Chiral nuclear dynamics II:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey [u.a.]
World Scientific
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 352 S. graph. Darst. |
ISBN: | 9789812705884 9812705880 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023207596 | ||
003 | DE-604 | ||
005 | 20081014 | ||
007 | t | ||
008 | 080311s2008 d||| |||| 00||| eng d | ||
020 | |a 9789812705884 |9 978-981-270-588-4 | ||
020 | |a 9812705880 |9 981-270-588-0 | ||
035 | |a (OCoLC)635091933 | ||
035 | |a (DE-599)BVBBV023207596 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 | ||
084 | |a UO 1580 |0 (DE-625)146208: |2 rvk | ||
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a UO 5700 |0 (DE-625)146298: |2 rvk | ||
084 | |a UO 5900 |0 (DE-625)146305: |2 rvk | ||
100 | 1 | |a Rho, Mannque |e Verfasser |4 aut | |
245 | 1 | 0 | |a Chiral nuclear dynamics II |c Mannque Rho |
264 | 1 | |a New Jersey [u.a.] |b World Scientific |c 2008 | |
300 | |a XIX, 352 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Chirale Symmetrie |0 (DE-588)4274371-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elementarteilchen |0 (DE-588)4014413-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elementarteilchen |0 (DE-588)4014413-6 |D s |
689 | 0 | 1 | |a Chirale Symmetrie |0 (DE-588)4274371-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016393723&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016393723 |
Datensatz im Suchindex
_version_ | 1804137487707144192 |
---|---|
adam_text | Contents
Preface
vii
1.
Introduction
1
2.
Multi-Facets Of QCD In Matter
9
3.
Cheshire Cat Phenomenon
17
3.1
Motivation
............................... 17
3.2.
Chiral Bag Picture
........................... 18
3.2.1
Cheshire Cat as a gauge artifact
............... 21
3.2.2 Baryon
charge and the exact Cheshire Cat phenomenon
. . 24
3.3
Cheshire Cat Principle in Nature
................... 28
3.3.1
Flavor singlet axial charge a0
=
gQA
.............. 28
3.3.2
Charge-spin separation for Cheshire Cat phenomena
... 34
3.4
ССР
and Multi-Facets of CBM
.................... 35
3.4.1
Chiral quark-soliton model
.................. 36
3.4.2
Cloudy bag model
....................... 36
3.4.3
Skyrmion model
........................ 37
3.4.4
Heavy baryon chiral perturbation approach
......... 37
4.
Effective Field Theory For Nuclei
39
4.1
Role of Effective Field Theory in Nuclear Physics
.......... 39
4.2
Standard Nuclear Physics Approach and EFT
............ 40
4.2.1
The power of SNPA
...................... 40
4.2.2
The power of EFT
....................... 41
4.3
Chiral Lagrangians
........................... 42
4.3.1
Relevant scales and degrees of freedom
............ 42
4.3.2
Vector mesons and baryons
.................. 43
4.3.3
Baryon fields
.......................... 44
xiv
Chiral
Nuclear Dynamics
II
4.4
Pionless
EFT (/EFT)
......................... 46
4.5
More Effective EFT
.......................... 48
4.5.1
Weinberg s counting rule
.................... 48
4.5.2
Strategy of MEEFT
...................... 50
4.5.3
The chiral filter
......................... 51
4.5.4
Working of MEEFT
...................... 52
4.5.4.1
What does the chiral filter say?
........... 53
4.5.4.2
Sketch of the calculational procedure
........ 55
4.5.4.3
How the cutoff
Λ
enters
............... 58
4.5.4.4
Physical meaning of
Λ
................ 59
4.5.5
Predictions of MEEFT
..................... 60
4.5.5.1
Thermal np capture
................. 60
4.5.5.2
Polarization
observables
in np capture
....... 62
4.5.5.3 Deuteron form
factors
................ 65
4.5.5.4
Predicting the solar neutrino processes
....... 70
4.5.5.5
Magnetic moments of the trinucleons
........ 74
4.5.5.6
Further implications of the dR term
........ 75
4.6
EFT Completion of SNPA
..................... 78
4.7
EFT for Heavy Nuclei and Nuclear Matter
.............. 78
5.
