Fundamentals of fracture mechanics:
"Designed as an introduction for engineering students, Fundamentals of Fracture Mechanics provides a concise, yet thorough and progressive exploration of those elementary principles at the core of this discipline. Drawing on over 20 years of teaching experience, Tribikram Kundu begins with a re...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Zusammenfassung: | "Designed as an introduction for engineering students, Fundamentals of Fracture Mechanics provides a concise, yet thorough and progressive exploration of those elementary principles at the core of this discipline. Drawing on over 20 years of teaching experience, Tribikram Kundu begins with a review of the fundamentals of continuum mechanics and the theory of elasticity relevant to fracture mechanics. He then proceeds to examine a range of basic topics most relevant to practical application, reinforced by a wealth of practice exercises."--BOOK JACKET. |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 286 S. graph. Darst. |
ISBN: | 9780849384325 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023174894 | ||
003 | DE-604 | ||
005 | 20090519 | ||
007 | t | ||
008 | 080220s2008 xxud||| |||| 00||| eng d | ||
010 | |a 2007038845 | ||
020 | |a 9780849384325 |c geb. |9 978-0-8493-8432-5 | ||
035 | |a (OCoLC)173480461 | ||
035 | |a (DE-599)GBV545978718 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 | ||
050 | 0 | |a TA409 | |
082 | 0 | |a 620.1/126 | |
084 | |a UF 3150 |0 (DE-625)145572: |2 rvk | ||
100 | 1 | |a Kundu, Tribikram |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of fracture mechanics |c Tribikram Kundu |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press |c 2008 | |
300 | |a 286 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 1 | |a "Designed as an introduction for engineering students, Fundamentals of Fracture Mechanics provides a concise, yet thorough and progressive exploration of those elementary principles at the core of this discipline. Drawing on over 20 years of teaching experience, Tribikram Kundu begins with a review of the fundamentals of continuum mechanics and the theory of elasticity relevant to fracture mechanics. He then proceeds to examine a range of basic topics most relevant to practical application, reinforced by a wealth of practice exercises."--BOOK JACKET. | |
650 | 4 | |a Fracture mechanics | |
650 | 0 | 7 | |a Bruchmechanik |0 (DE-588)4112837-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bruchmechanik |0 (DE-588)4112837-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://www.ulb.tu-darmstadt.de/tocs/202531902.pdf |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016361509&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016361509 |
Datensatz im Suchindex
_version_ | 1804137439054266368 |
---|---|
adam_text | FUNDAMENTALS OF F RACTU RE MECHANICS TRIBIKRAM KUNDU LTFI) CRC PRESS V
J TAYLOR 8L FRANCIS GROUP BOCA RATON LONDON NEW YORK CRC PRESS IS AN
IMPRINT OF THE TAYLOR & FRANCIS GROUP, AN INFORMA BUSINESS CONTENTS 1
FUNDAMENTALS OF THE THEORY OF ELASTICITY 1 1.1 INTRODUCTION 1 1.2
FUNDAMENTALS OF CONTINUUM MECHANICS AND THE THEORY OF ELASTICITY 1 1.2.1
