Digital communications:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
McGraw-Hill
2008
|
Ausgabe: | 5. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 1150 S. graph. Darst. |
ISBN: | 9780072957167 0072957166 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023187227 | ||
003 | DE-604 | ||
005 | 20081209 | ||
007 | t | ||
008 | 080227s2008 d||| b||| 00||| eng d | ||
020 | |a 9780072957167 |9 978-0-07-295716-7 | ||
020 | |a 0072957166 |9 0-07-295716-6 | ||
035 | |a (OCoLC)167764461 | ||
035 | |a (DE-599)BVBBV023187227 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-634 |a DE-83 | ||
050 | 0 | |a TK5103.7 | |
082 | 0 | |a 621.382 |2 22 | |
084 | |a ZN 6040 |0 (DE-625)157496: |2 rvk | ||
084 | |a ZN 6120 |0 (DE-625)157507: |2 rvk | ||
084 | |a ELT 517f |2 stub | ||
084 | |a ELT 555f |2 stub | ||
100 | 1 | |a Proakis, John G. |d 1935- |e Verfasser |0 (DE-588)129254703 |4 aut | |
245 | 1 | 0 | |a Digital communications |c John G. Proakis ; Masoud Salehi |
250 | |a 5. ed. | ||
264 | 1 | |a Boston [u.a.] |b McGraw-Hill |c 2008 | |
300 | |a XVIII, 1150 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Digital communications | |
650 | 0 | 7 | |a Digitalübertragung |0 (DE-588)4149853-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitale Nachrichtentechnik |0 (DE-588)4224275-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Telekommunikation |0 (DE-588)4059360-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4006432-3 |a Bibliografie |2 gnd-content | |
689 | 0 | 0 | |a Digitale Nachrichtentechnik |0 (DE-588)4224275-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Telekommunikation |0 (DE-588)4059360-5 |D s |
689 | 1 | 1 | |a Digitalübertragung |0 (DE-588)4149853-7 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Salehi, Masoud |d 1955- |e Verfasser |0 (DE-588)12925472X |4 aut | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016373674&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016373674 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137457383374848 |
---|---|
adam_text | DIGITAL COMMUNICATIONS FIFTH EDITION JOHN G. PROAKIS PROFESSOR EMERITUS,
NORTHEASTERN UNIVERSITY DEPARTMENT OFELECTRICAL AND COMPUTER
ENGINEERING, UNIVERSITY OF CALIFORNIA, SAN DIEGO MASOUD SALEHI
DEPARTMENT OFELECTRICAL AND COMPUTER ENGINEERING, NORTHEASTERN
UNIVERSITY MCGRAW-HILL HIGHER EDUCATION BOSTON BURRRIDGE, IL DUBUQUE, IA
NEW YORK SAN FRANCISCO ST. LOUIS BANGKOK BOGOTA CARACAS KUALA LUMPUR
LISBON LONDON MADRID MEXICO CITY MILAN MONTREAL NEW DELHI SANTIAGO SEOUL
SINGAPORE SYDNEY TAIPEI TORONTO C O N T E N T S PREFACE CHAPTER 1
INTRODUCTION 1.1 ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM 1.2
COMMUNICATION CHANNELS AND THEIR CHARACTENSTICS 1.3 MATHEMATICAL MODELS
FOR COMMUNICATION CHANNELS 1.4 A HISTORICAL PERSPECTIVE IN THE
DEVELOPMENT OF DIGITAL COMMUNICATIONS 1.5 OVERVIEW OF THE BOOK 1.6
BIBLIOGRAPHICAL NOTES AND REFERENCES 1 3 10 12 15 15 CHAPTER 2
DETERMINISTIC AND RANDOM SIGNAL ANALYSIS 2.1 BANDPASS AND LOWPASS SIGNAL
REPRESENTATION 2.7-7 BANDPASS AND LOWPASS SIGNALS / 2.1-2 LOWPASS
EQUIVALENT OF BANDPASS SIGNALS / 2.1-3 ENERGY CONSIDERATIONS / 2.1-4
LOWPASS EQUIVALENT OFA BANDPASS SYSTEM 2.2 SIGNAL SPACE REPRESENTATION
OF WAVEFORMS 2.2-7 VECTOR SPACE CONCEPTS / 2.2-2 SIGNAL SPACE CONCEPTS /
2.2-3 ORTHOGONAL EXPANSIONS OF SIGNALS / 2.2*4 GRAM-SCHMIDT PROCEDURE
2.3 SOME USEFUL RANDOM VARIABLES 2.4 BOUNDS ON TAIL PROBABILITIES 2.5
LIMIT THEOREMS FOR SUMS OF RANDOM VARIABLES 2.6 COMPLEX RANDOM VARIABLES
2.6-7 COMPLEX RANDOM VECTORS 2.7 RANDOM PROCESSES 2.7-7 WIDE-SENSE
STATIONARY RANDOM PROCESSES / 2.7-2 CYCLOSTATIONARY RANDOM PROCESSES /
2.7-3 PROPER AND CIRCULAR RANDOM PROCESSES / 2.7*4 MARKOV CHAINS 2.8
SERIES EXPANSION OF RANDOM PROCESSES 2.8-1 SAMPLING THEOREM FOR
BAND-LIMITED RANDOM PROCESSES / 2.8-2 THE KARHUNEN-LOEVE EXPANSION 2.9
BANDPASS AND LOWPASS RANDOM PROCESSES 17 18 28 40 56 63 63 66 74 78 VI
CONTENTS VII 2.10 BIBLIOGRAPHICAL NOTES AND REFERENCES 82 PROBLEMS 82
CHAPTER 3 DIGITAL MODULATION SCHEINES 95 3.1 REPRESENTATION OF DIGITALLY
MODULATED SIGNALS 95 3.2 MEMORYLESS MODULATION METHODS 97 3.2-1 PULSE
AMPLITUDE MODULATION (PAM) / 3.2-2 PHASE MODULATION / 3.2-3 QUADRATURE
AMPLITUDE MODULATION / 3.2*4 MULTIDIMENSIONAL SIGNALING 3.3 SIGNALING
SCHEMES WITH MEMORY 114 3.3-1 CONTINUOUS-PHASE FREQUENCY-SHIFT KEYING
(CPFSKJ / 3.3-2 CONTINUOUS-PHASE MODULATION (CPM) 3.4 POWER SPECTRUM OF
DIGITALLY MODULATED SIGNALS 131 3.4-1 POWER SPECTRAL DENSITY OFA
DIGITALLY MODULATED SIGNAL WITH MEMORY / 3.4-2 POWER SPECTRAL DENSITY
OFLINEARLY MODULATED SIGNALS / 3.4-3 POWER SPECTRAL DENSITY OF DIGITALLY
MODULATED SIGNALS WITH FINITE MEMORY / 3.4-4 POWER SPECTRAL DENSITY OF
MODULATION SCHEMES WITH A MARKOV STRUCTURE / 3.4-5 POWER SPECTRAL
DENSITIES OFCPFSK AND CPM SIGNALS 3.5 BIBLIOGRAPHICAL NOTES AND
REFERENCES 148 PROBLEMS 148 CHAPTER 4 OPTIMUM RECEIVERS FOR AWGN
CHANNELS 160 4.1 WAVEFORM AND VECTOR CHANNEL MODELS 160 4.1-1 OPTIMAL
DETECTION FOR A GENERAL VECTOR CHANNEL 4.2 WAVEFORM AND VECTOR AWGN
CHANNELS 167 4.2-1 OPTIMAL DETECTION FOR THE VECTOR AWGN CHANNEL / 4.2-2
IMPLEMENTATION OFTHE OPTIMAL RECEIVER FOR AWGN CHANNELS / 4.2-3 A UNION
BOUND ON THE PROBABILITY OF ERROR OF MAXIMUM LIKELIHOOD DETECTION 4.3
OPTIMAL DETECTION AND ERROR PROBABILITY FOR BAND-LIMITED SIGNALING 188
4.3-1 OPTIMAL DETECTION AND ERROR PROBABILITY FOR ASK OR PAM SIGNALING /
4.3-2 OPTIMAL DETECTION AND ERROR PROBABILITY FOR PSK SIGNALING / 4.3-3
OPTIMAL DETECTION AND ERROR PROBABILITY FOR QAM SIGNALING / 4.3*4
DEMODULATION AND DETECTION 4.4 OPTIMAL DETECTION AND ERROR PROBABILITY
FOR POWER-LIMITED SIGNALING 203 4.4*1 OPTIMAL DETECTION AND ERROR
PROBABILITY FOR ORTHOGONAL SIGNALING / 4.4-2 OPTIMAL DETECTION AND ERROR
PROBABILITY FOR BIORTHOGONAL SIGNALING / 4.4-3 OPTIMAL DETECTION AND
ERROR PROBABILITY FOR SIMPLEX SIGNALING VIII CONTENTS 4.5 OPTIMAL
DETECTION IN PRESENCE OF UNCERTAINTY: NONCOHERENT DETECTION 210 4.5-7
NONCOHERENT DETECTION OF CARRIER MODULATED SIGNALS / 4.5-2 OPTIMAL
NONCOHERENT DETECTION OF FSK MODULATED SIGNALS / 4.5-3 ERROR PROBABILITY
OF ORTHOGONAL SIGNALING WITH NONCOHERENT DETECTION / 4.5-4 PROBABILITY
OF ERROR FOR ENVELOPE DETECTION OF CORRELATED BINARY SIGNALS / 4.5-5
DIFFERENTIAL PSK (DPSK) 4.6 A COMPARISON OF DIGITAL SIGNALING METHODS
226 4.6-7 BANDWIDTH AND DIMENSIONALITY 4.7 LATTICES AND CONSTELLATIONS
BASED ON LATTICES 230 4. 7-1 AN INTRODUCTION TO LATTICES / 4.7-2 SIGNAL
CONSTELLATIONS FROM LATTICES 4.8 DETECTION OF SIGNALING SCHEMES WITH
MEMORY 242 4.8-1 THE MAXIMUM LIKELIHOOD SEQUENCE DETECTOR 4.9 OPTIMUM
RECEIVER FOR CPM SIGNALS 246 4.9-7 OPTIMUM DEMODULATION AND DETECTION OF
CPM / 4.9-2 PERFORMANCE OF CPM SIGNALS / 4.9-3 SUBOPTIMUM DEMODULATION
AND DETECTION OFCPM SIGNALS 4.10 PERFORMANCE ANALYSIS FOR WIRELINE AND
RADIO COMRNUNICATION SYSTEMS 259 4.10-1 REGENERATIVE REPEATERS / 4.10-2
LINK BUDGET ANALYSIS IN RADIO COMRNUNICATION SYSTEMS 4.11
BIBLIOGRAPHICAL NOTES AND REFERENCES 265 PROBLEMS 266 CHAPTER 5 CARRIER
AND SYMBOL SYNCHRONIZATION 290 5.1 SIGNAL PARAMETER ESTIMATION 290 5.7-7
THE LIKELIHOOD FUNCTION / 5.1-2 CARRIER RECOVERY AND SYMBOL
SYNCHRONIZATION IN SIGNAL DEMODULATION 5.2 CARRIER PHASE ESTIMATION 295
5.2-7 MAXIMUM-LIKELIHOOD CARRIER PHASE ESTIMATION / 5.2-2 THE
PHASE-LOCKED LOOP / 5.2-3 EFFECT OF ADDITIVE NOISE ON THE PHASE ESTIMATE
/ 5.2^4 DECISION-DIRECTED LOOPS / 5.2-5 NON-DECISION-DIRECTED LOOPS 5.3
SYMBOL TIMING ESTIMATION 315 5.3-1 MAXIMUM-LIKELIHOOD TIMING ESTIMATION
/ 5.3-2 NON-DECISION-DIRECTED TIMING ESTIMATION 5.4 JOINT ESTIMATION OF
CARRIER PHASE AND SYMBOL TIMING 321 5.5 PERFORMANCE CHARACTERISTICS OF
ML ESTIMATORS 323 5.6 BIBLIOGRAPHICAL NOTES AND REFERENCES 326 PROBLEMS
327 CHAPTER 6 AN INTRODUCTION TO INFORMATION THEORY 330 6.1 MATHEMATICAL
MODELS FOR INFORMATION SOURCES 331 CONTENTS IX 6.2 A LOGARITHMIC MEASURE
OF INFORMATION 332 6.3 LOSSLESS CODING OF INFORMATION SOURCES 335 6.3-1
THE LOSSLESS SOURCE CODING THEOREM / 6.3-2 LOSSLESS CODING ALGORITHMS
6.4 LOSSY DATA COMPRESSION 348 6.4-1 ENTROPY AND MUTUAL INFORMATION FOR
CONTINUOUS RANDOM VARIABLES / 6.4-2 THE RATE DISTORTION FUNCTION 6.5
CHANNEL MODELS AND CHANNEL CAPACITY 354 6.5-1 CHANNEL MODELS / 6.5-2
CHANNEL CAPACITY 6.6 ACHIEVING CHANNEL CAPACITY WITH ORTHOGONAL SIGNALS
367 6.7 THE CHANNEL RELIABILITY FUNCTION 369 6.8 THE CHANNEL CUTOFF RATE
371 6.8-1 BHATTACHARYYA AND CHERNOV BOUNDS / 6.8-2 RANDOM CODING 6.9
BIBLIOGRAPHICAL NOTES AND REFERENCES 380 PROBLEMS 381 CHAPTER 7 LINEAR
BLOCK CODES 400 7.1 BASIC DEFINITIONS 401 7.1-1 THE STRUCTURE OF FINITE
FIELDS / 7.1-2 VECTOR SPACES 7.2 GENERAL PROPERTIES OF LINEAR BLOCK
CODES 411 7.2-7 GENERATOR AND PARITY CHECK MATRICES / 7.2-2 WEIGHT AND
DISTANCEFOR LINEAR BLOCK CODES / 7.2-3 THE WEIGHT DISTRIBUTION
POLYNOMIAL / 7.2-4 ERROR PROBABILITY OF LINEAR BLOCK CODES 7.3 SOME
SPECIFIC LINEAR BLOCK CODES 420 7.3-1 REPETITION CODES / 7.3-2 HAMMING
CODES / 7.3-3 MAXIMUM-LENGTH CODES / 7.3-4 REED-MULLER CODES / 7.3-5
HADAMARD CODES / 7.3-6 GOLAY CODES 7.4 OPTIMUM SOFT DECISION DECODING OF
LINEAR BLOCK CODES 424 7.5 HARD DECISION DECODING OF LINEAR BLOCK CODES
428 7.5*1 ERROR DETECTION AND ERROR CORRECTION CAPABILITY OF BLOCK CODES
/ 7.5-2 BLOCK AND BIT ERROR PROBABILITY FOR HARD DECISION DECODING 7.6
COMPARISON OF PERFORMANCE BETWEEN HARD DECISION AND SOFT DECISION
DECODING 436 7.7 BOUNDS ON MINIMUM DISTANCE OF LINEAR BLOCK CODES 440
7.7-7 SINGLETON BOUND / 7.7-2 HAMMING BOUND / 7.7-3 PLOTKIN BOUND /
7.7-4 ELIAS BOUND / 7.7-5 MCELIECE-RODEMICH-RUMSEY-WELCH (MRRW) BOUND /
7.7-6 VARSHAMOV-GILBERT BOUND 7.8 MODIFIED LINEAR BLOCK CODES 445 7.8-1
SHORTENING AND LENGTHENING / 7.8-2 PUNCTURING AND EXTENDING / 7.8-3
EXPURGATION AND AUGMENTATION CONTENTS 7.9 CYCLIC CODES 447 7.9-1 CYCLIC
CODES * DEFINITION AND BASIC PROPERTIES / 7.9-2 SYSTEMATIC CYCLIC CODES
/ 7.9-3 ENCODERS FOR CYCLIC CODES / 7.9-4 DECODING CYCLIC CODES / 7.9-5
EXAMPLES OF CYCLIC CODES 7.10 BOSE-CHAUDHURI-HOCQUENGHEM (BCH) CODES 463
7.10-1 THE STRUCTURE OF BCH CODES / 7.10-2 DECODING BCH CODES 7.11
REED-SOLOMON CODES 471 7.12 CODING FOR CHANNELS WITH BURST ERRORS 475
7.13 COMBINING CODES 477 7.13-1 PRODUCT CODES / 7.13-2 CONCATENATED
CODES 7.14 BIBLIOGRAPHICAL NOTES AND REFERENCES 482 PROBLEMS 482 CHAPTER
8 TRELLIS AND GRAPH BASED CODES 491 8.1 THE STRUCTURE OF CONVOLUTIONAL
CODES 491 8.1-1 TREE, TRELLIS, AND STATE DIAGRAMS / 8.1-2 THE TRANSFER
FUNCTION OF A CONVOLUTIONAL CODE / 8.1-3 SYSTEMATIC, NONRECURSIVE, AND
RECURSIVE CONVOLUTIONAL CODES / 8.1-4 THE INVERSE OF A CONVOLUTIONAL
ENCODER AND CATASTROPHIC CODES 8.2 DECODING OF CONVOLUTIONAL CODES 510
8.2-1 MAXIMUM-LIKELIHOOD DECODING OF CONVOLUTIONAL CODES * THE VITERBI
ALGORITHM / 8.2-2 PROBABILITY OF ERROR FOR MAXIMUM-LIKELIHOOD DECODING
OF CONVOLUTIONAL CODES 8.3 DISTANCE PROPERTIES OF BINARY CONVOLUTIONAL
CODES 516 8.4 PUNCTURED CONVOLUTIONAL CODES 516 8.4-1 RATE-COMPATIBLE
PUNCTURED CONVOLUTIONAL CODES 8.5 OTHER DECODING ALGORITHMS FOR
CONVOLUTIONAL CODES 525 8.6 PRACTICAL CONSIDERATIONS IN THE APPLICATION
OF CONVOLUTIONAL CODES 532 8.7 NONBINARY DUAL-FC CODES AND CONCATENATED
CODES 537 8.8 MAXIMUM A POSTERIORI DECODING OF CONVOLUTIONAL CODES * THE
BCJR ALGORITHM 541 8.9 TURBO CODES AND ITERATIVE DECODING 548 8.9-1
PERFORMANCE BOUNDS FOR TURBO CODES / 8.9-2 ITERATIVE DECODING FOR TURBO
CODES / 8.9-3 EXIT CHART STUDY OF ITERATIVE DECODING 8.10 FACTOR GRAPHS
AND THE SUM-PRODUCT ALGORITHM 558 8.10-1 TANNER GRAPHS / 8.10-2 FACTOR
GRAPHS / 8.10-3 THE SUM-PRODUCT ALGORITHM / 8.10-4 MAP DECODING USING