Hidden Local Symmetry For Hadrons
81
5.1
Emergence of Local Flavor Symmetry
................ 82
5.2
Tower of Hidden Gauge Fields
.................... 84
5.2.1
Simplest open moose diagram
................. 84
5.2.2
General open moose
...................... 86
5.2.3
Spectrum of the open moose
.................. 87
5.2.4
Dimensional deconstruction
.................. 88
5.3
AdS/QCD and hQCD
......................... 89
5.3.1
Objectives
............................ 89
5.3.2
Bottom-up approach
...................... 90
5.3.3
Top-down approach
...................... 93
5.3.4
Vector dominance
........................ 95
5.3.5 Instanton baryons ....................... 96
5.4
HLSAr=i from Holographic Dual QCD
................ 96
5.4.1
Going from 5D to 4D
...................... 97
5.4.2
Doing quantum corrections
.................. 98
5.5
Hidden Local Symmetry and the Vector Manifestation
...... 99
5.5.1
HLSjf=i: Hidden local symmetry
à la
Bando et al.
........................... 99
5.5.2
HLSjï^i.
with loop corrections
................. 100
5.5.2.1
Wilsonian matching
................. 101
5.5.2.2
Vector manifestation (VM)
............. 105
Contents xv
5.5.2.3
Dropping
mass and local gauge symmetry
.... 107
5.5.2.4
Scaling near the VM fixed point
..........107
5.6
Phenomenology with HLSjf=i
.....................108
5.6.1
Doing chiral perturbation theory
...............108
5.6.1.1
Chiral counting for the vector mesons in
χΡΤ
. . . 108
5.6.1.2
Loop calculations
................... 110
5.6.1.3
Comparison with experiments
............
Ill
5.6.2 Weinberg
sum rules
.......................
Ill
5.6.3
Pion
mass difference
...................... 113
5.6.4
Perturbing from the VM point
................ 115
5.6.4.1
Heavy quark symmetry
............... 115
5.6.4.2
Constructing effective Lagrangians
......... 116
5.6.4.3
The fixed point Lagrangian
............. 117
5.6.4.4
Effects of spontaneous chiral symmetry breaking
. 118
5.6.4.5
Lagrangian in parity eigenfields
........... 119
5.6.4.6
Calculation at the matching point
......... 120
5.6.4.7
Quantum correction
................. 121
5.6.4.8
Mass splitting
..................... 123
5.7
HLS
with
ρ
and
αϊ:
HLSat=2
..................... 124
5.7.1
HLS/i-^2 Lagrangian
...................... 124
5.7.2
Fixed points
........................... 126
5.7.3
Phase structures for different fixed points
.......... 129
5.7.4
Multiplet
structure and vector dominance
.......... 130
5.7.5
Vector dominance and the fixed points
............ 131
5.7.6
Infinite tower and the VD
................... 132
6.
Skyrmions
133
6.1
Preliminary Remarks
..........................133
6.2
Skyrmions in QCD
...........................134
6.2.1
A little history in nuclear physics
...............134
6.2.2
Little bag and skyrmion
....................135
6.3
Skyrmions and Vector Mesons
.....................136
6.3.1
Multiple scales
.........................136
6.3.2
HLS
Lagrangian light (HLSr=1)
..............136
6.3.3
SU
(2)
skyrmion
.........................138
6.3.3.1
Stabilizing the soliton
................ 139
6.3.3.2
Gauged skyrmion with the
ρ
meson
......... 140
6.3.3.3
Defects of the Skyrme soliton
............ 142
6.3.4
Nuclei as skyrmions
...................... 146
6.3.5
St/(3)
Skyrmions:
S
> 0
baryons
............... 146
6.3.5.1
Kaon-soliton bound skyrmions
...........147
6.3.5.2
Deeply bound K~ in nuclei
.............152
xvi
Chirul Nuclear Dynamics
II
6.4
Dense Skyrmion
Matter
and Chiral
Transition
............ 152
6.4.1
Single
skyrmion
......................... 155
6.4.2
Skyrmion
crystal
........................ 156
6.4.3
Fluctuations on top of the skyrmion background and
Brown-Rho scaling
....................... 163
6.4.4
Pseudogap phase
........................ 167
6.4.4.1
Skyrmion mass at high density
........... 169
6.5
Holographic Skyrmion
......................... 169
6.5.1 Baryon
as an
instanton
.................... 169
6.5.2
Chiral dynamics
........................ 173
6.5.3
Deriving vector dominance
................... 174
6.5.3.1
Old vector dominance
............... 174
6.5.3.2
New vector dominance
............... 176
6.5.3.3
Generalized universality
............... 178
6.5.3.4
Nucleón
EM form factors
.............. 178
6.6
Neutron Stars As Giant Skyrmions
.................. 184
6.6.1
Skyrmion EOS
......................... 185
6.6.2
Einstein-skyrmion star
..................... 186
7.