DEFORMATION AND STRAIN TENSOR 1 1.2.1.1 INTERPRETATION OF E J; - AND I;
FOR SMALL DISPLACEMENT GRADIENT 3 1.2.2 TRACTION AND STRESS TENSOR 6
1.2.3 TRACTION-STRESS RELATION 8 1.2.4 EQUILIBRIUM EQUATIONS 9 1.2.4.1
FORCE EQUILIBRIUM 9 1.2.4.2 MOMENT EQUILIBRIUM 11 1.2.5 STRESS
TRANSFORMATION 12 1.2.5.1 KRONECKER DELTA SYMBOL ( 5,Y) AND PERMUTATION
SYMBOL {E IJK ) 14 1.2.5.2 EXAMPLES OF THE APPLICATION OF 5 J; AND E IJK
14 1.2.6 DEFINITION OF TENSOR 15 1.2.7 PRINCIPAL STRESSES AND PRINCIPAL
PLANES 15 1.2.8 TRANSFORMATION OF DISPLACEMENT AND OTHER VECTORS 19
1.2.9 STRAIN TRANSFORMATION 20 1.2.10 DEFINITION OF ELASTIC MATERIAL AND
STRESS-STRAIN RELATION 20 1.2.11 NUMBER OF INDEPENDENT MATERIAL
CONSTANTS 24 1.2.12 MATERIAL PLANES OF SYMMETRY 25 1.2.12.1 ONE PLANE OF
SYMMETRY 25 1.2.12.2 TWO AND THREE PLANES OF SYMMETRY 26 1.2.12.3 THREE
PLANES OF SYMMETRY AND ONE AXIS OF SYMMETRY 27 1.2.12.4 THREE PLANES OF
SYMMETRY AND TWO OR THREE AXES OF SYMMETRY 28 1.2.13 STRESS-STRAIN
RELATION FOR ISOTROPIC MATERIALS* GREEN S APPROACH 30 1.2.13.1 HOOKE S
LAW IN TERMS OF YOUNG S MODULUS AND POISSON S RATIO 32 1.2.14 NAVIER S
EQUATION OF EQUILIBRIUM 33 1.2.15 FUNDAMENTAL EQUATIONS OF ELASTICITY IN
OTHER COORDINATE SYSTEMS 36 1.2.16 TIME-DEPENDENT PROBLEMS OR DYNAMIC
PROBLEMS 36 1.3 SOME CLASSICAL PROBLEMS IN ELASTICITY 36 1.3.1 IN-PLANE
AND OUT-OF-PLANE PROBLEMS 38 1.3.2 PLANE STRESS AND PLANE STRAIN
PROBLEMS 39 1.3.2.1 COMPATIBILITY EQUATIONS FOR PLANE STRESS PROBLEMS 41
1.3.2.2 COMPATIBILITY EQUATIONS FOR PLANE STRAIN PROBLEMS 42 1.3.3 AIRY
STRESS FUNCTION 42 1.3.4 SOME CLASSICAL ELASTICITY PROBLEMS IN TWO
DIMENSIONS 45 1.3.4.1 PLATE AND BEAM PROBLEMS 45 1.3.4.2 HALF-PLANE
PROBLEMS 51 1.3.4.3 CIRCULAR HOLE, DISK, AND CYLINDRICAL PRESSURE VESSEL
PROBLEMS 59 1.3.5 THICK WALL SPHERICAL PRESSURE VESSEL 72 1.4 CONCLUDING
REMARKS 75 REFERENCES 75 EXERCISE PROBLEMS 75 2 ELASTIC CRACK MODEL 85
2.1 INTRODUCTION 85 2.2 WILLIAMS METHOD TO COMPUTE THE STRESS FIELD
NEAR A CRACK TIP 85 2.2.1 SATISFACTION OF BOUNDARY CONDITIONS 88 2.2.2
ACCEPTABLE VALUES OF N AND X 90 2.2.3 DOMINANT TERM 92 2.2.4 STRAIN AND
DISPLACEMENT FIELDS 96 2.2.4.1 PLANE STRESS PROBLEMS 96 2.2.4.2 PLANE
STRAIN PROBLEMS 98 2.3 STRESS INTENSITY FACTOR AND FRACTURE TOUGHNESS
100 2.4 STRESS AND DISPLACEMENT FIELDS FOR ANTIPLANE PROBLEMS 101 2.5
DIFFERENT MODES OF FRACTURE 102 2.6 DIRECTION OF CRACK PROPAGATION 102
2.7 MIXED MODE FAILURE CURVE FOR IN-PLANE LOADING 105 2.8 STRESS
SINGULARITIES FOR OTHER WEDGE PROBLEMS 107 2.9 CONCLUDING REMARKS 107
REFERENCES 108 EXERCISE PROBLEMS 108 3 ENERGY BALANCE 113 3.1
INTRODUCTION 113 3.2 GRIFFITH S ENERGY BALANCE 113 3.3 ENERGY CRITERION
OF CRACK PROPAGATION FOR FIXED FORCE AND FIXED GRIP CONDITIONS 115 3.3.1
SOFT SPRING CASE 118 3.3.2 HARD SPRING CASE 119 3.3.3 GENERAL CASE 120
3.4 EXPERIMENTAL DETERMINATION OF G C 120 3.4.1 FIXED FORCE EXPERIMENT
122 3.4.2 FIXED GRIP EXPERIMENT 122 3.4.3 DETERMINATION OF G C FROM ONE
SPECIMEN 123 3.5 RELATION BETWEEN STRAIN ENERGY RELEASE RATE (G) AND
STRESS INTENSITY FACTOR (K) 123 3.6 DETERMINATION OF STRESS INTENSITY
FACTOR (K) FOR DIFFERENT PROBLEM GEOMETRIES 126 3.6.1 GRIFFITH CRACK 126