THE SUM-PRODUCT ALGORITHM CONTENTS XI 8.11 LOW DENSITY PARITY CHECK
CODES 568 8.11-1 DECODING LDPC CODES 8.12 CODING FOR
BANDWIDTH-CONSTRAINED CHANNELS * TRELLIS CODED MODULATION 571 8.12-1
LATTICES AND TRELLIS CODED MODULATION / 8.12*2 TURBO-CODED BANDWIDTH
EFFICIENT MODULATION 8.13 BIBLIOGRAPHICAL NOTES AND REFERENCES 589
PROBLEMS 590 CHAPTER 9 DIGITAL COMMUNICATION THROUGH BAND-LIMITED
CHANNELS 597 9.1 CHARACTERIZATION OF BAND-LIMITED CHANNELS 598 9.2
SIGNAL DESIGN FOR BAND-LIMITED CHANNELS 602 9.2-7 DESIGN OF BAND-LIMITED
SIGNALS FOR NO INTERSYMBOL INTERFERENCE * THE NYQUIST CRITERION / 9.2-2
DESIGN OF BAND-LIMITED SIGNALS WITH CONTROLLED ISI * PARTIAL-RESPONSE
SIGNALS / 9.2-3 DATA DETECTION FOR CONTROLLED ISI / 9.2-4 SIGNAL DESIGN
FOR CHANNELS WITH DISTORTION 9.3 OPTIMUM RECEIVER FOR CHANNELS WITH ISI
AND AWGN 623 9.3-1 OPTIMUM MAXIMUM-LIKELIHOOD RECEIVER / 9.3-2 A
DISCRETE-TIME MODEL FOR A CHANNEL WITH ISI / 9.3-3 MAXIMUM-LIKELIHOOD
SEQUENCE ESTIMATION (MLSE)FOR THE DISCRETE-TIME WHITE NOISE FILTER MODEL
/ 9.3-4 PERFORMANCE OF MLSE FOR CHANNELS WITH ISI 9.4 LINEAR
EQUALIZATION 640 9.4-1 PEAK DISTORTION CRITERION / 9.4-2
MEAN-SQUARE-ERROR (MSE) CRITERION / 9.4-3 PERFORMANCE CHARACTERISTICS
OFTHE MSE EQUALIZER / 9.4-4 FRACTIONALLY SPACED EQUALIZERS / 9.4-5
BASEBAND AND PASSBAND LINEAR EQUALIZERS 9.5 DECISION-FEEDBACK
EQUALIZATION 661 9.5-1 COEFFICIENT OPTIMIZATION / 9.5-2 PERFORMANCE
CHARACTERISTICS OFDFE / 9.5-3 PREDICTIVE DECISION-FEEDBACK EQUALIZER /
9.5*4 EQUALIZATION AT THE TRANSMITTER * TOMLINSON-HARASHIMA PRECODING
9.6 REDUCED COMPLEXITY ML DETECTORS 669 9.7 ITERATIVE EQUALIZATION AND
DECODING*TURBO EQUALIZATION 671 9.8 BIBLIOGRAPHICAL NOTES AND REFERENCES
673 PROBLEMS 674 CHAPTER 10 ADAPTIVE EQUALIZATION 689 10.1 ADAPTIVE
LINEAR EQUALIZER 689 10.1-1 THE ZERO-FORCING ALGORITHM / 10.1-2 THELMS
ALGORITHM / 10.1-3 CONVERGENCE PROPERTIES OF THE LMS XLL CONTENTS
ALGORITHM / 10.1-4 EXCESS MSE DUE TO NOISY GRADIENT ESTIMATES / 10.1-5
ACCELERATING THE INITIAL CONVERGENCE RATE IN THE LMS ALGORITHM / 10.1-6
ADAPTIVE FRACTIONALLY SPACED EQUALIZER * THE TAP LEAKAGE ALGORITHM /
10.1-7 AN ADAPTIVE CHANNEL ESTIMATORFOR ML SEQUENCE DETECTION 10.2
ADAPTIVE DECISION-FEEDBACK EQUALIZER 705 10.3 ADAPTIVE EQUALIZATION OF
TRELLIS-CODED SIGNALS 706 10.4 RECURSIVE LEAST-SQUARES ALGORITHMS FOR
ADAPTIVE EQUALIZATION 710 10.4-1 RECURSIVE LEAST-SQUARES (KAIMAN)
ALGORITHM / 10.4-2 LINEAR PREDICTION AND THE LATTICE FILTER 10.5
SELF-RECOVERING (BLIND) EQUALIZATION 721 10.5-1 BLIND EQUALIZATION BASED
ON THE MAXIMUM-LIKELIHOOD CRITERION / 10.5-2 STOCHASTIC GRADIENT
ALGORITHMS / 10.5-3 BLIND EQUALIZATION ALGORITHMS BASED ON SECOND- AND
HIGHER-ORDER SIGNAL STATISTICS 10.6 BIBLIOGRAPHICAL NOTES AND REFERENCES
731 PROBLEMS 732 CHAPTER 11 MULTICHANNEL AND MULTICAR RIER SYSTEMS 737
11.1 MULTICHANNEL DIGITAL COMMUNICATIONS IN AWGN CHANNELS 737 11.1-1
BINARY SIGNALS / 11.1-2 M -ARY ORTHOGONAL SIGNALS 11.2 MULTICARRIER
COMMUNICATIONS 743 11.2-1 SINGLE-CARRIER VERSUS MULTICARRIER MODULATION
/ 11.2-2 CAPACITY OF A NONIDEAL LINEAR FILTER CHANNEL / 11.2-3
ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) / 11.2-4 MODULATION
AND DEMODULATION IN AN OFDM SYSTEM / 11.2-5 AN FFT ALGORITHM
IMPLEMENTATION OF AN OFDM SYSTEM / 11.2-6 SPECTRAL CHARACTERISTICS OF
MULTICARRIER SIGNALS / 11.2-7 BIT AND POWER ALLOCATION IN MULTICARRIER
MODULATION / 11.2-8 PEAK-TO-AVERAGE RATIO IN MULTICARRIER MODULATION /
11.2-9 CHANNEL CODING CONSIDERATIONS IN MULTICARRIER MODULATION 11.3
BIBLIOGRAPHICAL NOTES AND REFERENCES 759 PROBLEMS 760 CHAPTER 12 SPREAD
SPECTRUM SIGNALS FOR DIGITAL COMMUNICATIONS 762 12.1 MODEL OF SPREAD
SPECTRUM DIGITAL COMMUNICATION SYSTEM 763 12.2 DIRECT SEQUENCE SPREAD
SPECTRUM SIGNALS 765 12.2-1 ERROR RATE PERFORMANCE OFTHE DECODER /
12.2-2 SOME APPLICATIONS OFDS SPREAD SPECTRUM SIGNALS / 12.2-3 EFFECT OF
PULSED INTERFERENCE ON DS SPREAD CONTENTS XLLL SPECTRUM SYSTEMS / 12.2-4
EXCISION OF NARROWBAND INTERFERENCE IN DS SPREAD SPECTRUM SYSTEMS /
12.2-5 GENERATION OFPN SEQUENCES 12.3 FREQUENCY-HOPPED SPREAD SPECTRUM
SIGNALS 802 12.3-1 PERFORMANCE OF FH SPREAD SPECTRUM SIGNALS IN AN AWGN
CHANNEL / 12.3-2 PERFORMANCE OFFH SPREAD SPECTRUM SIGNALS IN
PARTIAL-BAND INTERFERENCE / 12.3-3 A CDMA SYSTEM BASED ON FH SPREAD
SPECTRUM SIGNALS 12.4 OTHER TYPES OF SPREAD SPECTRUM SIGNALS 814 12.5
SYNCHRONIZATION OF SPREAD SPECTRUM SYSTEMS 815 12.6 BIBLIOGRAPHICAL
NOTES AND REFERENCES 823 PROBLEMS 823 CHAPTER 13 FADING CHANNELS I:
CHARACTERIZATION AND SIGNALING 830 13.1 CHARACTERIZATION OF FADING
MULTIPATH CHANNELS 831 13.1-1 CHANNEL CORRELATION FUNCTIONS AND POWER
SPECTRA / 13.1-2 STATISTICAL MODELS FOR FADING CHANNELS 13.2 THE EFFECT
OF SIGNAL CHARACTERISTICS ON THE CHOICE OF A CHANNEL MODEL 844 13.3
FREQUENCY-NONSELECTIVE, SLOWLY FADING CHANNEL 846 13.4 DIVERSITY
TECHNIQUES FOR FADING MULTIPATH CHANNELS 850 13.4-1 BINARY SIGNALS /
13.4-2 MULTIPHASE SIGNALS / 13.4-3 M-ARY ORTHOGONAL SIGNALS 13.5
SIGNALING OVER A FREQUENCY-SELECTIVE, SLOWLY FADING CHANNEL: THE RAKE
DEMODULATOR 869 13.5-1 A TAPPED-DELAY-LINE CHANNEL MODEL / 13.5-2 THE
RAKE DEMODULATOR / 13.5-3 PERFORMANCE OFRAKE DEMODULATOR / 13.5-4
RECEIVER STRUCTURES FOR CHANNELS WITH LNTERSYMBOL INTERFERENCE 13.6
MULTICARRIER MODULATION (OFDM) 884 13.6-1 PERFORMANCE DEGRADATION OFAN
OFDM SYSTEM DUE TO DOPPLER SPREADING / 13.6-2 SUPPRESSION OFICI IN OFDM
SYSTEMS 13.7 BIBLIOGRAPHICA L NOTES AND REFERENCES 890 PROBLEMS 891
CHAPTER 14 FADING CHANNELS II: CAPACITY AND CODING 899 14.1 CAPACITY OF
FADING CHANNELS 900 14.1-1 CAPACITY OF FINITE-STATE CHANNELS 14.2
ERGODIC AND OUTAGE CAPACITY 905 14.2-1 THE ERGODIC CAPACITY OFTHE
RAYLEIGH FADING CHANNEL / 14.2-2 THE OUTAGE CAPACITY OF RAYLEIGH FADING