Hidden Local Symmetry In Hot/Dense Medium
187
7.1
HLS
in Heat Bath
........................... 187
7.1.1
Vector manifestation at Tc
................... 187
7.1.2
Lorentz-invariant formulas
................... 188
7.1.2.1
Approaching the VM fixed point
.......... 189
7.1.2.2
Pion
decay constant
................. 189
7.1.2.3
Dropping mass
................... 190
7.1.2.4
Width
......................... 191
7.1.2.5
Corrections from
Lorentz
non-invariance......
192
7.2
HLS
in Dense Matter
.......................... 194
7.2.1
Dense
HLS
Lagrangian
..................... 195
7.2.2
Hadrons near
μ = μα......................
198
7.3
Hadronic Freedom
........................... 201
7.3.1
Melting of soft glue and chiral restoration
......... 201
7.4
Applications
............................... 203
7.4.1
Pion
velocity near critical temperature Tc
.......... 204
7.4.1.1
Standard
sigma
model scenario
........... 205
7.4.1.2
HLS/VM scenario
.................. 207
7.4.1.3
Measuring the
pion
velocity near Tc
........ 210
7.4.2
Vector and axial vector susceptibilities near critical
temperature Tc
......................... 211
7.4.3
Spectral function of the
ρ
meson
............... 213
Contents xvii
7.4.3.1
ρππ
and
η-κ-κ
couplings in hot medium and
violation of vector dominance
............214
7.4.3.2
EM form factor of the
pion
and the
ρ
spectral
function
........................217
7.4.3.3
Confronting nature
..................222
7.4.4
р°/тг~
ratio in peripheral collisions
..............222
8.
Hadrons In The Sliding Vacua Of Nuclear Matter
225
8.1
Brown-Rho Scaling
...........................225
8.1.1
Intrinsic density dependence via dilaton
........... 226
8.1.2
Scaling of baryon masses
.................... 227
8.1.3
Parity-doubled
sigma
model
.................. 228
8.1.4
Constraints from anomaly matching?
............. 230
8.1.5
Modernizing BR scaling
.................... 231
8.2
Chiral Fermi Liquid
.......................... 231
8.2.1
Double-decimation approach
.................. 231
8.2.2
Scaling masses and Landau-Migdal parameters
....... 232
8.2.3
Thermodynamic consistency
.................. 237
8.2.4
Meaning of
C¿,
......................... 240
8.2.5
Many-body forces
........................ 241
8.3
Observables
in Finite Nuclei
...................... 241
8.3.1
Nuclear magnetic moment
................... 242
8.3.2
Deducing
Ф(по)
from experiment
............... 245
8.3.3
Relation between the Landau mass m*L and the axial
coupling constant gA
...................... 245
8.3.4
Pion
decay constant in medium
................ 246
8.3.5
Effect on tensor forces
..................... 246
8.3.6
Warburton ratio
........................ 249
8.3.7
Observing the dropping vector meson masses
....... 251
8.4
Dropping Masses and Nuclear Matter
................ 253
8.4.1
Nuclear matter in chiral Fermi liquid approach
.......254
8.4.2
Microscopic approach to Landau Fermi liquid with
Brown-Rho scaling
.......................255
9.
