Quantum computing: a short course from theory to experiment
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2008
|
Ausgabe: | 2., updated and enl. ed. |
Schriftenreihe: | Physics textbook
|
Schlagworte: | |
Online-Zugang: | Beschreibung für Leser Inhaltsverzeichnis |
Beschreibung: | XVII, 265 S. Ill., graph. Darst. |
ISBN: | 3527404384 3527407871 9783527407873 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023196418 | ||
003 | DE-604 | ||
005 | 20140919 | ||
007 | t | ||
008 | 080304s2008 gw ad|| |||| 00||| eng d | ||
020 | |a 3527404384 |9 3-527-40438-4 | ||
020 | |a 3527407871 |9 3-527-40787-1 | ||
020 | |a 9783527407873 |9 978-3-527-40787-3 | ||
035 | |a (OCoLC)181069646 | ||
035 | |a (DE-599)BVBBV023196418 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-29T |a DE-20 |a DE-355 |a DE-91G |a DE-634 |a DE-83 |a DE-19 |a DE-11 |a DE-188 |a DE-2070s |a DE-384 |a DE-92 | ||
050 | 0 | |a QA76.889 | |
082 | 0 | |a 004.1 |2 22 | |
084 | |a ST 152 |0 (DE-625)143596: |2 rvk | ||
084 | |a UK 8400 |0 (DE-625)145812: |2 rvk | ||
084 | |a DAT 503f |2 stub | ||
100 | 1 | |a Stolze, Joachim |d 1953- |e Verfasser |0 (DE-588)110448294 |4 aut | |
245 | 1 | 0 | |a Quantum computing |b a short course from theory to experiment |c Joachim Stolze ; Dieter Suter |
250 | |a 2., updated and enl. ed. | ||
264 | 1 | |a Weinheim |b Wiley-VCH |c 2008 | |
300 | |a XVII, 265 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Physics textbook | |
650 | 4 | |a Quantentheorie | |
650 | 4 | |a Quantum computers | |
650 | 4 | |a Quantum theory | |
650 | 0 | 7 | |a Quantencomputer |0 (DE-588)4533372-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Quantencomputer |0 (DE-588)4533372-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Suter, Dieter |e Verfasser |4 aut | |
856 | 4 | |u http://deposit.dnb.de/cgi-bin/dokserv?id=3036941&prov=M&dok_var=1&dok_ext=htm |3 Beschreibung für Leser | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016382727&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016382727 |
Datensatz im Suchindex
_version_ | 1805090088370044928 |
---|---|
adam_text |
Contents
Preface XIII
1 Introduction and Survey 1
1.1 Information, Computers, and Quantum Mechanics 1
1.1.1 Digital Information 1
1.1.2 Moore'sLaw 2
1.1.3 Emergence of Quantum Behavior 3
1.1.4 Energy Dissipation in Computers 4
1.2 Quantum Computer Basics 5
1.2.1 Quantum Information 5
1.2.2 Quantum Communication 7
1.2.3 Basics of Quantum Information Processing 8
1.2.4 Decoherence 9
1.2.5 Implementation 10
1.3 History of Quantum Information Processing 11
1.3.1 Initial Ideas 11
1.3.2 Quantum Algorithms 12
1.3.3 Implementations 13
2 Physics of Computation 15
2.1 Physical Laws and Information Processing 15
2.1.1 Hardware Representation 15
2.1.2 Quantum vs. Classical Information Processing 16
2.2 Limitations on Computer Performance 17
2.2.1 Switching Energy 17
2.2.2 Entropy Generation and Maxwell's Demon 18
2.2.3 Reversible Logic 19
2.2.4 Reversible Gates for Universal Computers 21
2.2.5 Processing Speed 22
2.2.6 Storage Density 23
2.3 The Ultimate Laptop 23
2.3.1 Processing Speed 23
2.3.2 Maximum Storage Density 24
yj Contents
3 Elements of Classical Computer Science 27
3.1 Bits of History 27
3.2 Boolean Algebra and Logic Gates 28
3.2.1 Bits and Gates 28
3.2.2 2-Bit Logic Gates 28
3.2.3 Minimum Set of Irreversible Gates 30
3.2.4 Minimum Set of Reversible Gates 31
3.2.5 The CNOT Gate 31
3.2.6 The Toffoli Gate 32
3.2.7 The Fredkin Gate 33
3.3 Universal Computers 34
3.3.1 The Turing Machine 34
3.3.2 The Church-Turing Hypothesis 35
3.4 Complexity and Algorithms 35
3.4.1 Complexity Classes 35
3.4.2 Hard and Impossible Problems 36
4 Quantum Mechanics 39
4.1 General Structure 39
4.1.1 Spectral Lines and Stationary States 39
4.1.2 Vectors in Hubert Space 39
4.1.3 Operators in Hubert Space 40
4.1.4 Dynamics and the Hamiltonian Operator 42
4.1.5 Measurements 43
4.2 Quantum States 44
4.2.1 The Two-Dimensional Hubert Space: Qubits, Spins, and Photons . 44
4.2.2 Hamiltonian and Evolution 45
4.2.3 Coupling to Environment 47
4.2.4 Density Operator 48
4.2.5 Entanglement and Mixing 49
4.2.6 Quantification of Entanglement 50
4.2.7 BlochSphere 52
4.2.8 EPR Correlations 54
4.2.9 Bell's Theorem 54
4.2.10 Violation of Bell's Inequality 55
4.2.11 The No-Cloning Theorem 56
4.3 Measurement Revisited 58
4.3.1 Quantum Mechanical Projection Postulate 58
4.3.2 The Copenhagen Interpretation 60
4.3.3 Von Neumann's Model 61
5 Quantum Bits and Quantum Gates 65
5.1 Single-Qubit Gates 65
5.1.1 Introduction 65
5.1.2 Rotations Around Coordinate Axes 65
Contents VII
5.1.3 General Rotations 66
5.1.4 Composite Rotations 67
5.2 Two-Qubit Gates 68
5.2.1 Controlled Gates 68
5.2.2 Composite Gates 69
5.3 Universal Sets of Gates 71
5.3.1 ChoiceofSet 71
5.3.2 Unitary Operations 72
5.3.3 Two-Qubit Operations 72
5.3.4 Approximating Single-Qubit Gates 73
6 Feynman's Contribution 77
6.1 Simulating Physics with Computers 77
6.1.1 Discrete System Representations 77
6.1.2 Probabilistic Simulations 78
6.2 Quantum Mechanical Computers 79
6.2.1 Simple Gates 79
6.2.2 Adder Circuits 79
6.2.3 Qubit Raising and Lowering Operators 80
6.2.4 Adder Hamiltonian 82
7 Errors and Decoherence 85
7.1 Motivation 85
7.1.1 Sources of Error 85
7.1.2 A Counterstrategy 86
7.2 Decoherence 86
7.2.1 Phenomenology 86
7.2.2 Semiclassical Description 87
7.2.3 Quantum Mechanical Model 89
7.2.4 Entanglement and Mixing 90
7.3 Error Correction 92
7.3.1 Basics 92
7.3.2 Classical Error Correction 92
7.3.3 Quantum Error Correction 93
7.3.4 Single Spin-Flip Error 94
7.3.5 Continuous Phase Errors 95
7.3.6 General Single Qubit Errors 96
7.3.7 The Quantum Zeno Effect 97
7.3.8 Stabilizer Codes 100
7.3.9 Fault-Tolerant Computing 101
7.4 Avoiding Errors 102
7.4.1 Basics 102
7.4.2 Decoherence-Free Subspaces 103
7.4.3 NMRinLiquids 104
7.4.4 Scaling Considerations 106
Vni Contents
8 Tasks for Quantum Computers 109
8.1 Quantum Versus Classical Algorithms 109
8.1.1 Why Quantum? 109
8.1.2 Classes of Quantum Algorithms 110
8.2 The Deutsch Algorithm: Looking at Both Sides of a Coin at the Same Time . 111
8.2.1 Functions and Their Properties 111
8.2.2 Example: One-Qubit Functions 111
8.2.3 Evaluation 112
8.2.4 ManyQubits 113
8.2.5 Extensions and Generalizations 115
8.3 The Shor Algorithm: It's Prime Time 115
8.3.1 Some Number Theory 116
8.3.2 Factoring Strategy 117
8.3.3 The Core of Shor's Algorithm 118
8.3.4 The Quantum Fourier Transform 121
8.3.5 Gates for the QFT 124
8.4 The Grover Algorithm: Looking for a Needle in a Haystack 125
8.4.1 Oracle Functions 126
8.4.2 The Search Algorithm 127
8.4.3 Geometrical Analysis 128
8.4.4 Quantum Counting 130
8.4.5 Phase Estimation 130
8.5 Quantum Simulations 132
8.5.1 Potential and Limitations 132
8.5.2 Simulated Evolution 134
8.5.3 Implementations 135
9 How to Build a Quantum Computer 137
9.1 Components 137
9.1.1 The Network Model 137
9.1.2 Some Existing and Proposed Implementations 138
9.2 Requirements for Quantum Information Processing Hardware 139