3.6.2 CIRCULAR OR PENNY-SHAPED CRACK 129 3.6.3 SEMI-INFINITE CRACK IN A
STRIP 130 3.6.4 STACK OF PARALLEL CRACKS IN AN INFINITE PLATE 131 3.6.5
STAR-SHAPED CRACKS 133 3.6.6 PRESSURIZED STAR CRACKS 135 3.6.7
LONGITUDINAL CRACKS IN CYLINDRICAL RODS 138 3.7 CONCLUDING REMARKS 141
REFERENCES 142 EXERCISE PROBLEMS 143 4 EFFECT OF PLASTICITY 147 4.1
INTRODUCTION 147 4.2 FIRST APPROXIMATION ON THE PLASTIC ZONE SIZE
ESTIMATION 147 4.2.1 EVALUATION OF R P 148 4.2.2 EVALUATION OF AR P 149
4.3 DETERMINATION OF THE PLASTIC ZONE SHAPE IN FRONT OF THE CRACK TIP
150 4.4 PLASTICITY CORRECTION FACTOR 155 4.5 FAILURE MODES UNDER PLANE
STRESS AND PLANE STRAIN CONDITIONS 157 4.5.1 PLANE STRESS CASE 157 4.5.2
PLANE STRAIN CASE 158 4.6 DUGDALE MODEL 159 4.7 CRACK TIP OPENING
DISPLACEMENT 161 4.8 EXPERIMENTAL DETERMINATION OF K C 164 4.8.1 COMPACT
TENSION SPECIMEN 164 4.8.1.1 STEP 1: CRACK FORMATION 165 4.8.1.2 STEP 2:
LOADING THE SPECIMEN 166 4.8.1.3 STEP 3: CHECKING CRACK GEOMETRY IN THE
FAILED SPECIMEN 166 4.8.1.4 STEP 4: COMPUTATION OF STRESS INTENSITY
FACTOR AT FAILURE 167 4.8.1.5 STEP 5: FINAL CHECK 168 4.8.2 THREE-POINT
BEND SPECIMEN 168 4.8.3 PRACTICAL EXAMPLES 170 4.8.3.1 7075 ALUMINUM 170
4.8.3.2 A533B REACTOR STEEL 170 4.9 CONCLUDING REMARKS 171 REFERENCES
172 EXERCISE PROBLEMS 172 5 J-INTEGRAL 175 5.1 INTRODUCTION 175 5.2
DERIVATION OF J-INTEGRAL 175 5.3 J-INTEGRAL OVER A CLOSED LOOP 178 5.4
PATH INDEPENDENCE OF J-INTEGRAL 180 5.5 J-INTEGRAL FOR DUGDALE MODEL 182
5.6 EXPERIMENTAL EVALUATION OF CRITICAL J-INTEGRAL VALUE, J C 183 5.7
CONCLUDING REMARKS 187 REFERENCES 188 EXERCISE PROBLEMS 188 6 FATIGUE
CRACK GROWTH 189 6.1 INTRODUCTION 189 6.2 FATIGUE ANALYSIS*MECHANICS OF
MATERIALS APPROACH 189 6.3 FATIGUE ANALYSIS*FRACTURE MECHANICS APPROACH
189 6.3.1 NUMERICAL EXAMPLE 193 6.4 FATIGUE ANALYSIS FOR MATERIALS
CONTAINING MICROCRACKS 193 6.5 CONCLUDING REMARKS 195 REFERENCES 195
EXERCISE PROBLEMS 195 7 STRESS INTENSITY FACTORS FOR SOME PRACTICAL
CRACK GEOMETRIES ; 197 7.1 INTRODUCTION 197 7.2 SLIT CRACK IN A STRIP
197 7.3 CRACK INTERSECTING A FREE SURFACE 199 7.4 STRIP WITH A CRACK ON
ITS ONE BOUNDARY 200 7.5 STRIP WITH TWO COLLINEAR IDENTICAL CRACKS ON
ITS TWO BOUNDARIES 201 7.6 TWO HALF PLANES CONNECTED OVER A FINITE
REGION FORMING TWO SEMI-INFINITE CRACKS IN A FULL SPACE 202 7.7 TWO
CRACKS RADIATING OUT FROM A CIRCULAR HOLE 203 7.8 TWO COLLINEAR FINITE
CRACKS IN AN INFINITE PLATE 204 7.9 CRACKS WITH TWO OPPOSING
CONCENTRATED FORCES ON THE SURFACE 206 7.10 PRESSURIZED CRACK 206 7.11
CRACK IN A WIDE STRIP WITH A CONCENTRATED FORCE AT ITS MIDPOINT AND A
FAR FIELD STRESS BALANCING THE CONCENTRATED FORCE 207 7.12 CIRCULAR OR
PENNY-SHAPED CRACK IN A FULL SPACE 209 7.13 ELLIPTICAL CRACK IN A FULL
SPACE 212 7.13.1 SPECIAL CASE 1*CIRCULAR CRACK 213 7.13.2 SPECIAL CASE
2*ELLIPTICAL CRACK WITH VERY LARGE MAJOR AXIS 214 7.13.3 SIF AT THE END
OF MAJOR AND MINOR AXES OF ELLIPTICAL CRACKS 214 7.14 PART-THROUGH
SURFACE CRACK 214 7.14.1 FIRST APPROXIMATION 215 7.14.2 FRONT FACE
CORRECTION FACTOR 215 7.14.3 PLASTICITY CORRECTION 215 7.14.4 BACK FACE
CORRECTION FACTOR 216 7.15 CORNER CRACKS 216 7.15.1 CORNER CRACKS WITH
ALMOST EQUAL DIMENSIONS 217 7.15.2 CORNER CRACKS AT TWO EDGES OF A