CHANNELS 14.3 CODING FOR FADING CHANNELS 918 CONTENTS 14.4 PERFORMANCE
OF CODED SYSTEMS IN FADING CHANNELS 919 14.4-1 CODINGFOR FULLY
INTERLEAVED CHANNEL MODEL 14.5 TRELLIS-CODED MODULATION FOR FADING
CHANNELS 929 14.5-1 TCM SYSTEMS FOR FADING CHANNELS / 14.5-2 MULTIPLE
TRELLIS-CODED MODULATION (MTCM) 14.6 BIT-INTERLEAVED CODED MODULATION
936 14.7 CODING IN THE FREQUENCY DOMAIN 942 14.7-1 PROBABILITY OF ERROR
FOR SOFT DECISION DECODING OF LINEAR BINARY BLOCK CODES / 14.7-2
PROBABILITY OF ERROR FOR HARD-DECISION DECODING OF LINEAR BLOCK CODES /
14.7-3 UPPER BOUNDS ON THE PERFORMANCE OF CONVOLUTIONAL CODES FOR A
RAYLEIGH FADING CHANNEL / 14.7*4 USE OF CONSTANT-WEIGHT CODES AND
CONCATENATED CODES FOR A FADING CHANNEL 14.8 TH E CHANNEL CUTOFF RATE
FOR FADING CHANNELS 957 14.8-1 CHANNEL CUTOFF RATE FOR FULLY INTERLEAVED
FADING CHANNELS WITH CSI AT RECEIVER 14.9 BIBLIOGRAPHICAL NOTES AND
REFERENCES 960 PROBLEMS 961 CHAPTER 15 MULTIPLE-ANTENNA SYSTEMS 966 15.1
CHANNEL MODELS FOR MULTIPLE-ANTENNA SYSTEMS 966 15.1-1 SIGNAL
TRANSMISSION THROUGH A SLOW FADING FREQUENCY-NONSELECTIVE MIMO CHANNEL /
15.1-2 DETECTION OFDATA SYMBOLS IN A MIMO SYSTEM / 15.1-3 SIGNAL
TRANSMISSION THROUGH A SLOW FADING FREQUENCY-SELECTIVE MIMO CHANNEL 15.2
CAPACITYOF MIMO CHANNELS 981 15.2-1 MATHEMATICAL PRELIMINARIES / 15.2-2
CAPACITY OF A FREQUENCY-NONSELECTIVE DETERMINISTIC MIMO CHANNEL / 15.2-3
CAPACITY OF A FREQUENCY-NONSELECTIVE ERGODIC RANDOM MIMO CHANNEL /
15.2-4 OUTAGE CAPACITY / 15.2-5 CAPACITY OFMIMO CHANNEL WHEN THE CHANNEL
IS KNOWN AT THE TRANSMITTER 15.3 SPREAD SPECTRUM SIGNALS AND MULTICODE
TRANSMISSION 992 15.3-1 ORTHOGONAL SPREADING SEQUENCES / 15.3-2
MULTIPLEXING GAIN VERSUS DIVERSITY GAIN / 15.3-3 MULTICODE MIMO SYSTEMS
15.4 CODING FOR MIMO CHANNELS 1001 15.4-1 PERFORMANCE OFTEMPORALLY CODED
SISO SYSTEMS IN RAYLEIGH FADING CHANNELS / 15.4-2 BIT-INTERLEAVED
TEMPORAL CODING FOR MIMO CHANNELS / 15.4-3 SPACE-TIME BLOCK CODES FOR
MIMO CHANNELS / 15.4-4 PAIRWISE ERROR PROBABILITY FOR A SPACE-TIME CODE
/ 15.4-5 SPACE-TIME TRELLIS CODES FOR MIMO CHANNELS / 15.4-6
CONCATENATED SPACE-TIME CODES AND TURBO CODES CONTENTS XV 15.5
BIBLIOGRAPHICAL NOTES AND REFERENCES PROBLEMS 1021 1021 CHAPTER 16
MULTIUSER COMMUNICATIONS 1028 16.1 INTRODUCTION TO MULTIPLE ACCESS
TECHNIQUES 1028 16.2 CAPACITY OF MULTIPLE ACCESS METHODS 1031 16.3
MULTIUSER DETECTION IN CDMA SYSTEMS 1036 16.3-1 CDMA SIGNAL AND CHANNEL
MODELS / 16.3-2 THE OPTIMUM MULTIUSER RECEIVER / 16.3-3 SUBOPTIMUM
DETECTORS / 16.3*4 SUCCESSIVE INTERFERENCE CANCELLATION / 16.3-5 OTHER
TYPES OF MULTIUSER DETECTORS / 16.3-6 PERFORMANCE CHARACTERISTICS OF
DETECTORS 16.4 MULTIUSER MIMO SYSTEMS FOR BROADCAST CHANNELS 1053 16.4-1
LINEAR PRECODING OF THE TRANSMITTED SIGNALS / 16.4-2 NONLINEAR PRECODING
OFTHE TRANSMITTED SIGNALS * THE QR DECOMPOSITION / 16.4-3 NONLINEAR
VECTOR PRECODING / 16.4-4 LATTICE REDUCTION TECHNIQUE FOR PRECODING 16.5
RANDOM ACCESS METHODS 1068 16.5-1 ALOHA SYSTEMS AND PROTOCOLS / 16.5-2
CARRIER SENSE SYSTEMS AND PROTOCOLS 16.6 BIBLIOGRAPHICAL NOTES AND
REFERENCES 1077 PROBLEMS 1078 APPENDIX A MATRICES 1085 A.L EIGENVALUES
AND EIGENVECTORS OF A MATRIX 1086 A.2 SINGULAR-VALUE DECOMPOSITION 1087
A.3 MATRIX NORM AND CONDITION NUMBER 1088 A.4 THE MOORE-PENROSE
PSEUDOINVERSE 1088 APPENDIX B ERROR PROBABILITY FOR MULTICHANNEL BINARY
SIGNALS 1090 APPENDIX C ERROR PROBABILITIES FOR ADAPTIVE RECEPTION OF
M-PHASE SIGNALS 1096 C.L MATHEMATICAL MODEL FOR AN M-PHASE SIGNALING
COMMUNI- CATION SYSTEM 1096 C.2 CHARACTERISTIC FUNCTION AND PROBABILITY
DENSITY FUNCTION OF THE PHASE 6 1098 C.3 ERROR PROBABILITIES FOR SLOWLY
FADING RAYLEIGH CHANNELS 1100 C.4 ERROR PROBABILITIES FOR TIME-INVARIANT
AND RICEAN FADING CHANNELS 1104 APPENDIX D SQUARE ROOT FACTORIZATION
1107 REFERENCES AND BIBLIOGRAPHY 1109 INDEX 1142
|
adam_txt |
DIGITAL COMMUNICATIONS FIFTH EDITION JOHN G. PROAKIS PROFESSOR EMERITUS,
NORTHEASTERN UNIVERSITY DEPARTMENT OFELECTRICAL AND COMPUTER
ENGINEERING, UNIVERSITY OF CALIFORNIA, SAN DIEGO MASOUD SALEHI
DEPARTMENT OFELECTRICAL AND COMPUTER ENGINEERING, NORTHEASTERN
UNIVERSITY MCGRAW-HILL HIGHER EDUCATION BOSTON BURRRIDGE, IL DUBUQUE, IA
NEW YORK SAN FRANCISCO ST. LOUIS BANGKOK BOGOTA CARACAS KUALA LUMPUR
LISBON LONDON MADRID MEXICO CITY MILAN MONTREAL NEW DELHI SANTIAGO SEOUL
SINGAPORE SYDNEY TAIPEI TORONTO C O N T E N T S PREFACE CHAPTER 1
INTRODUCTION 1.1 ELEMENTS OF A DIGITAL COMMUNICATION SYSTEM 1.2
COMMUNICATION CHANNELS AND THEIR CHARACTENSTICS 1.3 MATHEMATICAL MODELS
FOR COMMUNICATION CHANNELS 1.4 A HISTORICAL PERSPECTIVE IN THE
DEVELOPMENT OF DIGITAL COMMUNICATIONS 1.5 OVERVIEW OF THE BOOK 1.6
BIBLIOGRAPHICAL NOTES AND REFERENCES 1 3 10 12 15 15 CHAPTER 2
DETERMINISTIC AND RANDOM SIGNAL ANALYSIS 2.1 BANDPASS AND LOWPASS SIGNAL
REPRESENTATION 2.7-7 BANDPASS AND LOWPASS SIGNALS / 2.1-2 LOWPASS
EQUIVALENT OF BANDPASS SIGNALS / 2.1-3 ENERGY CONSIDERATIONS / 2.1-4
LOWPASS EQUIVALENT OFA BANDPASS SYSTEM 2.2 SIGNAL SPACE REPRESENTATION
OF WAVEFORMS 2.2-7 VECTOR SPACE CONCEPTS / 2.2-2 SIGNAL SPACE CONCEPTS /
2.2-3 ORTHOGONAL EXPANSIONS OF SIGNALS / 2.2*4 GRAM-SCHMIDT PROCEDURE
2.3 SOME USEFUL RANDOM VARIABLES 2.4 BOUNDS ON TAIL PROBABILITIES 2.5
LIMIT THEOREMS FOR SUMS OF RANDOM VARIABLES 2.6 COMPLEX RANDOM VARIABLES
2.6-7 COMPLEX RANDOM VECTORS 2.7 RANDOM PROCESSES 2.7-7 WIDE-SENSE
STATIONARY RANDOM PROCESSES / 2.7-2 CYCLOSTATIONARY RANDOM PROCESSES /
2.7-3 PROPER AND CIRCULAR RANDOM PROCESSES / 2.7*4 MARKOV CHAINS 2.8
SERIES EXPANSION OF RANDOM PROCESSES 2.8-1 SAMPLING THEOREM FOR
BAND-LIMITED RANDOM PROCESSES / 2.8-2 THE KARHUNEN-LOEVE EXPANSION 2.9
BANDPASS AND LOWPASS RANDOM PROCESSES 17 18 28 40 56 63 63 66 74 78 VI
CONTENTS VII 2.10 BIBLIOGRAPHICAL NOTES AND REFERENCES 82 PROBLEMS 82
