Numerical methods in scientific computing: 1
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Philadelphia
SIAM, Society for Industrial and Applied Mathematics
(2008)
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Beschreibung für Leser Inhaltsverzeichnis |
Beschreibung: | XXVII, 717 S. graph. Darst. |
ISBN: | 9780898716443 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV023170001 | ||
003 | DE-604 | ||
005 | 20210607 | ||
007 | t | ||
008 | 080218s2008 d||| |||| 00||| eng d | ||
020 | |a 9780898716443 |9 978-0-898716-44-3 | ||
035 | |a (OCoLC)315886014 | ||
035 | |a (DE-599)BVBBV023170001 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-706 |a DE-355 |a DE-703 |a DE-384 |a DE-29T |a DE-91G |a DE-634 |a DE-11 |a DE-188 |a DE-83 | ||
050 | 0 | |a QA297 | |
084 | |a SK 900 |0 (DE-625)143268: |2 rvk | ||
100 | 1 | |a Dahlquist, Germund |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical methods in scientific computing |n 1 |c Germund Dahlquist ; Åke Björck |
264 | 1 | |a Philadelphia |b SIAM, Society for Industrial and Applied Mathematics |c (2008) | |
300 | |a XXVII, 717 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissenschaftliches Rechnen |0 (DE-588)4338507-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | 1 | |a Wissenschaftliches Rechnen |0 (DE-588)4338507-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Björck, Åke |d 1934- |e Verfasser |0 (DE-588)108090132 |4 aut | |
773 | 0 | 8 | |w (DE-604)BV023169995 |g 1 |
856 | 4 | |u http://catdir.loc.gov/catdir/enhancements/fy0834/2007061806-t.html |3 Inhaltsverzeichnis | |
856 | 4 | |u http://catdir.loc.gov/catdir/enhancements/fy0834/2007061806-d.html |3 Beschreibung für Leser | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016356676&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016356676 |
Datensatz im Suchindex
_version_ | 1804137431638736896 |
---|---|
adam_text | Contents
List of Figures
xv
List of Tables
xix
List of Conventions
xxi
Preface
xxiii
1
Principles of Numerical Calculations
1
1.1
Common Ideas and Concepts
....................... 1
1.1.1
Fixed-Point Iteration
........................ 2
1.1.2
Newton s Method
.......................... 5
1.1.3
Linearization and Extrapolation
.................. 9
1.1.4
Finite Difference Approximations
................. 11
Review Questions
............................... 15
Problems and Computer Exercises
....................... 15
1.2
Some Numerical Algorithms
....................... 16
1.2.1
Solving a Quadratic Equation
.................... 16
1.2.2
Recurrence Relations
........................ 17
1.2.3
Divide and Conquer Strategy
.................... 20
1.2.4
Power Series Expansions
...................... 22
Review Questions
............................... 23
Problems and Computer Exercises
....................... 23
1.3
Matrix Computations
........................... 26
1.3.1
Matrix Multiplication
........................ 26
1.3.2
Solving Linear Systems by
LU
Factorization
............ 28
1.3.3
Sparse Matrices and Iterative Methods
............... 38
1.3.4
Software for Matrix Computations
................. 41
Review Questions
............................... 43
Problems and Computer Exercises
....................... 43
1.4
The Linear Least Squares Problem
.................... 44
1.4.1
Basic Concepts in Probability and Statistics
............ 45
1.4.2
Characterization of Least Squares Solutions
............ 46
1.4.3
The Singular Value Decomposition
................. 50
1.4.4
The Numerical Rank of a Matrix
.................. 52
Review Questions
............................... 54
vii
viii Contents
Problems and Computer
Exercises
....................... 54
1.5
Numerical Solution of
Differential
Equations
............... 55
1.5.1
Euler s Method
........................... 55
1.5.2
An Introductory Example
...................... 56
1.5.3
Second Order Accurate Methods
.................. 59
1.5.4
Adaptive Choice of Step Size
.................... 61
Review Questions
............................... 63
Problems and Computer Exercises
....................... 63
1.6
Monte Carlo Methods
........................... 64
1.6.1
Origin of Monte Carlo Methods
.................. 64
1.6.2
Generating and Testing Pseudorandom Numbers
.......... 66
1.6.3
Random Deviates for Other Distributions
............. 73
1.6.4
Reduction of Variance
........................ 77
Review Questions
............................... 81
Problems and Computer Exercises
....................... 82
Notes and References
.............................. 83
How to Obtain and Estimate Accuracy
87
2.1
Basic Concepts in Error Estimation
.................... 87
2.1.1
Sources of Error
........................... 87
2.1.2
Absolute and Relative Errors
.................... 90
2.1.3
Rounding and Chopping
...................... 91
Review Questions
............................... 93
2.2
Computer Number Systems
........................ 93
2.2.1
The Position System
........................ 93
2.2.2
Fixed-and
Floating-Point
Representation
............. 95
2.2.3
IEEE
Floating-Point
Standard
................... 99
2.2.4
Elementary Functions
........................ 102
2.2.5
Multiple Precision Arithmetic
................... 104
Review Questions
............................... 105
Problems and Computer Exercises
....................... 105
2.3
Accuracy and Rounding Errors
...................... 107
2.3.1 Floating-Point
Arithmetic
...................... 107
2.3.2
Basic Rounding Error Results
................... 113
2.3.3
Statistical Models for Rounding Errors
............... 116
2.3.4
Avoiding Overflow and Cancellation
................ 118
Review Questions
............................... 122
Problems and Computer Exercises
....................... 122
2.4
Error Propagation
............................. 126
2.4.1
Numerical Problems, Methods, and Algorithms
.......... 126
2.4.2
Propagation of Errors and Condition Numbers
........... 127
2.4.3
Perturbation Analysis for Linear Systems
............. 134
2.4.4
Error Analysis and Stability of Algorithms
............. 137
Review Questions
............................... 142
Problems and Computer Exercises
....................... 142
Contents ix
2.5 Automatic
Control of Accuracy and Verified Computing
......... 145
2.5.1
Running Error Analysis
....................... 145
2.5.2
Experimental Perturbations
..................... 146
2.5.3
Interval Arithmetic
......................... 147
2.5.4
Range of Functions
......................... 150
2.5.5
Interval Matrix Computations
................... 153
Review Questions
............................... 154
Problems and Computer Exercises
....................... 155
Notes and References
.............................. 155
3
Series, Operators, and Continued Fractions
157
3.1
Some Basic Facts about Series
...................... 157
3.1.1
Introduction
............................. 157
3.1.2
Taylor s Formula and Power Series
................. 162
3.1.3
Analytic Continuation
........................ 171
3.1.4
Manipulating Power Series
..................... 173
3.1.5
Formal Power Series
........................ 181
Review Questions
............................... 184
Problems and Computer Exercises
....................... 185
3.2
More about Series
............................. 191
3.2.1
Laurent and Fourier Series
..................... 191
3.2.2
The Cauchy-FFT Method
...................... 193
3.2.3
Chebyshev Expansions
....................... 198
3.2.4
Perturbation Expansions
...................... 203
3.2.5
Ill-Conditioned Series
........................ 206
3.2.6
Divergent or Semiconvergent Series
................ 212
Review Questions
............................... 215
Problems and Computer Exercises
....................... 215
3.3
Difference Operators and Operator Expansions
.............. 220
3.3.1
Properties of Difference Operators
................. 220
3.3.2
The Calculus of Operators
..................... 225
3.3.3
The Peano Theorem
......................... 237
3.3.4
Approximation Formulas by Operator Methods
.......... 242
3.3.5
Single Linear Difference Equations
................. 251
Review Questions
............................... 261
Problems and Computer Exercises
....................... 261
3.4
Acceleration of Convergence
....................... 271
3.4.1
Introduction
............................. 271
3.4.2
Comparison Series and Aitken Acceleration
............ 272
3.4.3
Euler s Transformation
....................... 278
3.4.4
Complete Monotonicity and Related Concepts
........... 284
3.4.5
Euler-Maclaurin s Formula
..................... 292
3.4.6
Repeated Richardson Extrapolation
................ 302
Review Questions
............................... 309
Problems and Computer Exercises
....................... 309
Contents
3.5
Continued Fractions and
Padé Approximants
............... 321
3.5.1
Algebraic Continued Fractions
................... 321
3.5.2
Analytic Continued Fractions
.................... 326
3.5.3
The
Padé
Table
........................... 329
3.5.4
The
Epsilon
Algorithm
....................... 336
3.5.5
The qdAlgorithm
.......................... 339
Review Questions
............................... 345
Problems and Computer Exercises
....................... 345
Notes and References
.............................. 348
4
Interpolation and Approximation
351
4.1
The Interpolation Problem
......................... 351
4.1.1
Introduction
............................. 351
4.1.2
Bases for Polynomial Interpolation
................. 352
4.1.3
Conditioning of Polynomial Interpolation
............. 355
Review Questions
............................... 357
Problems and Computer Exercises
....................... 357
4.2
Interpolation Formulas and Algorithms
.................. 358
4.2.1
Newton s Interpolation Formula
.................. 358
4.2.2
Inverse Interpolation
........................ 366
4.2.3
Barycentric
Lagrange
Interpolation
................. 367
4.2.4
Iterative Linear Interpolation
.................... 371
4.2.5
Fast Algorithms for Vandermonde Systems
............ 373
4.2.6
The
Runge
Phenomenon
...................... 377
Review Questions
............................... 380
Problems and Computer Exercises
....................... 380
4.3
Generalizations and Applications
..................... 381
4.3.1
Hermite Interpolation
........................ 381
4.3.2
Complex Analysis in Polynomial Interpolation
........... 385
4.3.3
Rational Interpolation
........................ 389
4.3.4
Multidimensional Interpolation
................... 395
4.3.5
Analysis of a Generalized
Runge
Phenomenon
........... 398
Review Questions
............................... 407
Problems and Computer Exercises
....................... 407
4.4
Piecewise Polynomial Interpolation
.................... 410
4.4.1
Bernstein Polynomials and
Bézier
Curves
............. 411
4.4.2
Spline Functions
.......................... 417
4.4.3
The B-Spline Basis
......................... 426
4.4.4
Least Squares Splines Approximation
............... 434
Review Questions
............................... 436
Problems and Computer Exercises
....................... 437
4.5
Approximation and Function Spaces
................... 439
4.5.1
Distance and Norm
......................... 440
4.5.2
Operator Norms and the Distance Formula
............. 444
4.5.3
Inner Product Spaces and Orthogonal Systems
........... 450
Contents
x¡
4.5.4
Solution of the
Approximation Problem.............. 454
4.5.5
Mathematical Properties of Orthogonal Polynomials
....... 457
4.5.6
Expansions in Orthogonal Polynomials
.............. 466
4.5.7
Approximation in the Maximum Norm
............... 471
Review Questions
............................... 478
Problems and Computer Exercises
....................... 479
4.6
Fourier Methods
.............................. 482
4.6.1
Basic Formulas and Theorems
................... 483
4.6.2
Discrete Fourier Analysis
...................... 487
4.6.3
Periodic Continuation of a Function
................ 491
4.6.4
Convergence Acceleration of Fourier Series
............ 492
4.6.5
The Fourier Integral Theorem
................... 494
4.6.6
Sampled Data and Aliasing
..................... 497
Review Questions
............................... 500
Problems and Computer Exercises
....................... 500
4.7
The Fast Fourier Transform
........................ 503
4.7.1
The FFT Algorithm
......................... 503
4.7.2
Discrete Convolution by FFT
.................... 509
4.7.3
FFTs of Real Data
.......................... 510
4.7.4
Fast Trigonometric Transforms
................... 512
4.7.5
The General Case FFT
....................... 515
Review Questions
............................... 516
Problems and Computer Exercises
....................... 517
Notes and References
.............................. 518
Numerical Integration
521
5.1
Interpolatory
Quadrature Rules
...................... 521
5.1.1
Introduction
............................. 521
5.1.2
Treating Singularities
........................ 525
5.1.3
Some Classical Formulas
...................... 527
5.1.4
Supercon
vergence
of the Trapezoidal Rule
............. 531
5.1.5
Higher-Order Newton-Cotes Formulas
.............. 533
5.1.6
Fejér
and Clensnaw-Curtis Rules
.................. 538
Review Questions
............................... 542
Problems and Computer Exercises
....................... 542
5.2
Integration by Extrapolation
........................ 546
5.2.1
The Euler-Maclaurin Formula
................... 546
5.2.2
Romberg s Method
......................... 548
5.2.3
Oscillating Integrands
........................ 554
5.2.4
Adaptive Quadrature
........................ 560
Review Questions
............................... 564
Problems and Computer Exercises
....................... 564
5.3
Quadrature Rules with Free Nodes
.................... 565
5.3.1
Method of Undetermined Coefficients
............... 565
5.3.2
Gauss-Christoffel Quadrature Rules
................ 568
xii Contents
5.3.3
Gauss Quadrature
with Preassigned Nodes
............. 573
5.3.4
Matrices, Moments, and Gauss Quadrature
............. 576
5.3.5
Jacobi Matrices and Gauss Quadrature
............... 580
Review Questions
............................... 585
Problems and Computer Exercises
....................... 585
5.4
Multidimensional Integration
....................... 587
5.4.1
Analytic Techniques
......................... 588
5.4.2
Repeated One-Dimensional Integration
.............. 589
5.4.3
ProductRules
............................ 590
5.4.4
Irregular Triangular Grids
...................... 594
5.4.5
Monte Carlo Methods
........................ 599
5.4.6
Quasi-Monte
Carlo and Lattice Methods
.............. 601
Review Questions
............................... 604
Problems and Computer Exercises
....................... 605
Notes and References
.............................. 606
Solving Scalar Nonlinear Equations
609
6.1
Some Basic Concepts and Methods
.................... 609
6.1.1
Introduction
............................. 609
6.1.2
The Bisection Method
....................... 610
6.1.3
Limiting Accuracy and Termination Criteria
............ 614
6.1.4
Fixed-Point Iteration
........................ 618
6.1.5
Convergence Order and Efficiency
................. 621
Review Questions
............................... 624
Problems and Computer Exercises
....................... 624
6.2
Methods Based on Interpolation
...................... 626
6.2.1
Method of False Position
...................... 626
6.2.2
The Secant Method
......................... 628
6.2.3
Higher-Order Interpolation Methods
................ 631
6.2.4
A Robust Hybrid Method
...................... 634
Review Questions
............................... 635
Problems and Computer Exercises
....................... 636
6.3
Methods Using Derivatives
........................ 637
6.3.1
Newton s Method
.......................... 637
6.3.2
Newton s Method for Complex Roots
............... 644
6.3.3
An Interval Newton Method
.................... 646
6.3.4
Higher-Order Methods
....................... 647
Review Questions
............................... 652
Problems and Computer Exercises
....................... 653
6.4
Finding a Minimum of a Function
..................... 656
6.4.1
Introduction
............................. 656
6.4.2
Unimodal Functions and Golden Section Search
.......... 657
6.4.3
Minimization by Interpolation
................... 660
Review Questions
............................... 661
Problems and Computer Exercises
....................... 661
Contents
x¡¡¡
6.5
Algebraic
Equations
............................ 662
6.5.1
Some Elementary Results
...................... 662
6.5.2
Ill-Conditioned Algebraic Equations
................ 665
6.5.3
Three Classical Methods
...................... 668
6.5.4
Deflation and Simultaneous Determination of Roots
........ 671
6.5.5
A Modified Newton Method
.................... 675
6.5.6
Sturm Sequences
.......................... 677
6.5.7
Finding Greatest Common Divisors
................ 680
Review Questions
............................... 682
Problems and Computer Exercises
....................... 683
Notes and References
.............................. 685
Bibliography
687
Index
707
A Online Appendix: Introduction to Matrix Computations A-l
A.I Vectors and Matrices
............................
A-l
A.
1.1
Linear Vector Spaces
........................
A-l
A.
1.2
Matrix and Vector Algebra
.....................
A-3
A.1.3 Rank and Linear Systems
......................
A-5
A.
1.4
Special Matrices
..........................
A-6
A.2
Submatrices
and Block Matrices
.....................
A-8
A.2.1 Block Gaussian Elimination
....................
A-10
A.3 Permutations and Determinants
......................
A-12
A.4 Eigenvalues and Norms of Matrices
....................
A-16
A.4.1 The Characteristic Equation
....................
A-16
A.4.2 The
Schur
and Jordan Normal Forms
................
A-17
A.4.3 Norms of Vectors and Matrices
...................
A-18
Review Questions
...............................
A-21
Problems
....................................
A-22
В
Online Appendix:
A
MATLAB
Multiple Precision Package B-l
B.I The Mulprec Package
...........................
B-l
B.I.I Number Representation
.......................
B-l
B.1.2 The Mulprec Function Library
...................
B-3
B.1.3 Basic Arithmetic Operations
....................
B-3
B.1.4 Special Mulprec Operations
....................
B-4
B.2 Function and Vector Algorithms
......................
B-4
B.2.1 Elementary Functions
........................
B-4
B.2.2 Mulprec Vector Algorithms
.....................
B-5
B.2.3 Miscellaneous
............................
B-6
B.2.4 Using Mulprec
...........................
B-6
Computer Exercises
..............................
B-6
xiv Contents
С
Online Appendix: Guide
to Literature
C-I
Cl Introduction
................................
C-l
C.2
Textbooks in Numerical Analysis
.....................
С
-l
С.З
Handbooks and Collections
........................
C-5
C.4 Encyclopedias, Tables, and Formulas
...................
C-6
C.5 Selected Journals
.............................
C-8
C.6 Algorithms and Software
.........................
C-9
C.7 Public Domain Software
..........................
C-10
|
adam_txt |
Contents
List of Figures
xv
List of Tables
xix
List of Conventions
xxi
Preface
xxiii
1
Principles of Numerical Calculations
1
1.1
Common Ideas and Concepts
. 1
1.1.1
Fixed-Point Iteration
. 2
1.1.2
Newton's Method
. 5
1.1.3
Linearization and Extrapolation
. 9
1.1.4
Finite Difference Approximations
. 11
Review Questions
. 15
Problems and Computer Exercises
. 15
1.2
Some Numerical Algorithms
. 16
1.2.1
Solving a Quadratic Equation
. 16
1.2.2
Recurrence Relations
. 17
1.2.3
Divide and Conquer Strategy
. 20
1.2.4
Power Series Expansions
. 22
Review Questions
. 23
Problems and Computer Exercises
. 23
1.3
Matrix Computations
. 26
1.3.1
Matrix Multiplication
. 26
1.3.2
Solving Linear Systems by
LU
Factorization
. 28
1.3.3
Sparse Matrices and Iterative Methods
. 38
1.3.4
Software for Matrix Computations
. 41
Review Questions
. 43
Problems and Computer Exercises
. 43
1.4
The Linear Least Squares Problem
. 44
1.4.1
Basic Concepts in Probability and Statistics
. 45
1.4.2
Characterization of Least Squares Solutions
. 46
1.4.3
The Singular Value Decomposition
. 50
1.4.4
The Numerical Rank of a Matrix
. 52
Review Questions
. 54
vii
viii Contents
Problems and Computer
Exercises
. 54
1.5
Numerical Solution of
Differential
Equations
. 55
1.5.1
Euler's Method
. 55
1.5.2
An Introductory Example
. 56
1.5.3
Second Order Accurate Methods
. 59
1.5.4
Adaptive Choice of Step Size
. 61
Review Questions
. 63
Problems and Computer Exercises
. 63
1.6
Monte Carlo Methods
. 64
1.6.1
Origin of Monte Carlo Methods
. 64
1.6.2
Generating and Testing Pseudorandom Numbers
. 66
1.6.3
Random Deviates for Other Distributions
. 73
1.6.4
Reduction of Variance
. 77
Review Questions
. 81
Problems and Computer Exercises
. 82
Notes and References
. 83
How to Obtain and Estimate Accuracy
87
2.1
Basic Concepts in Error Estimation
. 87
2.1.1
Sources of Error
. 87
2.1.2
Absolute and Relative Errors
. 90
2.1.3
Rounding and Chopping
. 91
Review Questions
. 93
2.2
Computer Number Systems
. 93
2.2.1
The Position System
. 93
2.2.2
Fixed-and
Floating-Point
Representation
. 95
2.2.3
IEEE
Floating-Point
Standard
. 99
2.2.4
Elementary Functions
. 102
2.2.5
Multiple Precision Arithmetic
. 104
Review Questions
. 105
Problems and Computer Exercises
. 105
2.3
Accuracy and Rounding Errors
. 107
2.3.1 Floating-Point
Arithmetic
. 107
2.3.2
Basic Rounding Error Results
. 113
2.3.3
Statistical Models for Rounding Errors
. 116
2.3.4
Avoiding Overflow and Cancellation
. 118
Review Questions
. 122
Problems and Computer Exercises
. 122
2.4
Error Propagation
. 126
2.4.1
Numerical Problems, Methods, and Algorithms
. 126
2.4.2
Propagation of Errors and Condition Numbers
. 127
2.4.3
Perturbation Analysis for Linear Systems
. 134
2.4.4
Error Analysis and Stability of Algorithms
. 137
Review Questions
. 142
Problems and Computer Exercises
. 142
Contents ix
2.5 Automatic
Control of Accuracy and Verified Computing
. 145
2.5.1
Running Error Analysis
. 145
2.5.2
Experimental Perturbations
. 146
2.5.3
Interval Arithmetic
. 147
2.5.4
Range of Functions
. 150
2.5.5
Interval Matrix Computations
. 153
Review Questions
. 154
Problems and Computer Exercises
. 155
Notes and References
. 155
3
Series, Operators, and Continued Fractions
157
3.1
Some Basic Facts about Series
. 157
3.1.1
Introduction
. 157
3.1.2
Taylor's Formula and Power Series
. 162
3.1.3
Analytic Continuation
. 171
3.1.4
Manipulating Power Series
. 173
3.1.5
Formal Power Series
. 181
Review Questions
. 184
Problems and Computer Exercises
. 185
3.2
More about Series
. 191
3.2.1
Laurent and Fourier Series
. 191
3.2.2
The Cauchy-FFT Method
. 193
3.2.3
Chebyshev Expansions
. 198
3.2.4
Perturbation Expansions
. 203
3.2.5
Ill-Conditioned Series
. 206
3.2.6
Divergent or Semiconvergent Series
. 212
Review Questions
. 215
Problems and Computer Exercises
. 215
3.3
Difference Operators and Operator Expansions
. 220
3.3.1
Properties of Difference Operators
. 220
3.3.2
The Calculus of Operators
. 225
3.3.3
The Peano Theorem
. 237
3.3.4
Approximation Formulas by Operator Methods
. 242
3.3.5
Single Linear Difference Equations
. 251
Review Questions
. 261
Problems and Computer Exercises
. 261
3.4
Acceleration of Convergence
. 271
3.4.1
Introduction
. 271
3.4.2
Comparison Series and Aitken Acceleration
. 272
3.4.3
Euler's Transformation
. 278
3.4.4
Complete Monotonicity and Related Concepts
. 284
3.4.5
Euler-Maclaurin's Formula
. 292
3.4.6
Repeated Richardson Extrapolation
. 302
Review Questions
. 309
Problems and Computer Exercises
. 309
Contents
3.5
Continued Fractions and
Padé Approximants
. 321
3.5.1
Algebraic Continued Fractions
. 321
3.5.2
Analytic Continued Fractions
. 326
3.5.3
The
Padé
Table
. 329
3.5.4
The
Epsilon
Algorithm
. 336
3.5.5
The qdAlgorithm
. 339
Review Questions
. 345
Problems and Computer Exercises
. 345
Notes and References
. 348
4
Interpolation and Approximation
351
4.1
The Interpolation Problem
. 351
4.1.1
Introduction
. 351
4.1.2
Bases for Polynomial Interpolation
. 352
4.1.3
Conditioning of Polynomial Interpolation
. 355
Review Questions
. 357
Problems and Computer Exercises
. 357
4.2
Interpolation Formulas and Algorithms
. 358
4.2.1
Newton's Interpolation Formula
. 358
4.2.2
Inverse Interpolation
. 366
4.2.3
Barycentric
Lagrange
Interpolation
. 367
4.2.4
Iterative Linear Interpolation
. 371
4.2.5
Fast Algorithms for Vandermonde Systems
. 373
4.2.6
The
Runge
Phenomenon
. 377
Review Questions
. 380
Problems and Computer Exercises
. 380
4.3
Generalizations and Applications
. 381
4.3.1
Hermite Interpolation
. 381
4.3.2
Complex Analysis in Polynomial Interpolation
. 385
4.3.3
Rational Interpolation
. 389
4.3.4
Multidimensional Interpolation
. 395
4.3.5
Analysis of a Generalized
Runge
Phenomenon
. 398
Review Questions
. 407
Problems and Computer Exercises
. 407
4.4
Piecewise Polynomial Interpolation
. 410
4.4.1
Bernstein Polynomials and
Bézier
Curves
. 411
4.4.2
Spline Functions
. 417
4.4.3
The B-Spline Basis
. 426
4.4.4
Least Squares Splines Approximation
. 434
Review Questions
. 436
Problems and Computer Exercises
. 437
4.5
Approximation and Function Spaces
. 439
4.5.1
Distance and Norm
. 440
4.5.2
Operator Norms and the Distance Formula
. 444
4.5.3
Inner Product Spaces and Orthogonal Systems
. 450
Contents
x¡
4.5.4
Solution of the
Approximation Problem. 454
4.5.5
Mathematical Properties of Orthogonal Polynomials
. 457
4.5.6
Expansions in Orthogonal Polynomials
. 466
4.5.7
Approximation in the Maximum Norm
. 471
Review Questions
. 478
Problems and Computer Exercises
. 479
4.6
Fourier Methods
. 482
4.6.1
Basic Formulas and Theorems
. 483
4.6.2
Discrete Fourier Analysis
. 487
4.6.3
Periodic Continuation of a Function
. 491
4.6.4
Convergence Acceleration of Fourier Series
. 492
4.6.5
The Fourier Integral Theorem
. 494
4.6.6
Sampled Data and Aliasing
. 497
Review Questions
. 500
Problems and Computer Exercises
. 500
4.7
The Fast Fourier Transform
. 503
4.7.1
The FFT Algorithm
. 503
4.7.2
Discrete Convolution by FFT
. 509
4.7.3
FFTs of Real Data
. 510
4.7.4
Fast Trigonometric Transforms
. 512
4.7.5
The General Case FFT
. 515
Review Questions
. 516
Problems and Computer Exercises
. 517
Notes and References
. 518
Numerical Integration
521
5.1
Interpolatory
Quadrature Rules
. 521
5.1.1
Introduction
. 521
5.1.2
Treating Singularities
. 525
5.1.3
Some Classical Formulas
. 527
5.1.4
Supercon
vergence
of the Trapezoidal Rule
. 531
5.1.5
Higher-Order Newton-Cotes'Formulas
. 533
5.1.6
Fejér
and Clensnaw-Curtis Rules
. 538
Review Questions
. 542
Problems and Computer Exercises
. 542
5.2
Integration by Extrapolation
. 546
5.2.1
The Euler-Maclaurin Formula
. 546
5.2.2
Romberg's Method
. 548
5.2.3
Oscillating Integrands
. 554
5.2.4
Adaptive Quadrature
. 560
Review Questions
. 564
Problems and Computer Exercises
. 564
5.3
Quadrature Rules with Free Nodes
. 565
5.3.1
Method of Undetermined Coefficients
. 565
5.3.2
Gauss-Christoffel Quadrature Rules
. 568
xii Contents
5.3.3
Gauss Quadrature
with Preassigned Nodes
. 573
5.3.4
Matrices, Moments, and Gauss Quadrature
. 576
5.3.5
Jacobi Matrices and Gauss Quadrature
. 580
Review Questions
. 585
Problems and Computer Exercises
. 585
5.4
Multidimensional Integration
. 587
5.4.1
Analytic Techniques
. 588
5.4.2
Repeated One-Dimensional Integration
. 589
5.4.3
ProductRules
. 590
5.4.4
Irregular Triangular Grids
. 594
5.4.5
Monte Carlo Methods
. 599
5.4.6
Quasi-Monte
Carlo and Lattice Methods
. 601
Review Questions
. 604
Problems and Computer Exercises
. 605
Notes and References
. 606
Solving Scalar Nonlinear Equations
609
6.1
Some Basic Concepts and Methods
. 609
6.1.1
Introduction
. 609
6.1.2
The Bisection Method
. 610
6.1.3
Limiting Accuracy and Termination Criteria
. 614
6.1.4
Fixed-Point Iteration
. 618
6.1.5
Convergence Order and Efficiency
. 621
Review Questions
. 624
Problems and Computer Exercises
. 624
6.2
Methods Based on Interpolation
. 626
6.2.1
Method of False Position
. 626
6.2.2
The Secant Method
. 628
6.2.3
Higher-Order Interpolation Methods
. 631
6.2.4
A Robust Hybrid Method
. 634
Review Questions
. 635
Problems and Computer Exercises
. 636
6.3
Methods Using Derivatives
. 637
6.3.1
Newton's Method
. 637
6.3.2
Newton's Method for Complex Roots
. 644
6.3.3
An Interval Newton Method
. 646
6.3.4
Higher-Order Methods
. 647
Review Questions
. 652
Problems and Computer Exercises
. 653
6.4
Finding a Minimum of a Function
. 656
6.4.1
Introduction
. 656
6.4.2
Unimodal Functions and Golden Section Search
. 657
6.4.3
Minimization by Interpolation
. 660
Review Questions
. 661
Problems and Computer Exercises
. 661
Contents
x¡¡¡
6.5
Algebraic
Equations
. 662
6.5.1
Some Elementary Results
. 662
6.5.2
Ill-Conditioned Algebraic Equations
. 665
6.5.3
Three Classical Methods
. 668
6.5.4
Deflation and Simultaneous Determination of Roots
. 671
6.5.5
A Modified Newton Method
. 675
6.5.6
Sturm Sequences
. 677
6.5.7
Finding Greatest Common Divisors
. 680
Review Questions
. 682
Problems and Computer Exercises
. 683
Notes and References
. 685
Bibliography
687
Index
707
A Online Appendix: Introduction to Matrix Computations A-l
A.I Vectors and Matrices
.
A-l
A.
1.1
Linear Vector Spaces
.
A-l
A.
1.2
Matrix and Vector Algebra
.
A-3
A.1.3 Rank and Linear Systems
.
A-5
A.
1.4
Special Matrices
.
A-6
A.2
Submatrices
and Block Matrices
.
A-8
A.2.1 Block Gaussian Elimination
.
A-10
A.3 Permutations and Determinants
.
A-12
A.4 Eigenvalues and Norms of Matrices
.
A-16
A.4.1 The Characteristic Equation
.
A-16
A.4.2 The
Schur
and Jordan Normal Forms
.
A-17
A.4.3 Norms of Vectors and Matrices
.
A-18
Review Questions
.
A-21
Problems
.
A-22
В
Online Appendix:
A
MATLAB
Multiple Precision Package B-l
B.I The Mulprec Package
.
B-l
B.I.I Number Representation
.
B-l
B.1.2 The Mulprec Function Library
.
B-3
B.1.3 Basic Arithmetic Operations
.
B-3
B.1.4 Special Mulprec Operations
.
B-4
B.2 Function and Vector Algorithms
.
B-4
B.2.1 Elementary Functions
.
B-4
B.2.2 Mulprec Vector Algorithms
.
B-5
B.2.3 Miscellaneous
.
B-6
B.2.4 Using Mulprec
.
B-6
Computer Exercises
.
B-6
xiv Contents
С
Online Appendix: Guide
to Literature
C-I
Cl Introduction
.
C-l
C.2
Textbooks in Numerical Analysis
.
С
-l
С.З
Handbooks and Collections
.
C-5
C.4 Encyclopedias, Tables, and Formulas
.
C-6
C.5 Selected Journals
.
C-8
C.6 Algorithms and Software
.
C-9
C.7 Public Domain Software
.
C-10 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Dahlquist, Germund Björck, Åke 1934- |
author_GND | (DE-588)108090132 |
author_facet | Dahlquist, Germund Björck, Åke 1934- |
author_role | aut aut |
author_sort | Dahlquist, Germund |
author_variant | g d gd å b åb |
building | Verbundindex |
bvnumber | BV023170001 |
callnumber-first | Q - Science |
callnumber-label | QA297 |
callnumber-raw | QA297 |
callnumber-search | QA297 |
callnumber-sort | QA 3297 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 900 |
ctrlnum | (OCoLC)315886014 (DE-599)BVBBV023170001 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01809nam a2200397 cc4500</leader><controlfield tag="001">BV023170001</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210607 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080218s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898716443</subfield><subfield code="9">978-0-898716-44-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315886014</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023170001</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA297</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 900</subfield><subfield code="0">(DE-625)143268:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dahlquist, Germund</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical methods in scientific computing</subfield><subfield code="n">1</subfield><subfield code="c">Germund Dahlquist ; Åke Björck</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia</subfield><subfield code="b">SIAM, Society for Industrial and Applied Mathematics</subfield><subfield code="c">(2008)</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 717 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissenschaftliches Rechnen</subfield><subfield code="0">(DE-588)4338507-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wissenschaftliches Rechnen</subfield><subfield code="0">(DE-588)4338507-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Björck, Åke</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108090132</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV023169995</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://catdir.loc.gov/catdir/enhancements/fy0834/2007061806-t.html</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://catdir.loc.gov/catdir/enhancements/fy0834/2007061806-d.html</subfield><subfield code="3">Beschreibung für Leser</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016356676&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016356676</subfield></datafield></record></collection> |
id | DE-604.BV023170001 |
illustrated | Illustrated |
index_date | 2024-07-02T19:57:15Z |
indexdate | 2024-07-09T21:12:11Z |
institution | BVB |
isbn | 9780898716443 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016356676 |
oclc_num | 315886014 |
open_access_boolean | |
owner | DE-20 DE-706 DE-355 DE-BY-UBR DE-703 DE-384 DE-29T DE-91G DE-BY-TUM DE-634 DE-11 DE-188 DE-83 |
owner_facet | DE-20 DE-706 DE-355 DE-BY-UBR DE-703 DE-384 DE-29T DE-91G DE-BY-TUM DE-634 DE-11 DE-188 DE-83 |
physical | XXVII, 717 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | SIAM, Society for Industrial and Applied Mathematics |
record_format | marc |
spelling | Dahlquist, Germund Verfasser aut Numerical methods in scientific computing 1 Germund Dahlquist ; Åke Björck Philadelphia SIAM, Society for Industrial and Applied Mathematics (2008) XXVII, 717 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Wissenschaftliches Rechnen (DE-588)4338507-2 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 s Wissenschaftliches Rechnen (DE-588)4338507-2 s DE-604 Björck, Åke 1934- Verfasser (DE-588)108090132 aut (DE-604)BV023169995 1 http://catdir.loc.gov/catdir/enhancements/fy0834/2007061806-t.html Inhaltsverzeichnis http://catdir.loc.gov/catdir/enhancements/fy0834/2007061806-d.html Beschreibung für Leser Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016356676&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dahlquist, Germund Björck, Åke 1934- Numerical methods in scientific computing Numerische Mathematik (DE-588)4042805-9 gnd Wissenschaftliches Rechnen (DE-588)4338507-2 gnd |
subject_GND | (DE-588)4042805-9 (DE-588)4338507-2 |
title | Numerical methods in scientific computing |
title_auth | Numerical methods in scientific computing |
title_exact_search | Numerical methods in scientific computing |
title_exact_search_txtP | Numerical methods in scientific computing |
title_full | Numerical methods in scientific computing 1 Germund Dahlquist ; Åke Björck |
title_fullStr | Numerical methods in scientific computing 1 Germund Dahlquist ; Åke Björck |
title_full_unstemmed | Numerical methods in scientific computing 1 Germund Dahlquist ; Åke Björck |
title_short | Numerical methods in scientific computing |
title_sort | numerical methods in scientific computing |
topic | Numerische Mathematik (DE-588)4042805-9 gnd Wissenschaftliches Rechnen (DE-588)4338507-2 gnd |
topic_facet | Numerische Mathematik Wissenschaftliches Rechnen |
url | http://catdir.loc.gov/catdir/enhancements/fy0834/2007061806-t.html http://catdir.loc.gov/catdir/enhancements/fy0834/2007061806-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016356676&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV023169995 |
work_keys_str_mv | AT dahlquistgermund numericalmethodsinscientificcomputing1 AT bjorckake numericalmethodsinscientificcomputing1 |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis