Philosophical lectures on probability:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English Italian |
Veröffentlicht: |
[Dordrecht]
Springer
2008
|
Schriftenreihe: | Synthese library
340 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 212 S. graph. Darst. 235 mm x 155 mm |
ISBN: | 9781402082016 9781402082023 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023181954 | ||
003 | DE-604 | ||
005 | 20080807 | ||
007 | t | ||
008 | 080225s2008 gw d||| |||| 00||| eng d | ||
015 | |a 08,N02,0152 |2 dnb | ||
016 | 7 | |a 986704350 |2 DE-101 | |
020 | |a 9781402082016 |9 978-1-4020-8201-6 | ||
020 | |a 9781402082023 |9 978-1-4020-8202-3 | ||
024 | 3 | |a 9781402082016 | |
028 | 5 | 2 | |a 11822783 |
035 | |a (OCoLC)214308362 | ||
035 | |a (DE-599)DNB986704350 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h ita | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29 |a DE-12 |a DE-19 | ||
050 | 0 | |a QA273.18 | |
082 | 0 | |a 121.63 |2 22 | |
084 | |a CC 2500 |0 (DE-625)17609: |2 rvk | ||
084 | |a 5,1 |2 ssgn | ||
084 | |a 100 |2 sdnb | ||
100 | 1 | |a De Finetti, Bruno |d 1906-1985 |e Verfasser |0 (DE-588)118887610 |4 aut | |
240 | 1 | 0 | |a Filosofia della probabilità |
245 | 1 | 0 | |a Philosophical lectures on probability |c Bruno de Finetti. Collected, edited, and annotated by Alberto Mura |
264 | 1 | |a [Dordrecht] |b Springer |c 2008 | |
300 | |a XXII, 212 S. |b graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Synthese library |v 340 | |
650 | 4 | |a Philosophie | |
650 | 4 | |a Probabilities |x Philosophy | |
650 | 0 | 7 | |a Philosophie |0 (DE-588)4045791-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeit |0 (DE-588)4137007-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Philosophie |0 (DE-588)4045791-6 |D s |
689 | 0 | 1 | |a Wahrscheinlichkeit |0 (DE-588)4137007-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mura, Alberto |e Sonstige |4 oth | |
830 | 0 | |a Synthese library |v 340 |w (DE-604)BV000005044 |9 340 | |
856 | 4 | 2 | |m V:DE-604 |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016368474&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016368474 |
Datensatz im Suchindex
_version_ | 1804137449686827008 |
---|---|
adam_text | CONTENTS PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IX
EDITOR S NOTIEE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. XIII DE FINETTI S
PHILOSOPHY OF PROB ABILITY . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . .. XV 1 INTRODUCTORY LECTURE . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 AGAINST
THE AXIOMATIC APPROACH 1 SUBJECTIVISM 3 DEFINING PROBABILITY . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 4 PROPER SCORING RULES 4 2 DECISIONS AND PROPER SCORING RUJES ..
. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 WHY PROPER
SCORING RULES ARE PROPER....... . .. .. .. . . . 15 PROBABILITY DEPENDS
ON THE SUBJECT S STATE OF INFORMATION 18 SEQUENTIAL DECISIONS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . .. 19 SUBJECTIVISM VERSUS OBJECTIVISM . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. 21 FOR AN OMNISCIENT BEING
PROBABILITY WOULD NOT EXIST 23 3 GEOMETRIE REPRESENTATION OF BRIER S
RUJE . . . . . . . . . . . . . . . . . . . . . . . . .. 27 ENVELOPE
FORMED BY STRAIGHT LINES 27 OPERATIONAL DEFINITION OF PROBABILITY . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 28 4 BAYES
THEOREM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .. 31 BAYES THEOREM AND LINEARITY.... . ..
. .. . .. .. . .. . . .. 31 STATISTICS AND INITIAL PROBABILITIES 34
BAYESIAN UPDATING IS NOT A CORRECTIVE REVISION. . . . . . . . . . . . .