CHAPTER 3 DIGITAL MODULATION SCHEINES 95 3.1 REPRESENTATION OF DIGITALLY
MODULATED SIGNALS 95 3.2 MEMORYLESS MODULATION METHODS 97 3.2-1 PULSE
AMPLITUDE MODULATION (PAM) / 3.2-2 PHASE MODULATION / 3.2-3 QUADRATURE
AMPLITUDE MODULATION / 3.2*4 MULTIDIMENSIONAL SIGNALING 3.3 SIGNALING
SCHEMES WITH MEMORY 114 3.3-1 CONTINUOUS-PHASE FREQUENCY-SHIFT KEYING
(CPFSKJ / 3.3-2 CONTINUOUS-PHASE MODULATION (CPM) 3.4 POWER SPECTRUM OF
DIGITALLY MODULATED SIGNALS 131 3.4-1 POWER SPECTRAL DENSITY OFA
DIGITALLY MODULATED SIGNAL WITH MEMORY / 3.4-2 POWER SPECTRAL DENSITY
OFLINEARLY MODULATED SIGNALS / 3.4-3 POWER SPECTRAL DENSITY OF DIGITALLY
MODULATED SIGNALS WITH FINITE MEMORY / 3.4-4 POWER SPECTRAL DENSITY OF
MODULATION SCHEMES WITH A MARKOV STRUCTURE / 3.4-5 POWER SPECTRAL
DENSITIES OFCPFSK AND CPM SIGNALS 3.5 BIBLIOGRAPHICAL NOTES AND
REFERENCES 148 PROBLEMS 148 CHAPTER 4 OPTIMUM RECEIVERS FOR AWGN
CHANNELS 160 4.1 WAVEFORM AND VECTOR CHANNEL MODELS 160 4.1-1 OPTIMAL
DETECTION FOR A GENERAL VECTOR CHANNEL 4.2 WAVEFORM AND VECTOR AWGN
CHANNELS 167 4.2-1 OPTIMAL DETECTION FOR THE VECTOR AWGN CHANNEL / 4.2-2
IMPLEMENTATION OFTHE OPTIMAL RECEIVER FOR AWGN CHANNELS / 4.2-3 A UNION
BOUND ON THE PROBABILITY OF ERROR OF MAXIMUM LIKELIHOOD DETECTION 4.3
OPTIMAL DETECTION AND ERROR PROBABILITY FOR BAND-LIMITED SIGNALING 188
4.3-1 OPTIMAL DETECTION AND ERROR PROBABILITY FOR ASK OR PAM SIGNALING /
4.3-2 OPTIMAL DETECTION AND ERROR PROBABILITY FOR PSK SIGNALING / 4.3-3
OPTIMAL DETECTION AND ERROR PROBABILITY FOR QAM SIGNALING / 4.3*4
DEMODULATION AND DETECTION 4.4 OPTIMAL DETECTION AND ERROR PROBABILITY
FOR POWER-LIMITED SIGNALING 203 4.4*1 OPTIMAL DETECTION AND ERROR
PROBABILITY FOR ORTHOGONAL SIGNALING / 4.4-2 OPTIMAL DETECTION AND ERROR
PROBABILITY FOR BIORTHOGONAL SIGNALING / 4.4-3 OPTIMAL DETECTION AND
ERROR PROBABILITY FOR SIMPLEX SIGNALING VIII CONTENTS 4.5 OPTIMAL
DETECTION IN PRESENCE OF UNCERTAINTY: NONCOHERENT DETECTION 210 4.5-7
NONCOHERENT DETECTION OF CARRIER MODULATED SIGNALS / 4.5-2 OPTIMAL
NONCOHERENT DETECTION OF FSK MODULATED SIGNALS / 4.5-3 ERROR PROBABILITY
OF ORTHOGONAL SIGNALING WITH NONCOHERENT DETECTION / 4.5-4 PROBABILITY
OF ERROR FOR ENVELOPE DETECTION OF CORRELATED BINARY SIGNALS / 4.5-5
DIFFERENTIAL PSK (DPSK) 4.6 A COMPARISON OF DIGITAL SIGNALING METHODS
226 4.6-7 BANDWIDTH AND DIMENSIONALITY 4.7 LATTICES AND CONSTELLATIONS
BASED ON LATTICES 230 4. 7-1 AN INTRODUCTION TO LATTICES / 4.7-2 SIGNAL
CONSTELLATIONS FROM LATTICES 4.8 DETECTION OF SIGNALING SCHEMES WITH
MEMORY 242 4.8-1 THE MAXIMUM LIKELIHOOD SEQUENCE DETECTOR 4.9 OPTIMUM
RECEIVER FOR CPM SIGNALS 246 4.9-7 OPTIMUM DEMODULATION AND DETECTION OF
CPM / 4.9-2 PERFORMANCE OF CPM SIGNALS / 4.9-3 SUBOPTIMUM DEMODULATION
AND DETECTION OFCPM SIGNALS 4.10 PERFORMANCE ANALYSIS FOR WIRELINE AND
RADIO COMRNUNICATION SYSTEMS 259 4.10-1 REGENERATIVE REPEATERS / 4.10-2
LINK BUDGET ANALYSIS IN RADIO COMRNUNICATION SYSTEMS 4.11
BIBLIOGRAPHICAL NOTES AND REFERENCES 265 PROBLEMS 266 CHAPTER 5 CARRIER
AND SYMBOL SYNCHRONIZATION 290 5.1 SIGNAL PARAMETER ESTIMATION 290 5.7-7
THE LIKELIHOOD FUNCTION / 5.1-2 CARRIER RECOVERY AND SYMBOL
SYNCHRONIZATION IN SIGNAL DEMODULATION 5.2 CARRIER PHASE ESTIMATION 295
5.2-7 MAXIMUM-LIKELIHOOD CARRIER PHASE ESTIMATION / 5.2-2 THE
PHASE-LOCKED LOOP / 5.2-3 EFFECT OF ADDITIVE NOISE ON THE PHASE ESTIMATE
/ 5.2^4 DECISION-DIRECTED LOOPS / 5.2-5 NON-DECISION-DIRECTED LOOPS 5.3
SYMBOL TIMING ESTIMATION 315 5.3-1 MAXIMUM-LIKELIHOOD TIMING ESTIMATION
/ 5.3-2 NON-DECISION-DIRECTED TIMING ESTIMATION 5.4 JOINT ESTIMATION OF
CARRIER PHASE AND SYMBOL TIMING 321 5.5 PERFORMANCE CHARACTERISTICS OF
ML ESTIMATORS 323 5.6 BIBLIOGRAPHICAL NOTES AND REFERENCES 326 PROBLEMS
327 CHAPTER 6 AN INTRODUCTION TO INFORMATION THEORY 330 6.1 MATHEMATICAL
MODELS FOR INFORMATION SOURCES 331 CONTENTS IX 6.2 A LOGARITHMIC MEASURE
OF INFORMATION 332 6.3 LOSSLESS CODING OF INFORMATION SOURCES 335 6.3-1
THE LOSSLESS SOURCE CODING THEOREM / 6.3-2 LOSSLESS CODING ALGORITHMS
6.4 LOSSY DATA COMPRESSION 348 6.4-1 ENTROPY AND MUTUAL INFORMATION FOR
CONTINUOUS RANDOM VARIABLES / 6.4-2 THE RATE DISTORTION FUNCTION 6.5
CHANNEL MODELS AND CHANNEL CAPACITY 354 6.5-1 CHANNEL MODELS / 6.5-2
CHANNEL CAPACITY 6.6 ACHIEVING CHANNEL CAPACITY WITH ORTHOGONAL SIGNALS
367 6.7 THE CHANNEL RELIABILITY FUNCTION 369 6.8 THE CHANNEL CUTOFF RATE
371 6.8-1 BHATTACHARYYA AND CHERNOV BOUNDS / 6.8-2 RANDOM CODING 6.9
BIBLIOGRAPHICAL NOTES AND REFERENCES 380 PROBLEMS 381 CHAPTER 7 LINEAR
BLOCK CODES 400 7.1 BASIC DEFINITIONS 401 7.1-1 THE STRUCTURE OF FINITE
FIELDS / 7.1-2 VECTOR SPACES 7.2 GENERAL PROPERTIES OF LINEAR BLOCK
CODES 411 7.2-7 GENERATOR AND PARITY CHECK MATRICES / 7.2-2 WEIGHT AND
DISTANCEFOR LINEAR BLOCK CODES / 7.2-3 THE WEIGHT DISTRIBUTION
POLYNOMIAL / 7.2-4 ERROR PROBABILITY OF LINEAR BLOCK CODES 7.3 SOME
SPECIFIC LINEAR BLOCK CODES 420 7.3-1 REPETITION CODES / 7.3-2 HAMMING
CODES / 7.3-3 MAXIMUM-LENGTH CODES / 7.3-4 REED-MULLER CODES / 7.3-5
HADAMARD CODES / 7.3-6 GOLAY CODES 7.4 OPTIMUM SOFT DECISION DECODING OF
LINEAR BLOCK CODES 424 7.5 HARD DECISION DECODING OF LINEAR BLOCK CODES
428 7.5*1 ERROR DETECTION AND ERROR CORRECTION CAPABILITY OF BLOCK CODES
/ 7.5-2 BLOCK AND BIT ERROR PROBABILITY FOR HARD DECISION DECODING 7.6
COMPARISON OF PERFORMANCE BETWEEN HARD DECISION AND SOFT DECISION
DECODING 436 7.7 BOUNDS ON MINIMUM DISTANCE OF LINEAR BLOCK CODES 440
7.7-7 SINGLETON BOUND / 7.7-2 HAMMING BOUND / 7.7-3 PLOTKIN BOUND /
7.7-4 ELIAS BOUND / 7.7-5 MCELIECE-RODEMICH-RUMSEY-WELCH (MRRW) BOUND /
7.7-6 VARSHAMOV-GILBERT BOUND 7.8 MODIFIED LINEAR BLOCK CODES 445 7.8-1
SHORTENING AND LENGTHENING / 7.8-2 PUNCTURING AND EXTENDING / 7.8-3
EXPURGATION AND AUGMENTATION CONTENTS 7.9 CYCLIC CODES 447 7.9-1 CYCLIC
