. 76
References
. 77
Contents ix
5 TRPV Ion Channels
and Sensory Transduction of Osmotic
and Mechanical Stimuli in Mammals
. 85
Wolfgang Liedtke
5.1
Introduction: Response to Osmotic and Mechanical Stimuli
-
a Function of TRPV Ion Channels Apparent Since the
"Birth" of this Subfamily
. 86
5.2
In Vivo Findings Implicate Products of the trpvl Gene
in Osmo-Mechano Transduction
. 87
5.3
Tissue Culture Cell Data Implicate TRPV2 in
Osmo-Mechanotransduction
. 89
5.4
In Vivo Mouse- and Tissue Culture-Data Implicate the
trpv4 Gene in Osmo-Mechanotransduction, Including
Hydromineral Homeostasis and Pain
. 89
5.5
Recent Developments in Regards to trpv4 Function:
Regulation of TRPV4 Channels by N-glycosylation,
Critical Role of TRPV4 in Cellular
Volume Regulation and in Lung Injury
. 91
5.6
Mammalian TRPV4 Directs Osmotic Avoidance Behavior
in
C. elegans
. 93
5.6.1
Cloning of the
C. elegans
Gene osm-9
-
the Other
Founding Member of the trpv Gene Family
. 93
5.6.2
TRPV4 Expression in ASH Rescues osm-9 Mechanical
and Osmotic Deficits
. 93
5.6.3
Proposed TRPV4 Transduction Mechanism in
osm-9 ash::trpv4 Worms
. 95
5.7
Outlook for Future Research on TRPV Channels
. 96
References
. 97
6
Mechanisms of
Thermosensation
in
TRP
Channels
. 101
Karel
Talavera,
Thomas Voets, and
Bernd Nilius
6.1
Introduction
. 102
6.2
A Short Description of the
TRP
Channel Superfamily
. 102
6.3
Mechanisms of Thermosensitivity in ThermoTRPs
. 104
6.3.1
Some Theoretical Basics of Ion Channel
Thermodynamics
. 104
6.3.2
Thermodynamics of Channel Gating in the Presence
of an External Field: Voltage-Gated Channels
. 107
6.3.3
The Principle of Temperature-Dependent Gating in
TRPV1 and TRPM8
. 108
6.3.4
Heat-Induced Activation of TRPM4 and TRPM5:
Sweet Confirmation of the Principle
. 113
6.4
Most ThermoTRPs are Little Understood
. 114
6.4.1
ThermoTRPVs are Still Hot
. 114
x
Contents
6.4.2 TRPAl Channels:
Close
Cousins
with Different
Thermosensation
. 116
6.4.3
Last, But Not Least: TRPM2
. 116
6.5
Concluding Remarks
. 117
References
. 117
7
TRPC Family of Ion Channels and Mechanotransduction
. 121
Owen P. Hamill and
Rosario
Maroto
7.1
Introduction
. 122
7.2
Distinguishing Direct from Indirect MS Mechanisms
. 123
7.2.1
Stretch Activation of Channels in the Patch
. 123
7.2.2
Osmotic Swelling and Cell Inflation
. 123
7.2.3
Gating Kinetics
. 124
7.2.4
The Use of MS Enzyme Inhibitors
. 125
7.2.5
Reconstitution
of MS Channel Activity in
Liposomes
. 125
7.3
Extrinsic Regulation of Stretch Sensitivity
. 126
7.4
Stretch Sensitivity and Functional MT
. 126
7.5
General Properties of TRPCs
. 127
7.5.1
TRPC Expression
. 127
7.5.2
TRPC Activation and Function: Mechanisms
of
SOC
and ROC
. 128
7.5.3
TRPC-TRPC Interactions
. 129
7.5.4
TRPC Interactions with Scaffolding Proteins
. 130
7.5.5
TRPC Single Channel Conductance
. 131
7.5.6
TRPC Pharmacology
. 133
7.6
Evidence of Specific TRPC Mechanosensitivity
. 133
7.6.1
TRPCÍ
. 133
7.6.2
TRPC2
. 138
7.6.3
TRPC3
. 139
7.6.4
TRPC4
. 139
7.6.5
TRPC5
. 140
7.6.6
TRPC6
. 141
7.6.7
TRPC7
. 144
7.7
Conclusions
. 145
References
. 147
8
Mediano-
and Chemo-Sensory Polycystins
. 161
Amanda
Patel,
Patrick Delmas, and
Eric Honoré
8.1
Introduction
. 162
8.2
Role of the
Heteromer PKD1/PKD2
in Mechanotransduction
. 164
8.3
Role of the
Heteromer PKD1L3/PKD2L1
in
Chemoreception
. 168
References
. 171
Contents xi
9
Biophysics of CNG Ion Channels
. 175
Peter H. Barry, Wei Qu, and Andrew J. Moorhouse
9.1
Introduction
. 176
9.2
Physiological Function of Retinal and Olfactory CNG Channels.
