Algebraic geometry: a first course
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
New York [u.a.]
Springer
[2003]
|
Ausgabe: | [reprint] |
Schriftenreihe: | Graduate texts in mathematics
133 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 328 S. graph. Darst. |
ISBN: | 0387977163 9780387977164 3540977163 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023206478 | ||
003 | DE-604 | ||
005 | 20080813 | ||
007 | t | ||
008 | 080311s2003 d||| |||| 00||| und d | ||
020 | |a 0387977163 |9 0-387-97716-3 | ||
020 | |a 9780387977164 |9 978-0-387-97716-4 | ||
020 | |a 3540977163 |9 3-540-97716-3 | ||
035 | |a (OCoLC)635081232 | ||
035 | |a (DE-599)BVBBV010826100 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | |a und | ||
049 | |a DE-355 | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a MAT 140f |2 stub | ||
100 | 1 | |a Harris, Joe |d 1951- |e Verfasser |0 (DE-588)112574718 |4 aut | |
245 | 1 | 0 | |a Algebraic geometry |b a first course |c Joe Harris |
250 | |a [reprint] | ||
264 | 1 | |a New York [u.a.] |b Springer |c [2003] | |
300 | |a XIX, 328 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 133 | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Graduate texts in mathematics |v 133 |w (DE-604)BV000000067 |9 133 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016392621&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016392621 |
Datensatz im Suchindex
_version_ | 1804137485940293632 |
---|---|
adam_text | Contents
Preface
vii
Acknowledgments
ix
Using This Book
xi
Part i: Examples of Varieties and Maps
Lecture
1
Affine
and
Projective
Varieties
3
A Note About Our Field
3
Affine
Space and
Affine
Varieties
3
Projective
Space and
Projective
Varieties
3
Linear Spaces
5
Finite Sets
6
Hypersurfaces
8
Analytic Subvarieties and Submanifolds
8
The Twisted Cubic
9
Rational Normal Curves
10
Determinantal Representation of the Rational Normal Curve
11
Another Parametrization of the Rational Normal Curve
11
The Family of Plane Conies
12
A Synthetic Construction of the Rational Normal Curve
13
Other Rational Curves
14
Varieties Defined over Subfields of
К
16
A Note on Dimension, Smoothness, and Degree
16
Lecture
2
Regular Functions and Maps
17
The Zariski Topology
17
Regular Functions on an
Affine
Variety
18
Contents
Projective
Varieties
20
Regular Maps
21
The Veronese Map
23
Determinantal Representation of Veronese Varieties
24
Subvarieties of Veronese Varieties
24
The
Segre
Maps
25
Subvarieties of
Segre
Varieties
27
Products of Varieties
28
Graphs
29
Fiber Products
30
Combinations of Veronese and
Segre
Maps
30
Lecture
3
Cones, Projections, and More About Products
32
Cones
32
Quadrics
33
Projections
34
More Cones
37
More Projections
38
Constructible
Sets
39
Lecture
4
Families and Parameter Spaces
41
Families of Varieties
41
The Universal
Hyperplane 42
The Universal
Hyperplane
Section
43
Parameter Spaces of Hypersurfaces
44
Universal Families of Hypersurfaces
45
A Family of Lines
47
Lecture
5
Ideals of Varieties, Irreducible Decomposition, and the
Nullstellensatz 48
Generating Ideals
48
Ideals of
Projective
Varieties
50
Irreducible Varieties and Irreducible Decomposition
51
General Objects
53
General Projections
54
General Twisted Cubics
55
Double Point Loci
56
A Little Algebra
57
Restatements and Corollaries
60
Lecture
6
Grassmannians and Related Varieties
63
Grassmannians
63
Subvarieties of Grassmannians
66
Contents xv
The Grassmannian G(l, 3) 67
An Analog
of the Veronese Map
68
Incidence Correspondences
68
Varieties of Incident Planes
69
The Join of Two Varieties
70
Fano
Varieties
70
Lecture
7
Rational Functions and Rational Maps
72
Rational Functions
72
Rational Maps
73
Graphs of Rational Maps
75
Birational
Isomorphism
77
The Quadric Surface
78
Hypersurfaces
79
Degree of a Rational Map
79
BIow-Ups
80
Blowing Up Points
81
Blowing Up Subvarieties
82
The Quadric Surface Again
84
The Cubic Scroll in P4
85
Unirationality
87
Lecture
8
More Examples
88
The Join of Two Varieties
88
The Secant Plane Map
89
Secant Varieties
90
Trisecant Lines, etc.