9.2.1 Qubits 139
9.2.2 Initialization 140
9.2.3 Decoherence Time 140
9.2.4 Quantum Gates 141
9.2.5 Readout 142
9.3 Converting Quantum to Classical Information 143
9.3.1 Principle and Strategies 143
9.3.2 Example: Deutsch-Jozsa Algorithm 144
9.3.3 EffectofCorrelations 145
9.3.4 Repeated Measurements 145
9.4 Alternatives to the Network Model 146
9.4.1 Linear Optics and Measurements 146
9.4.2 Working with Single Photons 147
Contents IX
9.4.3 Quantum Cellular Automata 148
9.4.4 One-Way Quantum Computer 148
10 Liquid State NMR Quantum Computer 151
10.1 Basics of NMR 151
10.1.1 System and Interactions 151
10.1.2 Radio Frequency Field 153
10.1.3 Rotating Frame 154
10.1.4 Equation of Motion 155
10.1.5 Evolution 156
10.1.6 NMR Signals 157
10.1.7 Refocusing 158
10.2 NMR as a Molecular Quantum Computer 160
10.2.1 Spins as Qubits 160
10.2.2 Coupled Spin Systems 162
10.2.3 Pseudo/Effective Pure States 163
10.2.4 Single-Qubit Gates 164
10.2.5 Two-Qubit Gates 166
10.2.6 Readout 167
10.2.7 Readout in Multispin Systems 169
10.2.8 Quantum State Tomography 170
10.2.9 DiVincenzo's Criteria 172
10.3 NMR Implementation of Shor's Algorithm 173
10.3.1 Qubit Implementation 173
10.3.2 Initialization 174
10.3.3 Computation 174
10.3.4 Readout 176
10.3.5 Decoherence 177
11 Trapped Ions and Atoms 179
11.1 Trapping Ions 179
11.1.1 Ions, Traps, and Light 179
11.1.2 Linear Traps 180
11.2 Interaction with Light 181
11.2.1 Optical Transitions 181
11.2.2 Motional Effects 182
11.2.3 Basics of Laser Cooling 183
11.3 Quantum Information Processing with Trapped Ions 185
11.3.1 Qubits 185
11.3.2 Single-Qubit Gates 187
11.3.3 Two-Qubit Gates 188
11.3.4 Readout 189
11.4 Experimental Implementations 190
11.4.1 Systems 190
11.4.2 SomeResults 191
11.4.3 Challenges 193
v Contents
11.5 Neutral Atoms 194
11.5.1 Trapping Neutral Particles 194
11.5.2 Manipulating Neutral Particles 195
11.5.3 Gate Operations 196
11.6 Interacting Atoms in Optical Lattices 197
11.6.1 Interacting Particles in a Periodic Potential: The Hubbard Model . 197
11.6.2 (Observing) The Mott-Hubbard Transition 201
11.6.3 Universal Optical Lattice Quantum Computing? 203
12 Solid-State Quantum Computers 205
12.1 Solid State NMR/EPR 205
12.1.1 Scaling Behavior of NMR Quantum Information Processors 205
12.1.2 31P in Silicon 206
12.1.3 Other Proposais 208
12.1.4 Single-Spin Readout 209
12.2 Superconducting Systems 210
12.2.1 Charge Qubits 210
12.2.2 Flux Qubits 211
12.2.3 Gate Operations 212
12.2.4 Readout 213
12.3 Semiconductor Qubits 214
12.3.1 Materials 214
12.3.2 Excitons in Quantum Dots 216
12.3.3 Electron Spin Qubits 217
13 Photons for Quantum Information 219
13.1 "Quantum Only" Tasks 219
13.1.1 Quantum Teleportation 219
13.1.2 (Super-) Dense Coding 221
13.1.3 Quantum Key Distribution 222
13.2 A Few Bits of Classical Information Theory 225
13.2.1 Measuring Information 225
13.2.2 Information Content and Entropy 226
13.2.3 Mutual Information and the Data Processing Inequality 227
13.2.4 Data Compression and Shannon's Noiseless Channel Coding Theorem 228
13.2.5 The Binary Symmetrie Channel and Shannon's Noisy Channel
Coding Theorem 231
13.3 A Few Bits of Quantum Information Theory 231
13.3.1 The von Neumann Entropy 231
13.3.2 The Accessible Information and Holevo's Bound 234
13.3.3 Schumacher^ Noiseless Channel Coding Theorem 235
13.3.4 Classical Information over Noisy Quantum Channels 236
Contents XI
Appendix
A Two Spins-1/2: Singlet and Triplet States 237
Bibliography 239
Index 261 |
adam_txt |
Contents
Preface XIII