Strangeness In Dense Medium
259
9.1
Kaon Condensation from Matter-Free Vacuum
........... 260
9.1.1
Kaon condensation as restoration of explicit chiral
symmetry breaking
....................... 260
9.1.2
Doing heavy baryon
χΡΤ
................... 262
9.1.3
Kaon condensation driven by electrons
............ 264
9.1.4
Constraints from kaon-nuclear scattering
........... 266
9.1.4.1
Л(1405)
........................266
xviii
Chiral
Nuclear
Dynamics
II
9.1.4.2
Influence on kaon condensation
........... 270
9.1.4.3
Dangerously irrelevant terms
........... 272
9.1.5
Role of kaon-nuclear potential in kaon condensation
.... 274
9.1.5.1
Chiral perturbation approach
............ 274
9.1.5.2
Kaonic atom and deeply bound kaonic nuclei
. . . 275
9.1.6
Kaon condensation with Brown-Rho scaling
......... 275
9.2
Prom the Vector Manifestation Fixed Point to Kaon
Condensation
.............................. 280
9.2.1
Simplification at the VM
.................... 280
9.2.2
Toward kaon condensation
................... 282
9.3
Dense Kaonic Nuclei as Strange Nuggets: KaoN
......... 283
9.3.1
With standard potentials
................... 284
9.3.2
With non-standard potentials
................. 285
9.3.3
KaoN as an Ice-D nugget
.................. 286
10.
Dense Matter For Compact Stars
289
10.1
Dense Hadronic Phase With and Without Exotica
......... 290
10.1.1
Compact stars as dense neutron matter
........... 291
10.1.2
Working of the vector manifestation
............. 292
10.1.3
Demise of the VM scenario by massive compact stars?
. . . 294
10.1.4
Kaon condensation as a doorway to quark matter
...... 295
10.2
Skyrmion-Half-Skyrmion Transition
................. 298
10.2.1
Half-skyrmions and emergence of vector symmetry
. . . 299
10.2.2
Transition from the CFL phase to the normal nuclear
phase
.............................. 301
10.3
QCD at High Density: Color Superconductivity (CSC)
....... 303
10.3.1
Color-flavor locking (CFL)
................... 304
10.3.2
Chiral Lagrangian for CFL
.................. 305
10.3.3
Un-hidden local symmetry
................. 307
10.3.4
Superqualitons as baryons
................... 309
10.3.5
Kaon condensation in the CFL sector
............ 311
10.4
CSC at Non-Asymptotic Density
................... 312
10.4.1
Induced CFL
.......................... 313
10.4.2
Landscape of non-CFL phases
................. 315
11.
Compact Stars
317
11.1
Objective
................................ 317
11.2
Star
Observables
............................ 318
11.3
Chiral Dynamics in the Core of Compact Stars
........... 318
11.3.1
TOV
equation
......................... 319
11.3.2
Neutron stars with kaon condensation light
........ 319
11.4
Maximum Neutron Star Mass
..................... 324
Contents xix
11.4.1
Mfî%x à la Brown-Bethe
.................... 324
11.4.2
Cosmological
constraint
on
MjJ^?
.............. 325
11.5
Formation
of
Double Neutron
Star Binaries
............. 326
11.6
Neutron Stars
Heavier than Mffl
................. 327
11.6.1
Vela X-l
............................. 328
11.6.2
Neutron
star-white dwarf binaries
............... 329
11.6.3
Two-branch scenario
...................... 330
11.6.4
New measurement of the neutron star mass in J0751+1807
331
11.7
Outlook
................................. 331
Bibliography
335
Index
349
|
adam_txt |
Contents
Preface
vii
1.
Introduction
1
2.
Multi-Facets Of QCD In Matter
9
3.
Cheshire Cat Phenomenon
17
3.1
Motivation
. 17
3.2.
Chiral Bag Picture
. 18
3.2.1
Cheshire Cat as a gauge artifact
. 21
3.2.2 Baryon
charge and the exact Cheshire Cat phenomenon
. . 24
3.3
Cheshire Cat Principle in Nature
. 28
3.3.1
Flavor singlet axial charge a0
=
gQA
. 28
3.3.2
"Charge-spin separation" for Cheshire Cat phenomena
. 34
3.4
ССР
and Multi-Facets of CBM
. 35
3.4.1
Chiral quark-soliton model
. 36
3.4.2
Cloudy bag model
. 36
3.4.3
Skyrmion model
. 37
3.4.4
Heavy baryon chiral perturbation approach
. 37
4.
Effective Field Theory For Nuclei
39
4.1
Role of Effective Field Theory in Nuclear Physics
. 39
4.2
Standard Nuclear Physics Approach and EFT
. 40
4.2.1
The power of SNPA
. 40
4.2.2
The power of EFT
. 41
4.3
Chiral Lagrangians
. 42
4.3.1
Relevant scales and degrees of freedom
. 42
4.3.2
Vector mesons and baryons
. 43
4.3.3
Baryon fields
. 44
xiv
Chiral
Nuclear Dynamics
II
4.4
Pionless
EFT (/EFT)
. 46
4.5
More Effective EFT
. 48
4.5.1
Weinberg's counting rule
. 48
4.5.2
Strategy of MEEFT
. 50
4.5.3
The chiral filter
. 51
4.5.4
Working of MEEFT
. 52
4.5.4.1
What does the chiral filter say?
. 53
4.5.4.2
Sketch of the calculational procedure
. 55
4.5.4.3
How the cutoff
Λ
enters
. 58
4.5.4.4
Physical meaning of
Λ
. 59
4.5.5
Predictions of MEEFT
. 60
4.5.5.1
Thermal np capture
. 60
4.5.5.2
Polarization
observables
in np capture
. 62
4.5.5.3 Deuteron form
factors
. 65
4.5.5.4
Predicting the solar neutrino processes
. 70
4.5.5.5
Magnetic moments of the trinucleons
. 74
4.5.5.6
Further implications of the dR term
. 75
4.6
EFT "Completion" of SNPA
. 78
4.7
EFT for Heavy Nuclei and Nuclear Matter
. 78
5.
Hidden Local Symmetry For Hadrons
81
5.1
Emergence of Local Flavor Symmetry
. 82
5.2
Tower of Hidden Gauge Fields
. 84
5.2.1
Simplest open moose diagram
. 84
5.2.2
General open moose
. 86
5.2.3
Spectrum of the open moose
. 87
5.2.4
Dimensional deconstruction
. 88
5.3
AdS/QCD and hQCD
. 89
5.3.1
Objectives
. 89
5.3.2
Bottom-up approach
. 90
5.3.3
Top-down approach
. 93
5.3.4
Vector dominance
. 95
5.3.5 Instanton baryons . 96
5.4
HLSAr=i from Holographic Dual QCD
. 96
5.4.1
Going from 5D to 4D
. 97
5.4.2
Doing quantum corrections
. 98
5.5
Hidden Local Symmetry and the "Vector Manifestation"
. 99
5.5.1
HLSjf=i: Hidden local symmetry
à la
Bando et al.
. 99
5.5.2
HLSjï^i.
"with loop corrections
. 100
5.5.2.1
Wilsonian matching
. 101
5.5.2.2
Vector manifestation (VM)
. 105
Contents xv
5.5.2.3
"Dropping
mass" and local gauge symmetry
. 107
5.5.2.4
Scaling near the VM fixed point
.107
5.6
Phenomenology with HLSjf=i
.108
5.6.1
Doing chiral perturbation theory
.108
5.6.1.1
Chiral counting for the vector mesons in
χΡΤ
. . . 108
5.6.1.2
Loop calculations
. 110
5.6.1.3
Comparison with experiments
.
Ill
5.6.2 Weinberg
sum rules
.