90
Joins of Corresponding Points
91
Rational Normal Scrolls
92
Higher-Dimensional Scrolls
93
More Incidence Correspondences
94
Flag Manifolds
95
More Joins and Intersections
95
Quadrics of Rank
4
96
Rational Normal Scrolls II
97
Lecture
9
Determinantal Varieties
98
Generic Determinantal Varieties
98
Segre
Varieties
98
Secant Varieties of
Segre
Varieties
99
Linear Determinantal Varieties in General
99
Rational Normal Curves
100
Secant Varieties to Rational Normal Curves
103
Rational Normal Scrolls III
Ю5
Contents
Rational Normal
Scrolls IV
109
More
General Determinantal
Varieties
111
Symmetrie
and Skew-Symmetric
Determinantal
Varieties
112
Fano
Varieties of Determinantal Varieties
112
Lecture
10
Algebraic Groups
114
The General Linear Group
GL„K 114
The Orthogonal Group
SO„K 115
The Symplectic Group Sp2nX
116
Group Actions
116
PGL.+jKactsonP
116
PGL2X Acts on P2
117
PGL2K Acts on P3
118
PGL2K Acts on P
119
PGL3K Acts on P5
120
PGL3K Acts on P9
121
РО„К
Acts on
P ~
(automorphisms of the Grassmannian)
122
PGL„K
Acts on P(AkKn)
122
Quotients
123
Quotients of
Affine
Varieties by Finite Groups
124
Quotients of
Affine
Space
125
Symmetric Products
126
Quotients of Projective Varieties by Finite Groups
126
Weighted Projective Spaces
127
Part ii: Attributes of Varieties
Lecture
11
Definitions of Dimension and Elementary Examples
133
Hypersurfaces
136
Complete Intersections
136
Immediate Examples
138
The Universal fc-Plane
142
Varieties of Incident Planes
142
Secant Varieties
143
Secant Varieties in General
146
Joins of Varieties
148
Flag Manifolds
148
(Some) Schubert Varieties
149
Lecture
12
M
ore Dimension Computations
151
Determinantal Varieties
151
Fano
Varieties
152
Parameter Spaces of Twisted Cubics
155
Twisted Cubics
155
Contents
Twisted
Cubics on a General Surface
156
Complete Intersections
157
Curves of Type (a, b) on
а
Quadric
158
Determinantal Varieties
159
Group Actions
161
GLtKlActsonSynťVandA^K
161
PGL^,
К
Acts on
(Ρ )
and G(k,
«) 161
Lecture
13
Hubert Polynomials
163
Hubert Functions and Polynomials
163
Hubert Function of the Rational Normal Curve
166
Hubert Function of the Veronese Variety
166
Hubert Polynomials of Curves
166
Syzygies
168
Three Points in P2
170
Four Points in P2
171
Complete Intersections:
Koszul
Complexes
172
Lecture
14
Smoothness and Tangent Spaces
174
The Zariski Tangent Space to a Variety
174
A Local Criterion for Isomorphism
177
Projective
Tangent Spaces
181
Determinantal Varieties
184
Lecture
15
Gauss Maps, Tangential and Dual Varieties
186
A Note About Characteristic
186
Gauss Maps
188
Tangential Varieties
189
The Variety of Tangent Lines
190
Joins of Intersecting Varieties
193
The Locus of Bitangent Lines
195
Dual Varieties
196
Lecture
16
Tangent Spaces to Grassmannians
200
Tangent Spaces to Grassmannians
200
Tangent Spaces to Incidence Correspondences
202
Varieties of Incident Planes
203
The Variety of Secant Lines
204
Varieties Swept out by Linear Spaces
204
The Resolution of the Generic Determinantal Variety
206
Tangent Spaces to Dual Varieties
208
Tangent Spaces to
Fano
Varieties
209
xviii Contents
Lecture
17
Further Topics Involving Smoothness and Tangent Spaces
211
Gauss Maps on Curves
211
Osculating Planes and Associated Maps
213
The Second Fundamental Form
214
The Locus of Tangent Lines to a Variety
215
Bertini s Theorem
216
Blow-ups, Nash Blow-ups, and the Resolution of Singularities
219
Subadditivity of Codimensions of Intersections
222
Lecture
18
Degree
224
Bézouťs
Theorem
227
The Rational Normal Curves
229
More Examples of Degrees
231
Veronese Varieties
. 231
Segre
Varieties
233
Degrees of Cones and Projections
234
Joins of Varieties
235
Unirationality of Cubic Hypersurfaces
237
Lecture
19
Further Examples and Applications of Degree
239