CIRCULAR HOLE 218 7.15.3 CORNER CRACK AT ONE EDGE OF A CIRCULAR HOLE 218
7.16 CONCLUDING REMARKS 219 REFERENCES 219 EXERCISE PROBLEMS 220 8
NUMERICAL ANALYSIS 221 8.1 INTRODUCTION 221 8.2 BOUNDARY COLLOCATION
TECHNIQUE 221 8.2.1 CIRCULAR PLATE WITH A RADIAL CRACK 223 8.2.2
RECTANGULAR CRACKED PLATE 223 8.3 CONVENTIONAL FINITE ELEMENT METHODS
224 8.3.1 STRESS AND DISPLACEMENT MATCHING 224 8.3.2 LOCAL STRAIN ENERGY
MATCHING 228 8.3.3 STRAIN ENERGY RELEASE RATE 229 8.3.4 J-INTEGRAL
METHOD 232 8.4 SPECIAL CRACK TIP FINITE ELEMENTS 233 8.5 QUARTER POINT
QUADRILATERAL FINITE ELEMENT 236 8.6 CONCLUDING REMARKS 239 REFERENCES
239 9 WESTERGAARD STRESS FUNCTION 241 9.1 INTRODUCTION 241 9.2
BACKGROUND KNOWLEDGE 241 9.3 GRIFFITH CRACK IN BIAXIAL STATE OF STRESS
242 9.3.1 STRESS AND DISPLACEMENT FIELDS IN TERMS OF WESTERGAARD STRESS
FUNCTION 243 9.3.2 WESTERGAARD STRESS FUNCTION FOR THE GRIFFITH CRACK
UNDER BIAXIAL STRESS FIELD 244 9.3.3 STRESS FIELD CLOSE TO A CRACK TIP
250 9.4 CONCENTRATED LOAD ON A HALF SPACE 252 9.5 GRIFFITH CRACK
SUBJECTED TO CONCENTRATED CRACK OPENING LOADS P 255 9.5.1 STRESS
INTENSITY FACTOR 256 9.6 GRIFFITH CRACK SUBJECTED TO NONUNIFORM INTERNAL
PRESSURE 257 9.7 INFINITE NUMBER OF EQUAL LENGTH, EQUALLY SPACED
COPLANAR CRACKS 258 9.8 CONCLUDING REMARKS 259 REFERENCES 259 EXERCISE
PROBLEMS 260 10 ADVANCED TOPICS 261 10.1 INTRODUCTION 261 10.2 STRESS
SINGULARITIES AT CRACK CORNERS 261 10.3 FRACTURE TOUGHNESS AND STRENGTH
OF BRITTLE MATRIX COMPOSITES 263 10.3.1 EXPERIMENTAL OBSERVATION OF
STRENGTH VARIATIONS OF FRBMCS WITH VARIOUS FIBER PARAMETERS 265 10.3.2
ANALYSIS FOR PREDICTING STRENGTH VARIATIONS OF FRBMCS WITH VARIOUS FIBER
PARAMETERS 267 10.3.2.1 EFFECT OF FIBER VOLUME FRACTION 268 10.3.2.2
EFFECT OF FIBER LENGTH 271 10.3.2.3 EFFECT OF FIBER DIAMETER 274 10.3.3
EFFECT ON STIFFNESS 276 10.3.4 EXPERIMENTAL OBSERVATION OF FRACTURE
TOUGHNESS INCREASE IN FRBMCS WITH FIBER ADDITION 276 10.4 DYNAMIC EFFECT
277 10.5 CONCLUDING REMARKS 278 REFERENCES 278 EXERCISE PROBLEMS 280
INDEX 283
|
adam_txt |
FUNDAMENTALS OF F RACTU RE MECHANICS TRIBIKRAM KUNDU LTFI) CRC PRESS V
J TAYLOR 8L FRANCIS GROUP BOCA RATON LONDON NEW YORK CRC PRESS IS AN
IMPRINT OF THE TAYLOR & FRANCIS GROUP, AN INFORMA BUSINESS CONTENTS 1
FUNDAMENTALS OF THE THEORY OF ELASTICITY 1 1.1 INTRODUCTION 1 1.2
FUNDAMENTALS OF CONTINUUM MECHANICS AND THE THEORY OF ELASTICITY 1 1.2.1
DEFORMATION AND STRAIN TENSOR 1 1.2.1.1 INTERPRETATION OF E J; - AND I;
FOR SMALL DISPLACEMENT GRADIENT 3 1.2.2 TRACTION AND STRESS TENSOR 6
1.2.3 TRACTION-STRESS RELATION 8 1.2.4 EQUILIBRIUM EQUATIONS 9 1.2.4.1
FORCE EQUILIBRIUM 9 1.2.4.2 MOMENT EQUILIBRIUM 11 1.2.5 STRESS
TRANSFORMATION 12 1.2.5.1 KRONECKER DELTA SYMBOL ( 5,Y) AND PERMUTATION
SYMBOL {E IJK ) 14 1.2.5.2 EXAMPLES OF THE APPLICATION OF 5 J; AND E IJK
14 1.2.6 DEFINITION OF TENSOR 15 1.2.7 PRINCIPAL STRESSES AND PRINCIPAL
PLANES 15 1.2.8 TRANSFORMATION OF DISPLACEMENT AND OTHER VECTORS 19
1.2.9 STRAIN TRANSFORMATION 20 1.2.10 DEFINITION OF ELASTIC MATERIAL AND
STRESS-STRAIN RELATION 20 1.2.11 NUMBER OF INDEPENDENT MATERIAL
CONSTANTS 24 1.2.12 MATERIAL PLANES OF SYMMETRY 25 1.2.12.1 ONE PLANE OF