Ill
5.6.3
Pion
mass difference
. 113
5.6.4
Perturbing from the VM point
. 115
5.6.4.1
Heavy quark symmetry
. 115
5.6.4.2
Constructing effective Lagrangians
. 116
5.6.4.3
The fixed point Lagrangian
. 117
5.6.4.4
Effects of spontaneous chiral symmetry breaking
. 118
5.6.4.5
Lagrangian in parity eigenfields
. 119
5.6.4.6
Calculation at the matching point
. 120
5.6.4.7
Quantum correction
. 121
5.6.4.8
Mass splitting
. 123
5.7
HLS
with
ρ
and
αϊ:
HLSat=2
. 124
5.7.1
HLS/i-^2 Lagrangian
. 124
5.7.2
Fixed points
. 126
5.7.3
Phase structures for different fixed points
. 129
5.7.4
Multiplet
structure and vector dominance
. 130
5.7.5
Vector dominance and the fixed points
. 131
5.7.6
Infinite tower and the VD
. 132
6.
Skyrmions
133
6.1
Preliminary Remarks
.133
6.2
Skyrmions in QCD
.134
6.2.1
A little history in nuclear physics
.134
6.2.2
Little bag and skyrmion
.135
6.3
Skyrmions and Vector Mesons
.136
6.3.1
Multiple scales
.136
6.3.2
HLS
Lagrangian "light" (HLSr=1)
.136
6.3.3
SU
(2)
skyrmion
.138
6.3.3.1
Stabilizing the soliton
. 139
6.3.3.2
Gauged skyrmion with the
ρ
meson
. 140
6.3.3.3
Defects of the Skyrme soliton
. 142
6.3.4
Nuclei as skyrmions
. 146
6.3.5
St/(3)
Skyrmions:
S
> 0
baryons
. 146
6.3.5.1
Kaon-soliton bound skyrmions
.147
6.3.5.2
Deeply bound K~ in nuclei
.152
xvi
Chirul Nuclear Dynamics
II
6.4
Dense Skyrmion
Matter
and Chiral
Transition
. 152
6.4.1
Single
skyrmion
. 155
6.4.2
Skyrmion
crystal
. 156
6.4.3
Fluctuations on top of the skyrmion background and
Brown-Rho scaling
. 163
6.4.4
Pseudogap phase
. 167
6.4.4.1
Skyrmion mass at high density
. 169
6.5
Holographic Skyrmion
. 169
6.5.1 Baryon
as an
instanton
. 169
6.5.2
Chiral dynamics
. 173
6.5.3
Deriving vector dominance
. 174
6.5.3.1
"Old" vector dominance
. 174
6.5.3.2
"New" vector dominance
. 176
6.5.3.3
Generalized universality
. 178
6.5.3.4
Nucleón
EM form factors
. 178
6.6
Neutron Stars As Giant Skyrmions
. 184
6.6.1
Skyrmion EOS
. 185
6.6.2
Einstein-skyrmion star
. 186
7.
Hidden Local Symmetry In Hot/Dense Medium
187
7.1
HLS
in Heat Bath
. 187
7.1.1
Vector manifestation at Tc
. 187
7.1.2
Lorentz-invariant formulas
. 188
7.1.2.1
Approaching the VM fixed point
. 189
7.1.2.2
Pion
decay constant
. 189
7.1.2.3
"Dropping mass"
. 190
7.1.2.4
Width
. 191
7.1.2.5
Corrections from
Lorentz
non-invariance.
192
7.2
HLS
in Dense Matter
. 194
7.2.1
Dense
HLS
Lagrangian
. 195
7.2.2
Hadrons near
μ = μα.
198
7.3
Hadronic Freedom
. 201
7.3.1
Melting of "soft" glue and chiral restoration
. 201
7.4
Applications
. 203
7.4.1
Pion
velocity near critical temperature Tc
. 204
7.4.1.1
Standard
sigma
model scenario
. 205
7.4.1.2
HLS/VM scenario
. 207
7.4.1.3
Measuring the
pion
velocity near Tc
. 210
7.4.2
Vector and axial vector susceptibilities near critical
temperature Tc
. 211
7.4.3
Spectral function of the
ρ
meson
. 213
Contents xvii
7.4.3.1
ρππ
and
η-κ-κ
couplings in hot medium and
violation of vector dominance
.214
7.4.3.2
EM form factor of the
pion
and the
ρ
spectral
function
.217
7.4.3.3
Confronting nature
.222
7.4.4
р°/тг~
ratio in peripheral collisions
.222
8.