Multidegree of a Subvariety of a Product
239
Projective
Degree of a Map
240
Joins of Corresponding Points
241
Varieties of Minimal Degree
242
Degrees of Determinantal Varieties
243
Degrees of Varieties Swept out by Linear Spaces
244
Degrees of Some Grassmannians
245
Harnack s Theorem
247
Lecture
20
Singular Points and Tangent Cones
251
Tangent Cones
251
Tangent Cones to Determinantal Varieties
256
Multiplicity
258
Examples of Singularities
260
Resolution of Singularities for Curves
264
Lecture
21
Parameter Spaces and Moduli Spaces
266
Parameter Spaces
266
Chow Varieties
268
Hubert Varieties
273
Contents xix
Curves
of Degree
2 275
Moduli Spaces
278
Plane Cubics
279
Lecture
22
Quadrics
282
Generalities about Quadrics
282
Tangent Spaces to Quadrics
283
Plane Conies
284
Quadric Surfaces
285
Quadrics in P
287
Linear Spaces on Quadrics
289
Lines on Quadrics
290
Planes on Four-Dimensional Quadrics
291
Fano
Varieties of Quadrics in General
293
Families of Quadrics
295
The Variety of Quadrics in
Ρ
295
The Variety of Quadrics in P2
296
Complete Conies
297
Quadrics in P
299
Pencils of Quadrics
301
Hints for Selected Exercises
308
References
314
Index
317
|
adam_txt |
Contents
Preface
vii
Acknowledgments
ix
Using This Book
xi
Part i: Examples of Varieties and Maps
Lecture
1
Affine
and
Projective
Varieties
3
A Note About Our Field
3
Affine
Space and
Affine
Varieties
3
Projective
Space and
Projective
Varieties
3
Linear Spaces
5
Finite Sets
6
Hypersurfaces
8
Analytic Subvarieties and Submanifolds
8
The Twisted Cubic
9
Rational Normal Curves
10
Determinantal Representation of the Rational Normal Curve
11
Another Parametrization of the Rational Normal Curve
11
The Family of Plane Conies
12
A Synthetic Construction of the Rational Normal Curve
13
Other Rational Curves
14
Varieties Defined over Subfields of
К
16
A Note on Dimension, Smoothness, and Degree
16
Lecture
2
Regular Functions and Maps
17
The Zariski Topology
17
Regular Functions on an
Affine
Variety
18
Contents
Projective
Varieties
20
Regular Maps
21
The Veronese Map
23
Determinantal Representation of Veronese Varieties
24
Subvarieties of Veronese Varieties
24
The
Segre
Maps
25
Subvarieties of
Segre
Varieties
27
Products of Varieties
28
Graphs
29
Fiber Products
30
Combinations of Veronese and
Segre
Maps
30
Lecture
3
Cones, Projections, and More About Products
32
Cones
32
Quadrics
33
Projections
34
More Cones
37
More Projections
38
Constructible
Sets
39
Lecture
4
Families and Parameter Spaces
41
Families of Varieties
41
The Universal
Hyperplane 42
The Universal
Hyperplane
Section
43
Parameter Spaces of Hypersurfaces
44
Universal Families of Hypersurfaces
45
A Family of Lines
47
Lecture
5
Ideals of Varieties, Irreducible Decomposition, and the
Nullstellensatz 48
Generating Ideals
48
Ideals of
Projective
Varieties
50
Irreducible Varieties and Irreducible Decomposition
51
General Objects
53
General Projections
54
General Twisted Cubics
55
Double Point Loci
56
A Little Algebra
57
Restatements and Corollaries
60
Lecture
6
Grassmannians and Related Varieties
63
Grassmannians
63
Subvarieties of Grassmannians
66
Contents xv
The Grassmannian G(l, 3) 67
An Analog
of the Veronese Map
68
Incidence Correspondences
68
Varieties of Incident Planes
69
The Join of Two Varieties
70
Fano
Varieties
70
Lecture
7
Rational Functions and Rational Maps
72
Rational Functions
72
Rational Maps
73
Graphs of Rational Maps
75
Birational
Isomorphism
77
The Quadric Surface
78
Hypersurfaces
79
Degree of a Rational Map
79
BIow-Ups
80
Blowing Up Points
81
Blowing Up Subvarieties
82
The Quadric Surface Again
84
The Cubic Scroll in P4
85
Unirationality
87
Lecture
8
More Examples
88
The Join of Two Varieties
88
The Secant Plane Map
89
Secant Varieties
90
Trisecant Lines, etc.