. . . . . . . . .. 35 ADHOCKERIES . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36
BAYES THEOREM FOR RANDOM QUANTITIES 37 INEXPRESSIBLE EVIDENCE . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .. 39 5 PHYSICAJ PROBABILITY AND COMPJEXITY 47 PERFECT DICE . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .. 47 THE LOTTERY PARADOX . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 V VI
CONLENLS PROBABILITY AS FREQUENCY 50 PROBABILITY AND PHYSICAL LAWS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51
PROBABILISTIC THEORIES AS INSTRUMENTS. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .. 53 RANDOM SEQUENCES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 54 6
STOCHASTIC INDEPENDENCE AND RANDOM SEQUENCES . . . . . . . . . . . . . .
. . . .. 59 LOGICAL AND STOCHASTIC INDEPENDENCE . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .. 59 PROPENSITIES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . .. 60 INDEPENDENCE AND FREQUENTISM . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .. 61 VON MISES COLLECTIVES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . .. 62 7 SUPERSTITION AND FREQUENTISM. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .. 69 THE FREQUENTIST
FAILACY 69 IDEALIZED FRAMEWORKS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. 71 THE FAILACY OF
HYPOTHESIS TESTING 72 8 EXCHANGEABILITY . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75 UM
DRAWINGS WITH REPLACEMENT BUT WITHOUT INDEPENDENCE . . . . . . . . . . .
.. 75 INDUCTION AND UNKNOWN PROBABILITIES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .. 78 EXCHANGEABLE RANDOM QUANTITIES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 80 ALLEGED
OBJECTIVITY AND CONVERGENCE OF SUBJECTIVE PROBABILITIES . . . . . . . ..
81 9 DISTRIBUTIONS......... . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .. 87 INTRODUCTORY CONCEPTS 87
CUMULATIVE DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .. 89 CONTINUOUS DISTRIBUTIONS WITHOUT
DENSITY . . . . . . . . . . . . . . . . . . . . . . . . . . .. 90 THE
GENERAL CASE 93 CHARACTERISTIC FUNCTIONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .. 93 ABOUT MEANS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . .. 95 10 THE CONCEPT OF MEAN . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 97
CHISINI S SERENDIPITY . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .. 97 R-MEANS AND THE
NAGUMO-KOLMOGOROV THEOREM 100 STATISTICAL THEORY OF EXTREMES AND
ASSOCIATIVE MEANS 102 INEQUALITIES AMONG ASSOCIATIVE MEANS 104
CONCLUDING REMARKS 105 11 INDUCTION AND SAMPIE RANDOMIZATION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 109 EXCHANGEABILITY AND
CONVERGENCE TO THE OBSERVED FREQUENCY 109 BAYESIAN STATISTICS AND SAMPIE
RANDOMIZATION 110 12 COMPLETE ADDITIVITY AND ZERO PROBABILITIES 113 THE
BETTING FRAMEWORK AND ITS LIMITS 113 FINITE AND COUNTABLE ADDITIVITY 114
STRICT COHERENCE 118 CONTENTS VII CONDITIONING ON EVENTS OFZERO
PROBABILITY 120 ALLAIS PARADOX 123 13 THE DEFINITIONS OF PROBABILITY
127 AXIOMATIC, CLASSICAL, AND FREQUENTISTIC APPROACHES 127
INDISTINGUISHABLE EVENTS AND EQUAL PROBABILITY 130 FREQUENTISM AND
EXCHANGEABILITY 131 VON MISES REGELLOSIGKEITSAXIOM 134 14 THE
GAMBLER S FALLACY 137 AGAINST THE MEASURE-THEORETIC APPROACH 137
GAMBLER S FALLACY AND FREQUENTIST FALLACY 140 EVENTS AND PROPOSITIONS
144 15 FACTS AND EVENTS 149 A PRAGMATIC VIEW OFEVENTS 149 ON
ELEMENTARY FACTS 152 EVENTS AND PHENOMENA 155 16 FACTS AND EVENTS :
AN EXAMPLE 159 A SEQUENCE OFCOIN TOSSES 159 A GRAPHICAL REPRESENTATION
161 17 PREVISION, RANDOM QUANTITIES, AND TRIEVENTS 165 PROBABILITY AS A
SPECIAL CASE OF PREVISION 165 THE CONGLOMERATIVE PROPERTY 167 TRIEVENTS
169 18 DESIRE ANDRE S ARGUMENT 177 HEADS AND TAILS: THE GAMBLER S RUIN
177 THE WIENER-LEVY PROCESS 180 AGAIN ON GAMBLER S RUIN 180 THE
BALLOT PROBLEM 182 THE POWER OF DESIRE ANDRES ARGUMENTATIVE STRATEGY 183
19 CHARACTERISTIC FUNCTIONS 185 PREVISION AND LINEARITY 185 ROTATIONS IN
THE COMPLEX PLANE 186 SOME IMPORTANT CHARACTERISTIC FUNCTIONS 188
CONCLUDING REMARKS 189 CITED LITERATURE 191 NAME INDEX 209
|
adam_txt |
CONTENTS PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
EDITOR'S NOTIEE . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . XIII DE FINETTI'S
PHILOSOPHY OF PROB ABILITY . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . XV 1 INTRODUCTORY LECTURE . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 AGAINST
THE AXIOMATIC APPROACH 1 SUBJECTIVISM 3 DEFINING PROBABILITY . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 4 PROPER SCORING RULES 4 2 DECISIONS AND PROPER SCORING RUJES .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 WHY PROPER
SCORING RULES ARE PROPER. . . . . . . . 15 PROBABILITY DEPENDS
ON THE SUBJECT'S STATE OF INFORMATION 18 SEQUENTIAL DECISIONS . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 19 SUBJECTIVISM VERSUS OBJECTIVISM . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 21 FOR AN OMNISCIENT BEING
PROBABILITY WOULD NOT EXIST 23 3 GEOMETRIE REPRESENTATION OF BRIER'S
RUJE . . . . . . . . . . . . . . . . . . . . . . . . . 27 ENVELOPE
FORMED BY STRAIGHT LINES 27 OPERATIONAL DEFINITION OF PROBABILITY . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 BAYES'
THEOREM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 31 BAYES' THEOREM AND LINEARITY. . .
. . . . . . . . . . 31 STATISTICS AND INITIAL PROBABILITIES 34
BAYESIAN UPDATING IS NOT A CORRECTIVE REVISION. . . . . . . . . . . . .
. . . . . . . . . 35 "ADHOCKERIES" . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
BAYES' THEOREM FOR RANDOM QUANTITIES 37 INEXPRESSIBLE EVIDENCE . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 39 5 PHYSICAJ PROBABILITY AND COMPJEXITY 47 "PERFECT" DICE . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 47 THE LOTTERY PARADOX . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 V VI
CONLENLS PROBABILITY AS FREQUENCY 50 PROBABILITY AND PHYSICAL LAWS . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
PROBABILISTIC THEORIES AS INSTRUMENTS. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 53 RANDOM SEQUENCES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6
STOCHASTIC INDEPENDENCE AND RANDOM SEQUENCES . . . . . . . . . . . . . .
. . . . 59 LOGICAL AND STOCHASTIC INDEPENDENCE . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 59 PROPENSITIES . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 60 INDEPENDENCE AND FREQUENTISM . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 61 VON MISES COLLECTIVES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 62 7 SUPERSTITION AND FREQUENTISM. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 69 THE FREQUENTIST
FAILACY 69 IDEALIZED FRAMEWORKS . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 71 THE FAILACY OF
HYPOTHESIS TESTING 72 8 EXCHANGEABILITY . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 UM
DRAWINGS WITH REPLACEMENT BUT WITHOUT INDEPENDENCE . . . . . . . . . . .
. 75 INDUCTION AND "UNKNOWN" PROBABILITIES . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 78 EXCHANGEABLE RANDOM QUANTITIES . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ALLEGED
OBJECTIVITY AND CONVERGENCE OF SUBJECTIVE PROBABILITIES . . . . . . . .