Hadrons In The Sliding Vacua Of Nuclear Matter
225
8.1
Brown-Rho Scaling
.225
8.1.1
Intrinsic density dependence via dilaton
. 226
8.1.2
Scaling of baryon masses
. 227
8.1.3
Parity-doubled
sigma
model
. 228
8.1.4
Constraints from anomaly matching?
. 230
8.1.5
Modernizing BR scaling
. 231
8.2
Chiral Fermi Liquid
. 231
8.2.1
Double-decimation approach
. 231
8.2.2
Scaling masses and Landau-Migdal parameters
. 232
8.2.3
Thermodynamic consistency
. 237
8.2.4
Meaning of
C¿,
. 240
8.2.5
Many-body forces
. 241
8.3
Observables
in Finite Nuclei
. 241
8.3.1
Nuclear magnetic moment
. 242
8.3.2
Deducing
Ф(по)
from experiment
. 245
8.3.3
Relation between the Landau mass m*L and the axial
coupling constant gA
. 245
8.3.4
Pion
decay constant in medium
. 246
8.3.5
Effect on tensor forces
. 246
8.3.6
Warburton ratio
. 249
8.3.7
"Observing" the dropping vector meson masses
. 251
8.4
Dropping Masses and Nuclear Matter
. 253
8.4.1
Nuclear matter in chiral Fermi liquid approach
.254
8.4.2
Microscopic approach to Landau Fermi liquid with
Brown-Rho scaling
.255
9.
Strangeness In Dense Medium
259
9.1
Kaon Condensation from Matter-Free Vacuum
. 260
9.1.1
Kaon condensation as "restoration" of explicit chiral
symmetry breaking
. 260
9.1.2
Doing heavy baryon
χΡΤ
. 262
9.1.3
Kaon condensation driven by electrons
. 264
9.1.4
Constraints from kaon-nuclear scattering
. 266
9.1.4.1
Л(1405)
.266
xviii
Chiral
Nuclear
Dynamics
II
9.1.4.2
Influence on kaon condensation
. 270
9.1.4.3
"Dangerously irrelevant terms"
. 272
9.1.5
Role of kaon-nuclear potential in kaon condensation
. 274
9.1.5.1
Chiral perturbation approach
. 274
9.1.5.2
Kaonic atom and deeply bound kaonic nuclei
. . . 275
9.1.6
Kaon condensation with Brown-Rho scaling
. 275
9.2
Prom the Vector Manifestation Fixed Point to Kaon
Condensation
. 280
9.2.1
Simplification at the VM
. 280
9.2.2
Toward kaon condensation
. 282
9.3
Dense Kaonic Nuclei as Strange Nuggets: "KaoN"
. 283
9.3.1
With standard potentials
. 284
9.3.2
With non-standard potentials
. 285
9.3.3
KaoN as an "Ice-D" nugget
. 286
10.
Dense Matter For Compact Stars
289
10.1
Dense Hadronic Phase With and Without Exotica
. 290
10.1.1
Compact stars as dense neutron matter
. 291
10.1.2
Working of the vector manifestation
. 292
10.1.3
Demise of the VM scenario by massive compact stars?
. . . 294
10.1.4
Kaon condensation as a doorway to quark matter
. 295
10.2
Skyrmion-Half-Skyrmion Transition
. 298
10.2.1
Half-skyrmions and emergence of "vector symmetry"
. . . 299
10.2.2
Transition from the CFL phase to the normal nuclear
phase
. 301
10.3
QCD at High Density: Color Superconductivity (CSC)
. 303
10.3.1
Color-flavor locking (CFL)
. 304
10.3.2
Chiral Lagrangian for CFL
. 305
10.3.3
"Un-hidden" local symmetry
. 307
10.3.4
Superqualitons as baryons
. 309
10.3.5
Kaon condensation in the CFL sector
. 311
10.4
CSC at Non-Asymptotic Density
. 312
10.4.1
Induced CFL
. 313
10.4.2
Landscape of non-CFL phases
. 315
11.
Compact Stars
317
11.1
Objective
. 317
11.2
Star
Observables
. 318
11.3
Chiral Dynamics in the Core of Compact Stars
. 318
11.3.1
TOV
equation
. 319
11.3.2
Neutron stars with kaon condensation "light"
. 319
11.4
Maximum Neutron Star Mass
. 324
Contents xix
11.4.1
Mfî%x à la Brown-Bethe
. 324
11.4.2
Cosmological
constraint
on
MjJ^?
. 325
11.5
Formation
of
Double Neutron
Star Binaries
. 326
11.6
Neutron Stars
Heavier than Mffl
. 327
11.6.1
Vela X-l
. 328
11.6.2
Neutron
star-white dwarf binaries
. 329
11.6.3
Two-branch scenario
. 330
11.6.4
New measurement of the neutron star mass in J0751+1807
331
11.7
Outlook
. 331
Bibliography
335
Index
349 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Rho, Mannque |
author_facet | Rho, Mannque |
author_role | aut |
author_sort | Rho, Mannque |
author_variant | m r mr |
building | Verbundindex |
bvnumber | BV023207596 |
classification_rvk | UO 1580 UO 4000 UO 5700 UO 5900 |
ctrlnum | (OCoLC)635091933 (DE-599)BVBBV023207596 |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01470nam a2200385 c 4500</leader><controlfield tag="001">BV023207596</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081014 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080311s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812705884</subfield><subfield code="9">978-981-270-588-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812705880</subfield><subfield code="9">981-270-588-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635091933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023207596</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 1580</subfield><subfield code="0">(DE-625)146208:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 5700</subfield><subfield code="0">(DE-625)146298:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 5900</subfield><subfield code="0">(DE-625)146305:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rho, Mannque</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chiral nuclear dynamics II</subfield><subfield code="c">Mannque Rho</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 352 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chirale Symmetrie</subfield><subfield code="0">(DE-588)4274371-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elementarteilchen</subfield><subfield code="0">(DE-588)4014413-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elementarteilchen</subfield><subfield code="0">(DE-588)4014413-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chirale Symmetrie</subfield><subfield code="0">(DE-588)4274371-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016393723&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016393723</subfield></datafield></record></collection> |
id | DE-604.BV023207596 |
illustrated | Illustrated |
index_date | 2024-07-02T20:10:42Z |
indexdate | 2024-07-09T21:13:05Z |
institution | BVB |
isbn | 9789812705884 9812705880 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016393723 |
oclc_num | 635091933 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-355 DE-BY-UBR DE-11 |
physical | XIX, 352 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific |
record_format | marc |
spelling | Rho, Mannque Verfasser aut Chiral nuclear dynamics II Mannque Rho New Jersey [u.a.] World Scientific 2008 XIX, 352 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chirale Symmetrie (DE-588)4274371-0 gnd rswk-swf Elementarteilchen (DE-588)4014413-6 gnd rswk-swf Elementarteilchen (DE-588)4014413-6 s Chirale Symmetrie (DE-588)4274371-0 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016393723&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Rho, Mannque Chiral nuclear dynamics II Chirale Symmetrie (DE-588)4274371-0 gnd Elementarteilchen (DE-588)4014413-6 gnd |
subject_GND | (DE-588)4274371-0 (DE-588)4014413-6 |
title | Chiral nuclear dynamics II |
title_auth | Chiral nuclear dynamics II |
title_exact_search | Chiral nuclear dynamics II |
title_exact_search_txtP | Chiral nuclear dynamics II |
title_full | Chiral nuclear dynamics II Mannque Rho |
title_fullStr | Chiral nuclear dynamics II Mannque Rho |
title_full_unstemmed | Chiral nuclear dynamics II Mannque Rho |
title_short | Chiral nuclear dynamics II |
title_sort | chiral nuclear dynamics ii |
topic | Chirale Symmetrie (DE-588)4274371-0 gnd Elementarteilchen (DE-588)4014413-6 gnd |
topic_facet | Chirale Symmetrie Elementarteilchen |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016393723&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT rhomannque chiralnucleardynamicsii |