90
Joins of Corresponding Points
91
Rational Normal Scrolls
92
Higher-Dimensional Scrolls
93
More Incidence Correspondences
94
Flag Manifolds
95
More Joins and Intersections
95
Quadrics of Rank
4
96
Rational Normal Scrolls II
97
Lecture
9
Determinantal Varieties
98
Generic Determinantal Varieties
98
Segre
Varieties
98
Secant Varieties of
Segre
Varieties
99
Linear Determinantal Varieties in General
99
Rational Normal Curves
100
Secant Varieties to Rational Normal Curves
103
Rational Normal Scrolls III
Ю5
Contents
Rational Normal
Scrolls IV
109
More
General Determinantal
Varieties
111
Symmetrie
and Skew-Symmetric
Determinantal
Varieties
112
Fano
Varieties of Determinantal Varieties
112
Lecture
10
Algebraic Groups
114
The General Linear Group
GL„K 114
The Orthogonal Group
SO„K 115
The Symplectic Group Sp2nX
116
Group Actions
116
PGL.+jKactsonP"
116
PGL2X Acts on P2
117
PGL2K Acts on P3
118
PGL2K Acts on P"
119
PGL3K Acts on P5
120
PGL3K Acts on P9
121
РО„К
Acts on
P"~'
(automorphisms of the Grassmannian)
122
PGL„K
Acts on P(AkKn)
122
Quotients
123
Quotients of
Affine
Varieties by Finite Groups
124
Quotients of
Affine
Space
125
Symmetric Products
126
Quotients of Projective Varieties by Finite Groups
126
Weighted Projective Spaces
127
Part ii: Attributes of Varieties
Lecture
11
Definitions of Dimension and Elementary Examples
133
Hypersurfaces
136
Complete Intersections
136
Immediate Examples
138
The Universal fc-Plane
142
Varieties of Incident Planes
142
Secant Varieties
143
Secant Varieties in General
146
Joins of Varieties
148
Flag Manifolds
148
(Some) Schubert Varieties
149
Lecture
12
M
ore Dimension Computations
151
Determinantal Varieties
151
Fano
Varieties
152
Parameter Spaces of Twisted Cubics
155
Twisted Cubics
155
Contents
Twisted
Cubics on a General Surface
156
Complete Intersections
157
Curves of Type (a, b) on
а
Quadric
158
Determinantal Varieties
159
Group Actions
161
GLtKlActsonSynťVandA^K
161
PGL^,
К
Acts on
(Ρ")'
and G(k,
«)' 161
Lecture
13
Hubert Polynomials
163
Hubert Functions and Polynomials
163
Hubert Function of the Rational Normal Curve
166
Hubert Function of the Veronese Variety
166
Hubert Polynomials of Curves
166
Syzygies
168
Three Points in P2
170
Four Points in P2
171
Complete Intersections:
Koszul
Complexes
172
Lecture
14
Smoothness and Tangent Spaces
174
The Zariski Tangent Space to a Variety
174
A Local Criterion for Isomorphism
177
Projective
Tangent Spaces
181
Determinantal Varieties
184
Lecture
15
Gauss Maps, Tangential and Dual Varieties
186
A Note About Characteristic
186
Gauss Maps
188
Tangential Varieties
189
The Variety of Tangent Lines
190
Joins of Intersecting Varieties
193
The Locus of Bitangent Lines
195
Dual Varieties
196
Lecture
16
Tangent Spaces to Grassmannians
200
Tangent Spaces to Grassmannians
200
Tangent Spaces to Incidence Correspondences
202
Varieties of Incident Planes
203
The Variety of Secant Lines
204
Varieties Swept out by Linear Spaces
204
The Resolution of the Generic Determinantal Variety
206
Tangent Spaces to Dual Varieties
208
Tangent Spaces to
Fano
Varieties
209
xviii Contents
Lecture
17
Further Topics Involving Smoothness and Tangent Spaces
211
Gauss Maps on Curves
211
Osculating Planes and Associated Maps
213
The Second Fundamental Form
214
The Locus of Tangent Lines to a Variety
215
Bertini's Theorem
216
Blow-ups, Nash Blow-ups, and the Resolution of Singularities
219
Subadditivity of Codimensions of Intersections
222
Lecture
18
Degree
224
Bézouťs
Theorem
227
The Rational Normal Curves
229
More Examples of Degrees
231
Veronese Varieties
. 231
Segre
Varieties
233
Degrees of Cones and Projections
234
Joins of Varieties
235
Unirationality of Cubic Hypersurfaces
237
Lecture
19
Further Examples and Applications of Degree
239
Multidegree of a Subvariety of a Product
239
Projective
Degree of a Map
240
Joins of Corresponding Points
241
Varieties of Minimal Degree
242
Degrees of Determinantal Varieties
243
Degrees of Varieties Swept out by Linear Spaces
244
Degrees of Some Grassmannians
245
Harnack's Theorem
247
Lecture
20
Singular Points and Tangent Cones
251
Tangent Cones
251
Tangent Cones to Determinantal Varieties
256
Multiplicity
258
Examples of Singularities
260
Resolution of Singularities for Curves
264
Lecture
21
Parameter Spaces and Moduli Spaces
266
Parameter Spaces