. 176
9.2.1
Visual Transduction
. 176
9.2.2
Olfactory Transduction
. 179
9.3
Subunit
Composition of CNG Channels
. 180
9.4
Structure of the CNG Channel Pore
. 182
9.5
Activation of CNG Channels
. 183
9.6
Permeation and Selectivity of CNG Channels
. 186
9.6.1
General Methodologies for Permeation Measurements
. 187
9.6.2
Permeation Parameters in Native and
Recombinant
CNG Channels
. 188
9.6.3
Structural Basis of Ion Permeation and Selectivity in
Recombinant CNG
Channels
. 194
9.7
Conclusion
. 197
References
. 197
10
Sensory Transduction in Caenorhabditis
elegans
. 201
Austin L. Brown, Daniel
Ramot,
and Miriam B. Goodman
10.1
Introduction
. 202
10.1.1
C. elegans
as a Simple Sensation-Action Machine
. 202
10.1.2
The Senses of the Worm
. 203
10.1.3
Methods Used to Study Sensory Transduction
Genes in
C. elegans
. 205
10.1.4
Ion Channel Families That Sense in the Worm
. 205
10.2
Mechanosensation and Mechanotransduction
. 206
10.2.1
Somatosensation
. 206
10.2.2
Nose Touch
. 210
10.2.3
Proprioception
. 211
10.2.4
Male-Specific Mechanotransduction
. 211
10.3
Thermotransduction
. 212
10.3.1
C. elegans
Temperature-Guided Behaviors
. 212
10.3.2
A Neural Circuit for Detecting and Processing
Temperature
. 213
10.3.3
cGMP Signaling is Critical for AFD
Thermotransduction
. 213
10.3.4
Subcellular Localization of the Transduction
Apparatus
. 214
10.3.5
Similarities to Vertebrate Vision
. 215
10.4
Chemosensation and Cnemotransduction
. 215
10.4.1
CNG Channels in Cnemotransduction
. 215
10.4.2
TRP
Channels in Chemotransduction
. 216
10.4.3
Oxygen Sensing and Aerotaxis
. 216
xii
Contents
10.5 Polymodal
Channels and Nociception
. 217
10.6
Conclusion
. 218
References
. 218
11
Epithelial Sodium and Acid-Sensing Ion Channels
. 225
Stephan Kellenberger
11.1
Introduction
. 226
11.2
Overview of the ENaC/DEG Channel Family
. 226
11.3
Localisation and Physiological Role
. 228
11.3.1
The Epithelial Na+ Channel
. 228
11.3.2
Acid-Sensing Ion Channels
. 230
11.4
Structural Aspects
. 233
11.4.1
Primary Structure and Membrane Topology
of Channel Subunits
. 233
11.4.2
Multimene
Channels and
Subunit Stoichiometry
. 233
11.5
Ion Conduction and Channel Pore
. 235
11.5.1
Biophysical and Pharmacological Properties
. 235
11.5.2
Structure-Function Relationship of the Ion
Permeation Pathway
. 236
11.6
Channel Gating and Regulation
. 237
11.6.1
Channel Gating
. 237
11.6.2
Regulation of Channel Expression and Function
. 238
11.6.3
Gating and Regulatory Domains
. 240
11.7
Conclusions
. 241
References
. 242
12
P2X3 Receptors and Sensory Transduction
. 247
Charles Kennedy
12.1
Introduction
. 248
12.2
P2X Receptor Subtypes
. 248
12.2.1
Discovery of Subtypes
. 248
12.2.2
Homomeric P2X Receptors
. 249
12.2.3
Heteromeric P2X Receptors
. 251
12.3
P2X Receptors in Sensory Nerves
. 252
12.3.1
Sensory Nerves
. 253
12.3.2
P2X Receptor Expression in Sensory Nerves
. 253
12.3.3
Functional Expression in Sensory Nerves
. 254
12.4
Physiological Roles for Sensory P2X Receptors
. 257
12.4.1
Filling of the Urinary Bladder
. 257
12.4.2
Sensing of Blood O, and CO, Levels
. 258
12.5
ATP and P2X3 Receptors in Chronic Neuropathic
and Inflammatory Pain
. 258
Contents
xijj
12.5.1 Down Regulation
of
P2X3
Receptors
. 258
12.5.2 A-317491 -
a P2X, Antagonist.
260
12.6
Mechanisms Underlying Chronic Pain
. 260
References
. 263
13
Voltage-Gated Calcium Channels in Nociception
. 267
Takahiro Yasuda and David J. Adams
13.1
Introduction
. 268
13.2
Calcium Channel Structure, Gene Family and
Subunit
Composition
. 268
13.2.1
Gene Family of a, Subunits
. 270
13.2.2
Membrane Topology and Functional Motifs
of oCj Subunits
. 271
13.2.3
Auxiliary
β
and
α,δ
Subunits
. 273
13.2.4
Regulation of Macroscopic Current Amplitude
by Auxiliary Subunits
. 274
13.3
Physiological Roles of Calcium Channels in
Neuronal
Function
. 276
13.4
N-Type Calcium Channel Diversity
. 277
13.4.1
N-Type Calcium Channel Splice Variants
. 278
13.4.2
N-Type Calcium Channel Sensitivity
to
ω
-Conotoxins
.