81 9 DISTRIBUTIONS. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 87 INTRODUCTORY CONCEPTS 87
CUMULATIVE DISTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 89 CONTINUOUS DISTRIBUTIONS WITHOUT
DENSITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 THE
GENERAL CASE 93 CHARACTERISTIC FUNCTIONS . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 93 ABOUT MEANS . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 95 10 THE CONCEPT OF MEAN . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
CHISINI'S SERENDIPITY . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 97 R-MEANS AND THE
NAGUMO-KOLMOGOROV THEOREM 100 STATISTICAL THEORY OF EXTREMES AND
ASSOCIATIVE MEANS 102 INEQUALITIES AMONG ASSOCIATIVE MEANS 104
CONCLUDING REMARKS 105 11 INDUCTION AND SAMPIE RANDOMIZATION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 109 EXCHANGEABILITY AND
CONVERGENCE TO THE OBSERVED FREQUENCY 109 BAYESIAN STATISTICS AND SAMPIE
RANDOMIZATION 110 12 COMPLETE ADDITIVITY AND ZERO PROBABILITIES 113 THE
BETTING FRAMEWORK AND ITS LIMITS 113 FINITE AND COUNTABLE ADDITIVITY 114
'STRICT' COHERENCE 118 CONTENTS VII CONDITIONING ON EVENTS OFZERO
PROBABILITY 120 ALLAIS' PARADOX 123 13 THE DEFINITIONS OF PROBABILITY
127 AXIOMATIC, CLASSICAL, AND FREQUENTISTIC APPROACHES 127
INDISTINGUISHABLE EVENTS AND EQUAL PROBABILITY 130 FREQUENTISM AND
EXCHANGEABILITY 131 VON MISES' "REGELLOSIGKEITSAXIOM" 134 14 THE
GAMBLER'S FALLACY 137 AGAINST THE MEASURE-THEORETIC APPROACH 137
GAMBLER'S FALLACY AND FREQUENTIST FALLACY 140 EVENTS AND PROPOSITIONS
144 15 "FACTS" AND "EVENTS" 149 A PRAGMATIC VIEW OFEVENTS 149 ON
ELEMENTARY FACTS 152 EVENTS AND "PHENOMENA" 155 16 "FACTS" AND "EVENTS":
AN EXAMPLE 159 A SEQUENCE OFCOIN TOSSES 159 A GRAPHICAL REPRESENTATION
161 17 PREVISION, RANDOM QUANTITIES, AND TRIEVENTS 165 PROBABILITY AS A
SPECIAL CASE OF PREVISION 165 THE CONGLOMERATIVE PROPERTY 167 TRIEVENTS
169 18 DESIRE ANDRE'S ARGUMENT 177 HEADS AND TAILS: THE GAMBLER'S RUIN
177 THE WIENER-LEVY PROCESS 180 AGAIN ON GAMBLER'S RUIN '" 180 THE
BALLOT PROBLEM 182 THE POWER OF DESIRE ANDRES ARGUMENTATIVE STRATEGY 183
19 CHARACTERISTIC FUNCTIONS 185 PREVISION AND LINEARITY 185 ROTATIONS IN
THE COMPLEX PLANE 186 SOME IMPORTANT CHARACTERISTIC FUNCTIONS 188
CONCLUDING REMARKS 189 CITED LITERATURE 191 NAME INDEX 209 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | De Finetti, Bruno 1906-1985 |
author_GND | (DE-588)118887610 |
author_facet | De Finetti, Bruno 1906-1985 |
author_role | aut |
author_sort | De Finetti, Bruno 1906-1985 |
author_variant | f b d fb fbd |
building | Verbundindex |
bvnumber | BV023181954 |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273.18 |
callnumber-search | QA273.18 |
callnumber-sort | QA 3273.18 |
callnumber-subject | QA - Mathematics |
classification_rvk | CC 2500 |
ctrlnum | (OCoLC)214308362 (DE-599)DNB986704350 |
dewey-full | 121.63 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 121 - Epistemology (Theory of knowledge) |
dewey-raw | 121.63 |
dewey-search | 121.63 |
dewey-sort | 3121.63 |
dewey-tens | 120 - Epistemology, causation, humankind |
discipline | Philosophie |
discipline_str_mv | Philosophie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02003nam a2200541 cb4500</leader><controlfield tag="001">BV023181954</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080807 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080225s2008 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N02,0152</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">986704350</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402082016</subfield><subfield code="9">978-1-4020-8201-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402082023</subfield><subfield code="9">978-1-4020-8202-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781402082016</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11822783</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)214308362</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB986704350</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ita</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273.18</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">121.63</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2500</subfield><subfield code="0">(DE-625)17609:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">100</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">De Finetti, Bruno</subfield><subfield code="d">1906-1985</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118887610</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Filosofia della probabilità</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Philosophical lectures on probability</subfield><subfield code="c">Bruno de Finetti. Collected, edited, and annotated by Alberto Mura</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Dordrecht]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 212 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Synthese library</subfield><subfield code="v">340</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield><subfield code="x">Philosophy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Philosophie</subfield><subfield code="0">(DE-588)4045791-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4137007-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Philosophie</subfield><subfield code="0">(DE-588)4045791-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4137007-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mura, Alberto</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Synthese library</subfield><subfield code="v">340</subfield><subfield code="w">(DE-604)BV000005044</subfield><subfield code="9">340</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">V:DE-604</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016368474&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016368474</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV023181954 |
illustrated | Illustrated |
index_date | 2024-07-02T20:01:49Z |
indexdate | 2024-07-09T21:12:29Z |
institution | BVB |
isbn | 9781402082016 9781402082023 |
language | English Italian |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016368474 |
oclc_num | 214308362 |
open_access_boolean | |
owner | DE-29 DE-12 DE-19 DE-BY-UBM |
owner_facet | DE-29 DE-12 DE-19 DE-BY-UBM |
physical | XXII, 212 S. graph. Darst. 235 mm x 155 mm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Synthese library |
series2 | Synthese library |
spelling | De Finetti, Bruno 1906-1985 Verfasser (DE-588)118887610 aut Filosofia della probabilità Philosophical lectures on probability Bruno de Finetti. Collected, edited, and annotated by Alberto Mura [Dordrecht] Springer 2008 XXII, 212 S. graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Synthese library 340 Philosophie Probabilities Philosophy Philosophie (DE-588)4045791-6 gnd rswk-swf Wahrscheinlichkeit (DE-588)4137007-7 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Philosophie (DE-588)4045791-6 s Wahrscheinlichkeit (DE-588)4137007-7 s DE-604 Mura, Alberto Sonstige oth Synthese library 340 (DE-604)BV000005044 340 V:DE-604 application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016368474&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | De Finetti, Bruno 1906-1985 Philosophical lectures on probability Synthese library Philosophie Probabilities Philosophy Philosophie (DE-588)4045791-6 gnd Wahrscheinlichkeit (DE-588)4137007-7 gnd |
subject_GND | (DE-588)4045791-6 (DE-588)4137007-7 (DE-588)4143413-4 |
title | Philosophical lectures on probability |
title_alt | Filosofia della probabilità |
title_auth | Philosophical lectures on probability |
title_exact_search | Philosophical lectures on probability |
title_exact_search_txtP | Philosophical lectures on probability |
title_full | Philosophical lectures on probability Bruno de Finetti. Collected, edited, and annotated by Alberto Mura |
title_fullStr | Philosophical lectures on probability Bruno de Finetti. Collected, edited, and annotated by Alberto Mura |
title_full_unstemmed | Philosophical lectures on probability Bruno de Finetti. Collected, edited, and annotated by Alberto Mura |
title_short | Philosophical lectures on probability |
title_sort | philosophical lectures on probability |
topic | Philosophie Probabilities Philosophy Philosophie (DE-588)4045791-6 gnd Wahrscheinlichkeit (DE-588)4137007-7 gnd |
topic_facet | Philosophie Probabilities Philosophy Wahrscheinlichkeit Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016368474&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005044 |
work_keys_str_mv | AT definettibruno filosofiadellaprobabilita AT muraalberto filosofiadellaprobabilita AT definettibruno philosophicallecturesonprobability AT muraalberto philosophicallecturesonprobability |