1 Introduction and Survey 1
1.1 Information, Computers, and Quantum Mechanics 1
1.1.1 Digital Information 1
1.1.2 Moore'sLaw 2
1.1.3 Emergence of Quantum Behavior 3
1.1.4 Energy Dissipation in Computers 4
1.2 Quantum Computer Basics 5
1.2.1 Quantum Information 5
1.2.2 Quantum Communication 7
1.2.3 Basics of Quantum Information Processing 8
1.2.4 Decoherence 9
1.2.5 Implementation 10
1.3 History of Quantum Information Processing 11
1.3.1 Initial Ideas 11
1.3.2 Quantum Algorithms 12
1.3.3 Implementations 13
2 Physics of Computation 15
2.1 Physical Laws and Information Processing 15
2.1.1 Hardware Representation 15
2.1.2 Quantum vs. Classical Information Processing 16
2.2 Limitations on Computer Performance 17
2.2.1 Switching Energy 17
2.2.2 Entropy Generation and Maxwell's Demon 18
2.2.3 Reversible Logic 19
2.2.4 Reversible Gates for Universal Computers 21
2.2.5 Processing Speed 22
2.2.6 Storage Density 23
2.3 The Ultimate Laptop 23
2.3.1 Processing Speed 23
2.3.2 Maximum Storage Density 24
yj Contents
3 Elements of Classical Computer Science 27
3.1 Bits of History 27
3.2 Boolean Algebra and Logic Gates 28
3.2.1 Bits and Gates 28
3.2.2 2-Bit Logic Gates 28
3.2.3 Minimum Set of Irreversible Gates 30
3.2.4 Minimum Set of Reversible Gates 31
3.2.5 The CNOT Gate 31
3.2.6 The Toffoli Gate 32
3.2.7 The Fredkin Gate 33
3.3 Universal Computers 34
3.3.1 The Turing Machine 34
3.3.2 The Church-Turing Hypothesis 35
3.4 Complexity and Algorithms 35
3.4.1 Complexity Classes 35
3.4.2 Hard and Impossible Problems 36
4 Quantum Mechanics 39
4.1 General Structure 39
4.1.1 Spectral Lines and Stationary States 39
4.1.2 Vectors in Hubert Space 39
4.1.3 Operators in Hubert Space 40
4.1.4 Dynamics and the Hamiltonian Operator 42
4.1.5 Measurements 43
4.2 Quantum States 44
4.2.1 The Two-Dimensional Hubert Space: Qubits, Spins, and Photons . 44
4.2.2 Hamiltonian and Evolution 45
4.2.3 Coupling to Environment 47
4.2.4 Density Operator 48
4.2.5 Entanglement and Mixing 49
4.2.6 Quantification of Entanglement 50
4.2.7 BlochSphere 52
4.2.8 EPR Correlations 54
4.2.9 Bell's Theorem 54
4.2.10 Violation of Bell's Inequality 55
4.2.11 The No-Cloning Theorem 56
4.3 Measurement Revisited 58
4.3.1 Quantum Mechanical Projection Postulate 58
4.3.2 The Copenhagen Interpretation 60
4.3.3 Von Neumann's Model 61
5 Quantum Bits and Quantum Gates 65
5.1 Single-Qubit Gates 65
5.1.1 Introduction 65
5.1.2 Rotations Around Coordinate Axes 65
Contents VII
5.1.3 General Rotations 66
5.1.4 Composite Rotations 67
5.2 Two-Qubit Gates 68
5.2.1 Controlled Gates 68
5.2.2 Composite Gates 69
5.3 Universal Sets of Gates 71
5.3.1 ChoiceofSet 71
5.3.2 Unitary Operations 72
5.3.3 Two-Qubit Operations 72
5.3.4 Approximating Single-Qubit Gates 73
6 Feynman's Contribution 77
6.1 Simulating Physics with Computers 77
6.1.1 Discrete System Representations 77
6.1.2 Probabilistic Simulations 78
6.2 Quantum Mechanical Computers 79
6.2.1 Simple Gates 79
6.2.2 Adder Circuits 79
6.2.3 Qubit Raising and Lowering Operators 80
6.2.4 Adder Hamiltonian 82
7 Errors and Decoherence 85
7.1 Motivation 85
7.1.1 Sources of Error 85
7.1.2 A Counterstrategy 86
7.2 Decoherence 86
7.2.1 Phenomenology 86
7.2.2 Semiclassical Description 87
7.2.3 Quantum Mechanical Model 89
7.2.4 Entanglement and Mixing 90
7.3 Error Correction 92
7.3.1 Basics 92
7.3.2 Classical Error Correction 92
7.3.3 Quantum Error Correction 93
7.3.4 Single Spin-Flip Error 94
7.3.5 Continuous Phase Errors 95
7.3.6 General Single Qubit Errors 96