SYMMETRY 25 1.2.12.2 TWO AND THREE PLANES OF SYMMETRY 26 1.2.12.3 THREE
PLANES OF SYMMETRY AND ONE AXIS OF SYMMETRY 27 1.2.12.4 THREE PLANES OF
SYMMETRY AND TWO OR THREE AXES OF SYMMETRY 28 1.2.13 STRESS-STRAIN
RELATION FOR ISOTROPIC MATERIALS* GREEN'S APPROACH 30 1.2.13.1 HOOKE'S
LAW IN TERMS OF YOUNG'S MODULUS AND POISSON'S RATIO 32 1.2.14 NAVIER'S
EQUATION OF EQUILIBRIUM 33 1.2.15 FUNDAMENTAL EQUATIONS OF ELASTICITY IN
OTHER COORDINATE SYSTEMS 36 1.2.16 TIME-DEPENDENT PROBLEMS OR DYNAMIC
PROBLEMS 36 1.3 SOME CLASSICAL PROBLEMS IN ELASTICITY 36 1.3.1 IN-PLANE
AND OUT-OF-PLANE PROBLEMS 38 1.3.2 PLANE STRESS AND PLANE STRAIN
PROBLEMS 39 1.3.2.1 COMPATIBILITY EQUATIONS FOR PLANE STRESS PROBLEMS 41
1.3.2.2 COMPATIBILITY EQUATIONS FOR PLANE STRAIN PROBLEMS 42 1.3.3 AIRY
STRESS FUNCTION 42 1.3.4 SOME CLASSICAL ELASTICITY PROBLEMS IN TWO
DIMENSIONS 45 1.3.4.1 PLATE AND BEAM PROBLEMS 45 1.3.4.2 HALF-PLANE
PROBLEMS 51 1.3.4.3 CIRCULAR HOLE, DISK, AND CYLINDRICAL PRESSURE VESSEL
PROBLEMS 59 1.3.5 THICK WALL SPHERICAL PRESSURE VESSEL 72 1.4 CONCLUDING
REMARKS 75 REFERENCES 75 EXERCISE PROBLEMS 75 2 ELASTIC CRACK MODEL 85
2.1 INTRODUCTION 85 2.2 WILLIAMS' METHOD TO COMPUTE THE STRESS FIELD
NEAR A CRACK TIP 85 2.2.1 SATISFACTION OF BOUNDARY CONDITIONS 88 2.2.2
ACCEPTABLE VALUES OF N AND X 90 2.2.3 DOMINANT TERM 92 2.2.4 STRAIN AND
DISPLACEMENT FIELDS 96 2.2.4.1 PLANE STRESS PROBLEMS 96 2.2.4.2 PLANE
STRAIN PROBLEMS 98 2.3 STRESS INTENSITY FACTOR AND FRACTURE TOUGHNESS
100 2.4 STRESS AND DISPLACEMENT FIELDS FOR ANTIPLANE PROBLEMS 101 2.5
DIFFERENT MODES OF FRACTURE 102 2.6 DIRECTION OF CRACK PROPAGATION 102
2.7 MIXED MODE FAILURE CURVE FOR IN-PLANE LOADING 105 2.8 STRESS
SINGULARITIES FOR OTHER WEDGE PROBLEMS 107 2.9 CONCLUDING REMARKS 107
REFERENCES 108 EXERCISE PROBLEMS 108 3 ENERGY BALANCE 113 3.1
INTRODUCTION 113 3.2 GRIFFITH'S ENERGY BALANCE 113 3.3 ENERGY CRITERION
OF CRACK PROPAGATION FOR FIXED FORCE AND FIXED GRIP CONDITIONS 115 3.3.1
SOFT SPRING CASE 118 3.3.2 HARD SPRING CASE 119 3.3.3 GENERAL CASE 120
3.4 EXPERIMENTAL DETERMINATION OF G C 120 3.4.1 FIXED FORCE EXPERIMENT
122 3.4.2 FIXED GRIP EXPERIMENT 122 3.4.3 DETERMINATION OF G C FROM ONE
SPECIMEN 123 3.5 RELATION BETWEEN STRAIN ENERGY RELEASE RATE (G) AND
STRESS INTENSITY FACTOR (K) 123 3.6 DETERMINATION OF STRESS INTENSITY
FACTOR (K) FOR DIFFERENT PROBLEM GEOMETRIES 126 3.6.1 GRIFFITH CRACK 126
3.6.2 CIRCULAR OR PENNY-SHAPED CRACK 129 3.6.3 SEMI-INFINITE CRACK IN A
STRIP 130 3.6.4 STACK OF PARALLEL CRACKS IN AN INFINITE PLATE 131 3.6.5
STAR-SHAPED CRACKS 133 3.6.6 PRESSURIZED STAR CRACKS 135 3.6.7
LONGITUDINAL CRACKS IN CYLINDRICAL RODS 138 3.7 CONCLUDING REMARKS 141
REFERENCES 142 EXERCISE PROBLEMS 143 4 EFFECT OF PLASTICITY 147 4.1
INTRODUCTION 147 4.2 FIRST APPROXIMATION ON THE PLASTIC ZONE SIZE
ESTIMATION 147 4.2.1 EVALUATION OF R P 148 4.2.2 EVALUATION OF AR P 149
4.3 DETERMINATION OF THE PLASTIC ZONE SHAPE IN FRONT OF THE CRACK TIP
150 4.4 PLASTICITY CORRECTION FACTOR 155 4.5 FAILURE MODES UNDER PLANE
STRESS AND PLANE STRAIN CONDITIONS 157 4.5.1 PLANE STRESS CASE 157 4.5.2
PLANE STRAIN CASE 158 4.6 DUGDALE MODEL 159 4.7 CRACK TIP OPENING
DISPLACEMENT 161 4.8 EXPERIMENTAL DETERMINATION OF K C 164 4.8.1 COMPACT