CODES * DEFINITION AND BASIC PROPERTIES / 7.9-2 SYSTEMATIC CYCLIC CODES
/ 7.9-3 ENCODERS FOR CYCLIC CODES / 7.9-4 DECODING CYCLIC CODES / 7.9-5
EXAMPLES OF CYCLIC CODES 7.10 BOSE-CHAUDHURI-HOCQUENGHEM (BCH) CODES 463
7.10-1 THE STRUCTURE OF BCH CODES / 7.10-2 DECODING BCH CODES 7.11
REED-SOLOMON CODES 471 7.12 CODING FOR CHANNELS WITH BURST ERRORS 475
7.13 COMBINING CODES 477 7.13-1 PRODUCT CODES / 7.13-2 CONCATENATED
CODES 7.14 BIBLIOGRAPHICAL NOTES AND REFERENCES 482 PROBLEMS 482 CHAPTER
8 TRELLIS AND GRAPH BASED CODES 491 8.1 THE STRUCTURE OF CONVOLUTIONAL
CODES 491 8.1-1 TREE, TRELLIS, AND STATE DIAGRAMS / 8.1-2 THE TRANSFER
FUNCTION OF A CONVOLUTIONAL CODE / 8.1-3 SYSTEMATIC, NONRECURSIVE, AND
RECURSIVE CONVOLUTIONAL CODES / 8.1-4 THE INVERSE OF A CONVOLUTIONAL
ENCODER AND CATASTROPHIC CODES 8.2 DECODING OF CONVOLUTIONAL CODES 510
8.2-1 MAXIMUM-LIKELIHOOD DECODING OF CONVOLUTIONAL CODES * THE VITERBI
ALGORITHM / 8.2-2 PROBABILITY OF ERROR FOR MAXIMUM-LIKELIHOOD DECODING
OF CONVOLUTIONAL CODES 8.3 DISTANCE PROPERTIES OF BINARY CONVOLUTIONAL
CODES 516 8.4 PUNCTURED CONVOLUTIONAL CODES 516 8.4-1 RATE-COMPATIBLE
PUNCTURED CONVOLUTIONAL CODES 8.5 OTHER DECODING ALGORITHMS FOR
CONVOLUTIONAL CODES 525 8.6 PRACTICAL CONSIDERATIONS IN THE APPLICATION
OF CONVOLUTIONAL CODES 532 8.7 NONBINARY DUAL-FC CODES AND CONCATENATED
CODES 537 8.8 MAXIMUM A POSTERIORI DECODING OF CONVOLUTIONAL CODES * THE
BCJR ALGORITHM 541 8.9 TURBO CODES AND ITERATIVE DECODING 548 8.9-1
PERFORMANCE BOUNDS FOR TURBO CODES / 8.9-2 ITERATIVE DECODING FOR TURBO
CODES / 8.9-3 EXIT CHART STUDY OF ITERATIVE DECODING 8.10 FACTOR GRAPHS
AND THE SUM-PRODUCT ALGORITHM 558 8.10-1 TANNER GRAPHS / 8.10-2 FACTOR
GRAPHS / 8.10-3 THE SUM-PRODUCT ALGORITHM / 8.10-4 MAP DECODING USING
THE SUM-PRODUCT ALGORITHM CONTENTS XI 8.11 LOW DENSITY PARITY CHECK
CODES 568 8.11-1 DECODING LDPC CODES 8.12 CODING FOR
BANDWIDTH-CONSTRAINED CHANNELS * TRELLIS CODED MODULATION 571 8.12-1
LATTICES AND TRELLIS CODED MODULATION / 8.12*2 TURBO-CODED BANDWIDTH
EFFICIENT MODULATION 8.13 BIBLIOGRAPHICAL NOTES AND REFERENCES 589
PROBLEMS 590 CHAPTER 9 DIGITAL COMMUNICATION THROUGH BAND-LIMITED
CHANNELS 597 9.1 CHARACTERIZATION OF BAND-LIMITED CHANNELS 598 9.2
SIGNAL DESIGN FOR BAND-LIMITED CHANNELS 602 9.2-7 DESIGN OF BAND-LIMITED
SIGNALS FOR NO INTERSYMBOL INTERFERENCE * THE NYQUIST CRITERION / 9.2-2
DESIGN OF BAND-LIMITED SIGNALS WITH CONTROLLED ISI * PARTIAL-RESPONSE
SIGNALS / 9.2-3 DATA DETECTION FOR CONTROLLED ISI / 9.2-4 SIGNAL DESIGN
FOR CHANNELS WITH DISTORTION 9.3 OPTIMUM RECEIVER FOR CHANNELS WITH ISI
AND AWGN 623 9.3-1 OPTIMUM MAXIMUM-LIKELIHOOD RECEIVER / 9.3-2 A
DISCRETE-TIME MODEL FOR A CHANNEL WITH ISI / 9.3-3 MAXIMUM-LIKELIHOOD
SEQUENCE ESTIMATION (MLSE)FOR THE DISCRETE-TIME WHITE NOISE FILTER MODEL
/ 9.3-4 PERFORMANCE OF MLSE FOR CHANNELS WITH ISI 9.4 LINEAR
EQUALIZATION 640 9.4-1 PEAK DISTORTION CRITERION / 9.4-2
MEAN-SQUARE-ERROR (MSE) CRITERION / 9.4-3 PERFORMANCE CHARACTERISTICS
OFTHE MSE EQUALIZER / 9.4-4 FRACTIONALLY SPACED EQUALIZERS / 9.4-5
BASEBAND AND PASSBAND LINEAR EQUALIZERS 9.5 DECISION-FEEDBACK
EQUALIZATION 661 9.5-1 COEFFICIENT OPTIMIZATION / 9.5-2 PERFORMANCE
CHARACTERISTICS OFDFE / 9.5-3 PREDICTIVE DECISION-FEEDBACK EQUALIZER /
9.5*4 EQUALIZATION AT THE TRANSMITTER * TOMLINSON-HARASHIMA PRECODING
9.6 REDUCED COMPLEXITY ML DETECTORS 669 9.7 ITERATIVE EQUALIZATION AND
DECODING*TURBO EQUALIZATION 671 9.8 BIBLIOGRAPHICAL NOTES AND REFERENCES
673 PROBLEMS 674 CHAPTER 10 ADAPTIVE EQUALIZATION 689 10.1 ADAPTIVE
LINEAR EQUALIZER 689 10.1-1 THE ZERO-FORCING ALGORITHM / 10.1-2 THELMS
ALGORITHM / 10.1-3 CONVERGENCE PROPERTIES OF THE LMS XLL CONTENTS
ALGORITHM / 10.1-4 EXCESS MSE DUE TO NOISY GRADIENT ESTIMATES / 10.1-5
ACCELERATING THE INITIAL CONVERGENCE RATE IN THE LMS ALGORITHM / 10.1-6
ADAPTIVE FRACTIONALLY SPACED EQUALIZER * THE TAP LEAKAGE ALGORITHM /
10.1-7 AN ADAPTIVE CHANNEL ESTIMATORFOR ML SEQUENCE DETECTION 10.2
ADAPTIVE DECISION-FEEDBACK EQUALIZER 705 10.3 ADAPTIVE EQUALIZATION OF
TRELLIS-CODED SIGNALS 706 10.4 RECURSIVE LEAST-SQUARES ALGORITHMS FOR
ADAPTIVE EQUALIZATION 710 10.4-1 RECURSIVE LEAST-SQUARES (KAIMAN)
ALGORITHM / 10.4-2 LINEAR PREDICTION AND THE LATTICE FILTER 10.5
SELF-RECOVERING (BLIND) EQUALIZATION 721 10.5-1 BLIND EQUALIZATION BASED
ON THE MAXIMUM-LIKELIHOOD CRITERION / 10.5-2 STOCHASTIC GRADIENT
ALGORITHMS / 10.5-3 BLIND EQUALIZATION ALGORITHMS BASED ON SECOND- AND
HIGHER-ORDER SIGNAL STATISTICS 10.6 BIBLIOGRAPHICAL NOTES AND REFERENCES
731 PROBLEMS 732 CHAPTER 11 MULTICHANNEL AND MULTICAR RIER SYSTEMS 737
11.1 MULTICHANNEL DIGITAL COMMUNICATIONS IN AWGN CHANNELS 737 11.1-1
BINARY SIGNALS / 11.1-2 M -ARY ORTHOGONAL SIGNALS 11.2 MULTICARRIER
COMMUNICATIONS 743 11.2-1 SINGLE-CARRIER VERSUS MULTICARRIER MODULATION
/ 11.2-2 CAPACITY OF A NONIDEAL LINEAR FILTER CHANNEL / 11.2-3
ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) / 11.2-4 MODULATION
AND DEMODULATION IN AN OFDM SYSTEM / 11.2-5 AN FFT ALGORITHM
IMPLEMENTATION OF AN OFDM SYSTEM / 11.2-6 SPECTRAL CHARACTERISTICS OF
MULTICARRIER SIGNALS / 11.2-7 BIT AND POWER ALLOCATION IN MULTICARRIER
MODULATION / 11.2-8 PEAK-TO-AVERAGE RATIO IN MULTICARRIER MODULATION /
11.2-9 CHANNEL CODING CONSIDERATIONS IN MULTICARRIER MODULATION 11.3
BIBLIOGRAPHICAL NOTES AND REFERENCES 759 PROBLEMS 760 CHAPTER 12 SPREAD
SPECTRUM SIGNALS FOR DIGITAL COMMUNICATIONS 762 12.1 MODEL OF SPREAD
SPECTRUM DIGITAL COMMUNICATION SYSTEM 763 12.2 DIRECT SEQUENCE SPREAD
SPECTRUM SIGNALS 765 12.2-1 ERROR RATE PERFORMANCE OFTHE DECODER /
12.2-2 SOME APPLICATIONS OFDS SPREAD SPECTRUM SIGNALS / 12.2-3 EFFECT OF
PULSED INTERFERENCE ON DS SPREAD CONTENTS XLLL SPECTRUM SYSTEMS / 12.2-4
EXCISION OF NARROWBAND INTERFERENCE IN DS SPREAD SPECTRUM SYSTEMS /
12.2-5 GENERATION OFPN SEQUENCES 12.3 FREQUENCY-HOPPED SPREAD SPECTRUM
SIGNALS 802 12.3-1 PERFORMANCE OF FH SPREAD SPECTRUM SIGNALS IN AN AWGN
CHANNEL / 12.3-2 PERFORMANCE OFFH SPREAD SPECTRUM SIGNALS IN
PARTIAL-BAND INTERFERENCE / 12.3-3 A CDMA SYSTEM BASED ON FH SPREAD
SPECTRUM SIGNALS 12.4 OTHER TYPES OF SPREAD SPECTRUM SIGNALS 814 12.5
SYNCHRONIZATION OF SPREAD SPECTRUM SYSTEMS 815 12.6 BIBLIOGRAPHICAL
NOTES AND REFERENCES 823 PROBLEMS 823 CHAPTER 13 FADING CHANNELS I:
CHARACTERIZATION AND SIGNALING 830 13.1 CHARACTERIZATION OF FADING
MULTIPATH CHANNELS 831 13.1-1 CHANNEL CORRELATION FUNCTIONS AND POWER
SPECTRA / 13.1-2 STATISTICAL MODELS FOR FADING CHANNELS 13.2 THE EFFECT
OF SIGNAL CHARACTERISTICS ON THE CHOICE OF A CHANNEL MODEL 844 13.3
FREQUENCY-NONSELECTIVE, SLOWLY FADING CHANNEL 846 13.4 DIVERSITY
TECHNIQUES FOR FADING MULTIPATH CHANNELS 850 13.4-1 BINARY SIGNALS /
13.4-2 MULTIPHASE SIGNALS / 13.4-3 M-ARY ORTHOGONAL SIGNALS 13.5
SIGNALING OVER A FREQUENCY-SELECTIVE, SLOWLY FADING CHANNEL: THE RAKE
DEMODULATOR 869 13.5-1 A TAPPED-DELAY-LINE CHANNEL MODEL / 13.5-2 THE
RAKE DEMODULATOR / 13.5-3 PERFORMANCE OFRAKE DEMODULATOR / 13.5-4
RECEIVER STRUCTURES FOR CHANNELS WITH LNTERSYMBOL INTERFERENCE 13.6
MULTICARRIER MODULATION (OFDM) 884 13.6-1 PERFORMANCE DEGRADATION OFAN
OFDM SYSTEM DUE TO DOPPLER SPREADING / 13.6-2 SUPPRESSION OFICI IN OFDM
SYSTEMS 13.7 BIBLIOGRAPHICA L NOTES AND REFERENCES 890 PROBLEMS 891
CHAPTER 14 FADING CHANNELS II: CAPACITY AND CODING 899 14.1 CAPACITY OF
FADING CHANNELS 900 14.1-1 CAPACITY OF FINITE-STATE CHANNELS 14.2
ERGODIC AND OUTAGE CAPACITY 905 14.2-1 THE ERGODIC CAPACITY OFTHE
RAYLEIGH FADING CHANNEL / 14.2-2 THE OUTAGE CAPACITY OF RAYLEIGH FADING
CHANNELS 14.3 CODING FOR FADING CHANNELS 918 CONTENTS 14.4 PERFORMANCE
OF CODED SYSTEMS IN FADING CHANNELS 919 14.4-1 CODINGFOR FULLY
INTERLEAVED CHANNEL MODEL 14.5 TRELLIS-CODED MODULATION FOR FADING
CHANNELS 929 14.5-1 TCM SYSTEMS FOR FADING CHANNELS / 14.5-2 MULTIPLE
TRELLIS-CODED MODULATION (MTCM) 14.6 BIT-INTERLEAVED CODED MODULATION
936 14.7 CODING IN THE FREQUENCY DOMAIN 942 14.7-1 PROBABILITY OF ERROR
FOR SOFT DECISION DECODING OF LINEAR BINARY BLOCK CODES / 14.7-2
PROBABILITY OF ERROR FOR HARD-DECISION DECODING OF LINEAR BLOCK CODES /
14.7-3 UPPER BOUNDS ON THE PERFORMANCE OF CONVOLUTIONAL CODES FOR A
RAYLEIGH FADING CHANNEL / 14.7*4 USE OF CONSTANT-WEIGHT CODES AND
CONCATENATED CODES FOR A FADING CHANNEL 14.8 TH E CHANNEL CUTOFF RATE
FOR FADING CHANNELS 957 14.8-1 CHANNEL CUTOFF RATE FOR FULLY INTERLEAVED
FADING CHANNELS WITH CSI AT RECEIVER 14.9 BIBLIOGRAPHICAL NOTES AND
REFERENCES 960 PROBLEMS 961 CHAPTER 15 MULTIPLE-ANTENNA SYSTEMS 966 15.1
CHANNEL MODELS FOR MULTIPLE-ANTENNA SYSTEMS 966 15.1-1 SIGNAL
TRANSMISSION THROUGH A SLOW FADING FREQUENCY-NONSELECTIVE MIMO CHANNEL /
15.1-2 DETECTION OFDATA SYMBOLS IN A MIMO SYSTEM / 15.1-3 SIGNAL
TRANSMISSION THROUGH A SLOW FADING FREQUENCY-SELECTIVE MIMO CHANNEL 15.2
CAPACITYOF MIMO CHANNELS 981 15.2-1 MATHEMATICAL PRELIMINARIES / 15.2-2
CAPACITY OF A FREQUENCY-NONSELECTIVE DETERMINISTIC MIMO CHANNEL / 15.2-3
CAPACITY OF A FREQUENCY-NONSELECTIVE ERGODIC RANDOM MIMO CHANNEL /
15.2-4 OUTAGE CAPACITY / 15.2-5 CAPACITY OFMIMO CHANNEL WHEN THE CHANNEL
IS KNOWN AT THE TRANSMITTER 15.3 SPREAD SPECTRUM SIGNALS AND MULTICODE
TRANSMISSION 992 15.3-1 ORTHOGONAL SPREADING SEQUENCES / 15.3-2
MULTIPLEXING GAIN VERSUS DIVERSITY GAIN / 15.3-3 MULTICODE MIMO SYSTEMS
15.4 CODING FOR MIMO CHANNELS 1001 15.4-1 PERFORMANCE OFTEMPORALLY CODED
SISO SYSTEMS IN RAYLEIGH FADING CHANNELS / 15.4-2 BIT-INTERLEAVED
TEMPORAL CODING FOR MIMO CHANNELS / 15.4-3 SPACE-TIME BLOCK CODES FOR
MIMO CHANNELS / 15.4-4 PAIRWISE ERROR PROBABILITY FOR A SPACE-TIME CODE
/ 15.4-5 SPACE-TIME TRELLIS CODES FOR MIMO CHANNELS / 15.4-6
CONCATENATED SPACE-TIME CODES AND TURBO CODES CONTENTS XV 15.5
BIBLIOGRAPHICAL NOTES AND REFERENCES PROBLEMS 1021 1021 CHAPTER 16
MULTIUSER COMMUNICATIONS 1028 16.1 INTRODUCTION TO MULTIPLE ACCESS
TECHNIQUES 1028 16.2 CAPACITY OF MULTIPLE ACCESS METHODS 1031 16.3
MULTIUSER DETECTION IN CDMA SYSTEMS 1036 16.3-1 CDMA SIGNAL AND CHANNEL
MODELS / 16.3-2 THE OPTIMUM MULTIUSER RECEIVER / 16.3-3 SUBOPTIMUM
DETECTORS / 16.3*4 SUCCESSIVE INTERFERENCE CANCELLATION / 16.3-5 OTHER
TYPES OF MULTIUSER DETECTORS / 16.3-6 PERFORMANCE CHARACTERISTICS OF
DETECTORS 16.4 MULTIUSER MIMO SYSTEMS FOR BROADCAST CHANNELS 1053 16.4-1
LINEAR PRECODING OF THE TRANSMITTED SIGNALS / 16.4-2 NONLINEAR PRECODING
OFTHE TRANSMITTED SIGNALS * THE QR DECOMPOSITION / 16.4-3 NONLINEAR
VECTOR PRECODING / 16.4-4 LATTICE REDUCTION TECHNIQUE FOR PRECODING 16.5
RANDOM ACCESS METHODS 1068 16.5-1 ALOHA SYSTEMS AND PROTOCOLS / 16.5-2
CARRIER SENSE SYSTEMS AND PROTOCOLS 16.6 BIBLIOGRAPHICAL NOTES AND
REFERENCES 1077 PROBLEMS 1078 APPENDIX A MATRICES 1085 A.L EIGENVALUES
AND EIGENVECTORS OF A MATRIX 1086 A.2 SINGULAR-VALUE DECOMPOSITION 1087
A.3 MATRIX NORM AND CONDITION NUMBER 1088 A.4 THE MOORE-PENROSE
PSEUDOINVERSE 1088 APPENDIX B ERROR PROBABILITY FOR MULTICHANNEL BINARY
SIGNALS 1090 APPENDIX C ERROR PROBABILITIES FOR ADAPTIVE RECEPTION OF
M-PHASE SIGNALS 1096 C.L MATHEMATICAL MODEL FOR AN M-PHASE SIGNALING
COMMUNI- CATION SYSTEM 1096 C.2 CHARACTERISTIC FUNCTION AND PROBABILITY
DENSITY FUNCTION OF THE PHASE 6 1098 C.3 ERROR PROBABILITIES FOR SLOWLY
FADING RAYLEIGH CHANNELS 1100 C.4 ERROR PROBABILITIES FOR TIME-INVARIANT
AND RICEAN FADING CHANNELS 1104 APPENDIX D SQUARE ROOT FACTORIZATION
1107 REFERENCES AND BIBLIOGRAPHY 1109 INDEX 1142 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Proakis, John G. 1935- Salehi, Masoud 1955- |
author_GND | (DE-588)129254703 (DE-588)12925472X |
author_facet | Proakis, John G. 1935- Salehi, Masoud 1955- |
author_role | aut aut |
author_sort | Proakis, John G. 1935- |
author_variant | j g p jg jgp m s ms |
building | Verbundindex |
bvnumber | BV023187227 |
callnumber-first | T - Technology |
callnumber-label | TK5103 |
callnumber-raw | TK5103.7 |
callnumber-search | TK5103.7 |
callnumber-sort | TK 45103.7 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 6040 ZN 6120 |
classification_tum | ELT 517f ELT 555f |
ctrlnum | (OCoLC)167764461 (DE-599)BVBBV023187227 |
dewey-full | 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382 |
dewey-search | 621.382 |
dewey-sort | 3621.382 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 5. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01988nam a2200505 c 4500</leader><controlfield tag="001">BV023187227</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081209 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080227s2008 d||| b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780072957167</subfield><subfield code="9">978-0-07-295716-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0072957166</subfield><subfield code="9">0-07-295716-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)167764461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023187227</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5103.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6040</subfield><subfield code="0">(DE-625)157496:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6120</subfield><subfield code="0">(DE-625)157507:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 517f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 555f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Proakis, John G.</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129254703</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Digital communications</subfield><subfield code="c">John G. Proakis ; Masoud Salehi</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">McGraw-Hill</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 1150 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital communications</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitalübertragung</subfield><subfield code="0">(DE-588)4149853-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitale Nachrichtentechnik</subfield><subfield code="0">(DE-588)4224275-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Telekommunikation</subfield><subfield code="0">(DE-588)4059360-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4006432-3</subfield><subfield code="a">Bibliografie</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Digitale Nachrichtentechnik</subfield><subfield code="0">(DE-588)4224275-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Telekommunikation</subfield><subfield code="0">(DE-588)4059360-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Digitalübertragung</subfield><subfield code="0">(DE-588)4149853-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salehi, Masoud</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12925472X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016373674&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016373674</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4006432-3 Bibliografie gnd-content |
genre_facet | Bibliografie |
id | DE-604.BV023187227 |
illustrated | Illustrated |
index_date | 2024-07-02T20:03:35Z |
indexdate | 2024-07-09T21:12:36Z |
institution | BVB |
isbn | 9780072957167 0072957166 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016373674 |
oclc_num | 167764461 |
open_access_boolean | |
owner | DE-706 DE-634 DE-83 |
owner_facet | DE-706 DE-634 DE-83 |
physical | XVIII, 1150 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | McGraw-Hill |
record_format | marc |
spelling | Proakis, John G. 1935- Verfasser (DE-588)129254703 aut Digital communications John G. Proakis ; Masoud Salehi 5. ed. Boston [u.a.] McGraw-Hill 2008 XVIII, 1150 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Digital communications Digitalübertragung (DE-588)4149853-7 gnd rswk-swf Digitale Nachrichtentechnik (DE-588)4224275-7 gnd rswk-swf Telekommunikation (DE-588)4059360-5 gnd rswk-swf (DE-588)4006432-3 Bibliografie gnd-content Digitale Nachrichtentechnik (DE-588)4224275-7 s DE-604 Telekommunikation (DE-588)4059360-5 s Digitalübertragung (DE-588)4149853-7 s 1\p DE-604 Salehi, Masoud 1955- Verfasser (DE-588)12925472X aut GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016373674&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Proakis, John G. 1935- Salehi, Masoud 1955- Digital communications Digital communications Digitalübertragung (DE-588)4149853-7 gnd Digitale Nachrichtentechnik (DE-588)4224275-7 gnd Telekommunikation (DE-588)4059360-5 gnd |
subject_GND | (DE-588)4149853-7 (DE-588)4224275-7 (DE-588)4059360-5 (DE-588)4006432-3 |
title | Digital communications |
title_auth | Digital communications |
title_exact_search | Digital communications |
title_exact_search_txtP | Digital communications |
title_full | Digital communications John G. Proakis ; Masoud Salehi |
title_fullStr | Digital communications John G. Proakis ; Masoud Salehi |
title_full_unstemmed | Digital communications John G. Proakis ; Masoud Salehi |
title_short | Digital communications |
title_sort | digital communications |
topic | Digital communications Digitalübertragung (DE-588)4149853-7 gnd Digitale Nachrichtentechnik (DE-588)4224275-7 gnd Telekommunikation (DE-588)4059360-5 gnd |
topic_facet | Digital communications Digitalübertragung Digitale Nachrichtentechnik Telekommunikation Bibliografie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016373674&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT proakisjohng digitalcommunications AT salehimasoud digitalcommunications |