266
Chow Varieties
268
Hubert Varieties
273
Contents xix
Curves
of Degree
2 275
Moduli Spaces
278
Plane Cubics
279
Lecture
22
Quadrics
282
Generalities about Quadrics
282
Tangent Spaces to Quadrics
283
Plane Conies
284
Quadric Surfaces
285
Quadrics in P"
287
Linear Spaces on Quadrics
289
Lines on Quadrics
290
Planes on Four-Dimensional Quadrics
291
Fano
Varieties of Quadrics in General
293
Families of Quadrics
295
The Variety of Quadrics in
Ρ
' 295
The Variety of Quadrics in P2
296
Complete Conies
297
Quadrics in P"
299
Pencils of Quadrics
301
Hints for Selected Exercises
308
References
314
Index
317 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Harris, Joe 1951- |
author_GND | (DE-588)112574718 |
author_facet | Harris, Joe 1951- |
author_role | aut |
author_sort | Harris, Joe 1951- |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV023206478 |
classification_rvk | SK 240 |
classification_tum | MAT 140f |
ctrlnum | (OCoLC)635081232 (DE-599)BVBBV010826100 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | [reprint] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01462nam a2200385 cb4500</leader><controlfield tag="001">BV023206478</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080813 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080311s2003 d||| |||| 00||| und d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387977163</subfield><subfield code="9">0-387-97716-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387977164</subfield><subfield code="9">978-0-387-97716-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540977163</subfield><subfield code="9">3-540-97716-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635081232</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010826100</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harris, Joe</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112574718</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic geometry</subfield><subfield code="b">a first course</subfield><subfield code="c">Joe Harris</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[reprint]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">[2003]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 328 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">133</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">133</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">133</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016392621&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016392621</subfield></datafield></record></collection> |
id | DE-604.BV023206478 |
illustrated | Illustrated |
index_date | 2024-07-02T20:10:15Z |
indexdate | 2024-07-09T21:13:03Z |
institution | BVB |
isbn | 0387977163 9780387977164 3540977163 |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016392621 |
oclc_num | 635081232 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XIX, 328 S. graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Harris, Joe 1951- Verfasser (DE-588)112574718 aut Algebraic geometry a first course Joe Harris [reprint] New York [u.a.] Springer [2003] XIX, 328 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 133 Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 s DE-604 Graduate texts in mathematics 133 (DE-604)BV000000067 133 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016392621&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Harris, Joe 1951- Algebraic geometry a first course Graduate texts in mathematics Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4001161-6 |
title | Algebraic geometry a first course |
title_auth | Algebraic geometry a first course |
title_exact_search | Algebraic geometry a first course |
title_exact_search_txtP | Algebraic geometry a first course |
title_full | Algebraic geometry a first course Joe Harris |
title_fullStr | Algebraic geometry a first course Joe Harris |
title_full_unstemmed | Algebraic geometry a first course Joe Harris |
title_short | Algebraic geometry |
title_sort | algebraic geometry a first course |
title_sub | a first course |
topic | Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Algebraische Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016392621&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT harrisjoe algebraicgeometryafirstcourse |