TENSION SPECIMEN 164 4.8.1.1 STEP 1: CRACK FORMATION 165 4.8.1.2 STEP 2:
LOADING THE SPECIMEN 166 4.8.1.3 STEP 3: CHECKING CRACK GEOMETRY IN THE
FAILED SPECIMEN 166 4.8.1.4 STEP 4: COMPUTATION OF STRESS INTENSITY
FACTOR AT FAILURE 167 4.8.1.5 STEP 5: FINAL CHECK 168 4.8.2 THREE-POINT
BEND SPECIMEN 168 4.8.3 PRACTICAL EXAMPLES 170 4.8.3.1 7075 ALUMINUM 170
4.8.3.2 A533B REACTOR STEEL 170 4.9 CONCLUDING REMARKS 171 REFERENCES
172 EXERCISE PROBLEMS 172 5 J-INTEGRAL 175 5.1 INTRODUCTION 175 5.2
DERIVATION OF J-INTEGRAL 175 5.3 J-INTEGRAL OVER A CLOSED LOOP 178 5.4
PATH INDEPENDENCE OF J-INTEGRAL 180 5.5 J-INTEGRAL FOR DUGDALE MODEL 182
5.6 EXPERIMENTAL EVALUATION OF CRITICAL J-INTEGRAL VALUE, J C 183 5.7
CONCLUDING REMARKS 187 REFERENCES 188 EXERCISE PROBLEMS 188 6 FATIGUE
CRACK GROWTH 189 6.1 INTRODUCTION 189 6.2 FATIGUE ANALYSIS*MECHANICS OF
MATERIALS APPROACH 189 6.3 FATIGUE ANALYSIS*FRACTURE MECHANICS APPROACH
189 6.3.1 NUMERICAL EXAMPLE 193 6.4 FATIGUE ANALYSIS FOR MATERIALS
CONTAINING MICROCRACKS 193 6.5 CONCLUDING REMARKS 195 REFERENCES 195
EXERCISE PROBLEMS 195 7 STRESS INTENSITY FACTORS FOR SOME PRACTICAL
CRACK GEOMETRIES ; 197 7.1 INTRODUCTION 197 7.2 SLIT CRACK IN A STRIP
197 7.3 CRACK INTERSECTING A FREE SURFACE 199 7.4 STRIP WITH A CRACK ON
ITS ONE BOUNDARY 200 7.5 STRIP WITH TWO COLLINEAR IDENTICAL CRACKS ON
ITS TWO BOUNDARIES 201 7.6 TWO HALF PLANES CONNECTED OVER A FINITE
REGION FORMING TWO SEMI-INFINITE CRACKS IN A FULL SPACE 202 7.7 TWO
CRACKS RADIATING OUT FROM A CIRCULAR HOLE 203 7.8 TWO COLLINEAR FINITE
CRACKS IN AN INFINITE PLATE 204 7.9 CRACKS WITH TWO OPPOSING
CONCENTRATED FORCES ON THE SURFACE 206 7.10 PRESSURIZED CRACK 206 7.11
CRACK IN A WIDE STRIP WITH A CONCENTRATED FORCE AT ITS MIDPOINT AND A
FAR FIELD STRESS BALANCING THE CONCENTRATED FORCE 207 7.12 CIRCULAR OR
PENNY-SHAPED CRACK IN A FULL SPACE 209 7.13 ELLIPTICAL CRACK IN A FULL
SPACE 212 7.13.1 SPECIAL CASE 1*CIRCULAR CRACK 213 7.13.2 SPECIAL CASE
2*ELLIPTICAL CRACK WITH VERY LARGE MAJOR AXIS 214 7.13.3 SIF AT THE END
OF MAJOR AND MINOR AXES OF ELLIPTICAL CRACKS 214 7.14 PART-THROUGH
SURFACE CRACK 214 7.14.1 FIRST APPROXIMATION 215 7.14.2 FRONT FACE
CORRECTION FACTOR 215 7.14.3 PLASTICITY CORRECTION 215 7.14.4 BACK FACE
CORRECTION FACTOR 216 7.15 CORNER CRACKS 216 7.15.1 CORNER CRACKS WITH
ALMOST EQUAL DIMENSIONS 217 7.15.2 CORNER CRACKS AT TWO EDGES OF A
CIRCULAR HOLE 218 7.15.3 CORNER CRACK AT ONE EDGE OF A CIRCULAR HOLE 218
7.16 CONCLUDING REMARKS 219 REFERENCES 219 EXERCISE PROBLEMS 220 8
NUMERICAL ANALYSIS 221 8.1 INTRODUCTION 221 8.2 BOUNDARY COLLOCATION
TECHNIQUE 221 8.2.1 CIRCULAR PLATE WITH A RADIAL CRACK 223 8.2.2
RECTANGULAR CRACKED PLATE 223 8.3 CONVENTIONAL FINITE ELEMENT METHODS
224 8.3.1 STRESS AND DISPLACEMENT MATCHING 224 8.3.2 LOCAL STRAIN ENERGY
MATCHING 228 8.3.3 STRAIN ENERGY RELEASE RATE 229 8.3.4 J-INTEGRAL
METHOD 232 8.4 SPECIAL CRACK TIP FINITE ELEMENTS 233 8.5 QUARTER POINT
QUADRILATERAL FINITE ELEMENT 236 8.6 CONCLUDING REMARKS 239 REFERENCES
239 9 WESTERGAARD STRESS FUNCTION 241 9.1 INTRODUCTION 241 9.2
BACKGROUND KNOWLEDGE 241 9.3 GRIFFITH CRACK IN BIAXIAL STATE OF STRESS