279
13.5
N-Type Calcium Channels in Nociception and
Neuropathic Pain
. 280
13.5.1
Electrophysiology and a Role for N-Type
Calcium Channels in Sensory Neurons
. 280
13.5.2
N-Type Calcium Channel Splice Variants in
Sensory Neurons
. 282
13.5.3
Pathophysiological Role of N-Type Calcium
Channels in Pain
-
Therapeutic Target for
Neuropathic Pain
. 283
13.5.4
Endogenous Modulation of N-Type
Calcium Channel-Mediated Nociception
. 286
13.6
Conclusion
. 287
References
. 287
Index
. 299 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023209257 |
callnumber-first | Q - Science |
callnumber-label | QH603 |
callnumber-raw | QH603.I54 |
callnumber-search | QH603.I54 |
callnumber-sort | QH 3603 I54 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WE 5460 |
ctrlnum | (OCoLC)213489550 (DE-599)DNB984068570 |
dewey-full | 571.6/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.6/4 |
dewey-search | 571.6/4 |
dewey-sort | 3571.6 14 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02006nam a2200517 cb4500</leader><controlfield tag="001">BV023209257</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081009 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080312s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N22,0934</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984068570</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540726838</subfield><subfield code="c">Gb. : EUR 149.75 (freier Pr.), sfr 229.50 (freier Pr.)</subfield><subfield code="9">978-3-540-72683-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540726837</subfield><subfield code="c">Gb. : EUR 149.75 (freier Pr.), sfr 229.50 (freier Pr.)</subfield><subfield code="9">3-540-72683-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)213489550</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984068570</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH603.I54</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.6/4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 5460</subfield><subfield code="0">(DE-625)148311:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sensing with ion channels</subfield><subfield code="c">Boris Martinac ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 304 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Series in Biophysics</subfield><subfield code="v">11</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ion Channels</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ion channels</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanoreceptors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanoreceptors</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanotransduction, Cellular</subfield><subfield code="x">physiology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signaltransduktion</subfield><subfield code="0">(DE-588)4318717-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ionenkanal</subfield><subfield code="0">(DE-588)4138699-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ionenkanal</subfield><subfield code="0">(DE-588)4138699-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Signaltransduktion</subfield><subfield code="0">(DE-588)4318717-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martinac, Boris</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Series in Biophysics</subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV000666176</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016395353&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016395353</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV023209257 |
illustrated | Illustrated |
index_date | 2024-07-02T20:11:20Z |
indexdate | 2024-07-09T21:13:07Z |
institution | BVB |
isbn | 9783540726838 3540726837 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016395353 |
oclc_num | 213489550 |
open_access_boolean | |
owner | DE-20 DE-355 DE-BY-UBR |
owner_facet | DE-20 DE-355 DE-BY-UBR |
physical | XXIII, 304 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Springer Series in Biophysics |
series2 | Springer Series in Biophysics |
spelling | Sensing with ion channels Boris Martinac ed. Berlin [u.a.] Springer 2008 XXIII, 304 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer Series in Biophysics 11 Ion Channels physiology Ion channels Mechanoreceptors Mechanoreceptors physiology Mechanotransduction, Cellular physiology Signaltransduktion (DE-588)4318717-1 gnd rswk-swf Ionenkanal (DE-588)4138699-1 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Ionenkanal (DE-588)4138699-1 s Signaltransduktion (DE-588)4318717-1 s DE-604 Martinac, Boris Sonstige oth Springer Series in Biophysics 11 (DE-604)BV000666176 11 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016395353&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sensing with ion channels Springer Series in Biophysics Ion Channels physiology Ion channels Mechanoreceptors Mechanoreceptors physiology Mechanotransduction, Cellular physiology Signaltransduktion (DE-588)4318717-1 gnd Ionenkanal (DE-588)4138699-1 gnd |
subject_GND | (DE-588)4318717-1 (DE-588)4138699-1 (DE-588)4143413-4 |
title | Sensing with ion channels |
title_auth | Sensing with ion channels |
title_exact_search | Sensing with ion channels |
title_exact_search_txtP | Sensing with ion channels |
title_full | Sensing with ion channels Boris Martinac ed. |
title_fullStr | Sensing with ion channels Boris Martinac ed. |
title_full_unstemmed | Sensing with ion channels Boris Martinac ed. |
title_short | Sensing with ion channels |
title_sort | sensing with ion channels |
topic | Ion Channels physiology Ion channels Mechanoreceptors Mechanoreceptors physiology Mechanotransduction, Cellular physiology Signaltransduktion (DE-588)4318717-1 gnd Ionenkanal (DE-588)4138699-1 gnd |
topic_facet | Ion Channels physiology Ion channels Mechanoreceptors Mechanoreceptors physiology Mechanotransduction, Cellular physiology Signaltransduktion Ionenkanal Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016395353&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000666176 |
work_keys_str_mv | AT martinacboris sensingwithionchannels |