7.3.7 The Quantum Zeno Effect 97
7.3.8 Stabilizer Codes 100
7.3.9 Fault-Tolerant Computing 101
7.4 Avoiding Errors 102
7.4.1 Basics 102
7.4.2 Decoherence-Free Subspaces 103
7.4.3 NMRinLiquids 104
7.4.4 Scaling Considerations 106
Vni Contents
8 Tasks for Quantum Computers 109
8.1 Quantum Versus Classical Algorithms 109
8.1.1 Why Quantum? 109
8.1.2 Classes of Quantum Algorithms 110
8.2 The Deutsch Algorithm: Looking at Both Sides of a Coin at the Same Time . 111
8.2.1 Functions and Their Properties 111
8.2.2 Example: One-Qubit Functions 111
8.2.3 Evaluation 112
8.2.4 ManyQubits 113
8.2.5 Extensions and Generalizations 115
8.3 The Shor Algorithm: It's Prime Time 115
8.3.1 Some Number Theory 116
8.3.2 Factoring Strategy 117
8.3.3 The Core of Shor's Algorithm 118
8.3.4 The Quantum Fourier Transform 121
8.3.5 Gates for the QFT 124
8.4 The Grover Algorithm: Looking for a Needle in a Haystack 125
8.4.1 Oracle Functions 126
8.4.2 The Search Algorithm 127
8.4.3 Geometrical Analysis 128
8.4.4 Quantum Counting 130
8.4.5 Phase Estimation 130
8.5 Quantum Simulations 132
8.5.1 Potential and Limitations 132
8.5.2 Simulated Evolution 134
8.5.3 Implementations 135
9 How to Build a Quantum Computer 137
9.1 Components 137
9.1.1 The Network Model 137
9.1.2 Some Existing and Proposed Implementations 138
9.2 Requirements for Quantum Information Processing Hardware 139
9.2.1 Qubits 139
9.2.2 Initialization 140
9.2.3 Decoherence Time 140
9.2.4 Quantum Gates 141
9.2.5 Readout 142
9.3 Converting Quantum to Classical Information 143
9.3.1 Principle and Strategies 143
9.3.2 Example: Deutsch-Jozsa Algorithm 144
9.3.3 EffectofCorrelations 145
9.3.4 Repeated Measurements 145
9.4 Alternatives to the Network Model 146
9.4.1 Linear Optics and Measurements 146
9.4.2 Working with Single Photons 147
Contents IX
9.4.3 Quantum Cellular Automata 148
9.4.4 One-Way Quantum Computer 148
10 Liquid State NMR Quantum Computer 151
10.1 Basics of NMR 151
10.1.1 System and Interactions 151
10.1.2 Radio Frequency Field 153
10.1.3 Rotating Frame 154
10.1.4 Equation of Motion 155
10.1.5 Evolution 156
10.1.6 NMR Signals 157
10.1.7 Refocusing 158
10.2 NMR as a Molecular Quantum Computer 160
10.2.1 Spins as Qubits 160
10.2.2 Coupled Spin Systems 162
10.2.3 Pseudo/Effective Pure States 163
10.2.4 Single-Qubit Gates 164
10.2.5 Two-Qubit Gates 166
10.2.6 Readout 167
10.2.7 Readout in Multispin Systems 169
10.2.8 Quantum State Tomography 170
10.2.9 DiVincenzo's Criteria 172
10.3 NMR Implementation of Shor's Algorithm 173
10.3.1 Qubit Implementation 173
10.3.2 Initialization 174
10.3.3 Computation 174
10.3.4 Readout 176
10.3.5 Decoherence 177
11 Trapped Ions and Atoms 179
11.1 Trapping Ions 179
11.1.1 Ions, Traps, and Light 179
11.1.2 Linear Traps 180
11.2 Interaction with Light 181
11.2.1 Optical Transitions 181
11.2.2 Motional Effects 182
11.2.3 Basics of Laser Cooling 183
11.3 Quantum Information Processing with Trapped Ions 185
11.3.1 Qubits 185
11.3.2 Single-Qubit Gates 187
11.3.3 Two-Qubit Gates 188
11.3.4 Readout 189
11.4 Experimental Implementations 190
11.4.1 Systems 190
11.4.2 SomeResults 191
11.4.3 Challenges 193
v Contents
11.5 Neutral Atoms 194
11.5.1 Trapping Neutral Particles 194
11.5.2 Manipulating Neutral Particles 195
11.5.3 Gate Operations 196
11.6 Interacting Atoms in Optical Lattices 197
11.6.1 Interacting Particles in a Periodic Potential: The Hubbard Model . 197
11.6.2 (Observing) The Mott-Hubbard Transition 201
11.6.3 Universal Optical Lattice Quantum Computing? 203
12 Solid-State Quantum Computers 205
12.1 Solid State NMR/EPR 205
12.1.1 Scaling Behavior of NMR Quantum Information Processors 205
12.1.2 31P in Silicon 206
12.1.3 Other Proposais 208
12.1.4 Single-Spin Readout 209
12.2 Superconducting Systems 210
12.2.1 Charge Qubits 210
12.2.2 Flux Qubits 211
12.2.3 Gate Operations 212
12.2.4 Readout 213
12.3 Semiconductor Qubits 214
12.3.1 Materials 214
12.3.2 Excitons in Quantum Dots 216
12.3.3 Electron Spin Qubits 217
13 Photons for Quantum Information 219
13.1 "Quantum Only" Tasks 219
13.1.1 Quantum Teleportation 219
13.1.2 (Super-) Dense Coding 221
13.1.3 Quantum Key Distribution 222
13.2 A Few Bits of Classical Information Theory 225
13.2.1 Measuring Information 225
13.2.2 Information Content and Entropy 226
13.2.3 Mutual Information and the Data Processing Inequality 227
13.2.4 Data Compression and Shannon's Noiseless Channel Coding Theorem 228
13.2.5 The Binary Symmetrie Channel and Shannon's Noisy Channel
Coding Theorem 231
13.3 A Few Bits of Quantum Information Theory 231
13.3.1 The von Neumann Entropy 231
13.3.2 The Accessible Information and Holevo's Bound 234
13.3.3 Schumacher^ Noiseless Channel Coding Theorem 235
13.3.4 Classical Information over Noisy Quantum Channels 236
Contents XI
Appendix
A Two Spins-1/2: Singlet and Triplet States 237
Bibliography 239
Index 261 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Stolze, Joachim 1953- Suter, Dieter |
author_GND | (DE-588)110448294 |
author_facet | Stolze, Joachim 1953- Suter, Dieter |
author_role | aut aut |
author_sort | Stolze, Joachim 1953- |
author_variant | j s js d s ds |
building | Verbundindex |
bvnumber | BV023196418 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.889 |
callnumber-search | QA76.889 |
callnumber-sort | QA 276.889 |
callnumber-subject | QA - Mathematics |
classification_rvk | ST 152 UK 8400 |
classification_tum | DAT 503f |
ctrlnum | (OCoLC)181069646 (DE-599)BVBBV023196418 |
dewey-full | 004.1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.1 |
dewey-search | 004.1 |
dewey-sort | 14.1 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Physik Informatik |
discipline_str_mv | Physik Informatik |
edition | 2., updated and enl. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023196418</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140919</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080304s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527404384</subfield><subfield code="9">3-527-40438-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527407871</subfield><subfield code="9">3-527-40787-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527407873</subfield><subfield code="9">978-3-527-40787-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181069646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023196418</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.889</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 152</subfield><subfield code="0">(DE-625)143596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 8400</subfield><subfield code="0">(DE-625)145812:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 503f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stolze, Joachim</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110448294</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum computing</subfield><subfield code="b">a short course from theory to experiment</subfield><subfield code="c">Joachim Stolze ; Dieter Suter</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., updated and enl. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 265 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics textbook</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suter, Dieter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3036941&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Beschreibung für Leser</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016382727&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016382727</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV023196418 |
illustrated | Illustrated |
index_date | 2024-07-02T20:06:32Z |
indexdate | 2024-07-20T09:34:15Z |
institution | BVB |
isbn | 3527404384 3527407871 9783527407873 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016382727 |
oclc_num | 181069646 |
open_access_boolean | |
owner | DE-29T DE-20 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-634 DE-83 DE-19 DE-BY-UBM DE-11 DE-188 DE-2070s DE-384 DE-92 |
owner_facet | DE-29T DE-20 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-634 DE-83 DE-19 DE-BY-UBM DE-11 DE-188 DE-2070s DE-384 DE-92 |
physical | XVII, 265 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley-VCH |
record_format | marc |
series2 | Physics textbook |
spelling | Stolze, Joachim 1953- Verfasser (DE-588)110448294 aut Quantum computing a short course from theory to experiment Joachim Stolze ; Dieter Suter 2., updated and enl. ed. Weinheim Wiley-VCH 2008 XVII, 265 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Physics textbook Quantentheorie Quantum computers Quantum theory Quantencomputer (DE-588)4533372-5 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Quantencomputer (DE-588)4533372-5 s DE-604 Suter, Dieter Verfasser aut http://deposit.dnb.de/cgi-bin/dokserv?id=3036941&prov=M&dok_var=1&dok_ext=htm Beschreibung für Leser HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016382727&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Stolze, Joachim 1953- Suter, Dieter Quantum computing a short course from theory to experiment Quantentheorie Quantum computers Quantum theory Quantencomputer (DE-588)4533372-5 gnd |
subject_GND | (DE-588)4533372-5 (DE-588)4123623-3 |
title | Quantum computing a short course from theory to experiment |
title_auth | Quantum computing a short course from theory to experiment |
title_exact_search | Quantum computing a short course from theory to experiment |
title_exact_search_txtP | Quantum computing a short course from theory to experiment |
title_full | Quantum computing a short course from theory to experiment Joachim Stolze ; Dieter Suter |
title_fullStr | Quantum computing a short course from theory to experiment Joachim Stolze ; Dieter Suter |
title_full_unstemmed | Quantum computing a short course from theory to experiment Joachim Stolze ; Dieter Suter |
title_short | Quantum computing |
title_sort | quantum computing a short course from theory to experiment |
title_sub | a short course from theory to experiment |
topic | Quantentheorie Quantum computers Quantum theory Quantencomputer (DE-588)4533372-5 gnd |
topic_facet | Quantentheorie Quantum computers Quantum theory Quantencomputer Lehrbuch |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3036941&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016382727&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stolzejoachim quantumcomputingashortcoursefromtheorytoexperiment AT suterdieter quantumcomputingashortcoursefromtheorytoexperiment |