242 9.3.1 STRESS AND DISPLACEMENT FIELDS IN TERMS OF WESTERGAARD STRESS
FUNCTION 243 9.3.2 WESTERGAARD STRESS FUNCTION FOR THE GRIFFITH CRACK
UNDER BIAXIAL STRESS FIELD 244 9.3.3 STRESS FIELD CLOSE TO A CRACK TIP
250 9.4 CONCENTRATED LOAD ON A HALF SPACE 252 9.5 GRIFFITH CRACK
SUBJECTED TO CONCENTRATED CRACK OPENING LOADS P 255 9.5.1 STRESS
INTENSITY FACTOR 256 9.6 GRIFFITH CRACK SUBJECTED TO NONUNIFORM INTERNAL
PRESSURE 257 9.7 INFINITE NUMBER OF EQUAL LENGTH, EQUALLY SPACED
COPLANAR CRACKS 258 9.8 CONCLUDING REMARKS 259 REFERENCES 259 EXERCISE
PROBLEMS 260 10 ADVANCED TOPICS 261 10.1 INTRODUCTION 261 10.2 STRESS
SINGULARITIES AT CRACK CORNERS 261 10.3 FRACTURE TOUGHNESS AND STRENGTH
OF BRITTLE MATRIX COMPOSITES 263 10.3.1 EXPERIMENTAL OBSERVATION OF
STRENGTH VARIATIONS OF FRBMCS WITH VARIOUS FIBER PARAMETERS 265 10.3.2
ANALYSIS FOR PREDICTING STRENGTH VARIATIONS OF FRBMCS WITH VARIOUS FIBER
PARAMETERS 267 10.3.2.1 EFFECT OF FIBER VOLUME FRACTION 268 10.3.2.2
EFFECT OF FIBER LENGTH 271 10.3.2.3 EFFECT OF FIBER DIAMETER 274 10.3.3
EFFECT ON STIFFNESS 276 10.3.4 EXPERIMENTAL OBSERVATION OF FRACTURE
TOUGHNESS INCREASE IN FRBMCS WITH FIBER ADDITION 276 10.4 DYNAMIC EFFECT
277 10.5 CONCLUDING REMARKS 278 REFERENCES 278 EXERCISE PROBLEMS 280
INDEX 283 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kundu, Tribikram |
author_facet | Kundu, Tribikram |
author_role | aut |
author_sort | Kundu, Tribikram |
author_variant | t k tk |
building | Verbundindex |
bvnumber | BV023174894 |
callnumber-first | T - Technology |
callnumber-label | TA409 |
callnumber-raw | TA409 |
callnumber-search | TA409 |
callnumber-sort | TA 3409 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 3150 |
ctrlnum | (OCoLC)173480461 (DE-599)GBV545978718 |
dewey-full | 620.1/126 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/126 |
dewey-search | 620.1/126 |
dewey-sort | 3620.1 3126 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02008nam a2200409zc 4500</leader><controlfield tag="001">BV023174894</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090519 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080220s2008 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007038845</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780849384325</subfield><subfield code="c">geb.</subfield><subfield code="9">978-0-8493-8432-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)173480461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV545978718</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA409</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/126</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 3150</subfield><subfield code="0">(DE-625)145572:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kundu, Tribikram</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of fracture mechanics</subfield><subfield code="c">Tribikram Kundu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">286 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Designed as an introduction for engineering students, Fundamentals of Fracture Mechanics provides a concise, yet thorough and progressive exploration of those elementary principles at the core of this discipline. Drawing on over 20 years of teaching experience, Tribikram Kundu begins with a review of the fundamentals of continuum mechanics and the theory of elasticity relevant to fracture mechanics. He then proceeds to examine a range of basic topics most relevant to practical application, reinforced by a wealth of practice exercises."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fracture mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.ulb.tu-darmstadt.de/tocs/202531902.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016361509&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016361509</subfield></datafield></record></collection> |
id | DE-604.BV023174894 |
illustrated | Illustrated |
index_date | 2024-07-02T19:59:23Z |
indexdate | 2024-07-09T21:12:18Z |
institution | BVB |
isbn | 9780849384325 |
language | English |
lccn | 2007038845 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016361509 |
oclc_num | 173480461 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 286 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | CRC Press |
record_format | marc |
spelling | Kundu, Tribikram Verfasser aut Fundamentals of fracture mechanics Tribikram Kundu Boca Raton, Fla. [u.a.] CRC Press 2008 286 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index "Designed as an introduction for engineering students, Fundamentals of Fracture Mechanics provides a concise, yet thorough and progressive exploration of those elementary principles at the core of this discipline. Drawing on over 20 years of teaching experience, Tribikram Kundu begins with a review of the fundamentals of continuum mechanics and the theory of elasticity relevant to fracture mechanics. He then proceeds to examine a range of basic topics most relevant to practical application, reinforced by a wealth of practice exercises."--BOOK JACKET. Fracture mechanics Bruchmechanik (DE-588)4112837-0 gnd rswk-swf Bruchmechanik (DE-588)4112837-0 s DE-604 http://www.ulb.tu-darmstadt.de/tocs/202531902.pdf Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016361509&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kundu, Tribikram Fundamentals of fracture mechanics Fracture mechanics Bruchmechanik (DE-588)4112837-0 gnd |
subject_GND | (DE-588)4112837-0 |
title | Fundamentals of fracture mechanics |
title_auth | Fundamentals of fracture mechanics |
title_exact_search | Fundamentals of fracture mechanics |
title_exact_search_txtP | Fundamentals of fracture mechanics |
title_full | Fundamentals of fracture mechanics Tribikram Kundu |
title_fullStr | Fundamentals of fracture mechanics Tribikram Kundu |
title_full_unstemmed | Fundamentals of fracture mechanics Tribikram Kundu |
title_short | Fundamentals of fracture mechanics |
title_sort | fundamentals of fracture mechanics |
topic | Fracture mechanics Bruchmechanik (DE-588)4112837-0 gnd |
topic_facet | Fracture mechanics Bruchmechanik |
url | http://www.ulb.tu-darmstadt.de/tocs/202531902.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016361509&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kundutribikram fundamentalsoffracturemechanics |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis