Fundamentals of Kalman filtering: a practical approach
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Reston, Va.
American Inst. of Aeronautics and Astronautics
2005
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Progress in astronautics and aeronautics
208 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXV, 765 S. graph. Darst. |
ISBN: | 1563476940 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV023167135 | ||
003 | DE-604 | ||
005 | 20100106 | ||
007 | t | ||
008 | 080218s2005 d||| |||| 00||| eng d | ||
020 | |a 1563476940 |9 1-56347-694-0 | ||
035 | |a (OCoLC)60334628 | ||
035 | |a (DE-599)BVBBV023167135 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-703 |a DE-83 | ||
050 | 0 | |a QA402.3 | |
050 | 0 | |a TL507 | |
082 | 0 | |a 629.8312 | |
082 | 0 | |a 519.54 | |
084 | |a SK 880 |0 (DE-625)143266: |2 rvk | ||
084 | |a ZQ 5085 |0 (DE-625)158114: |2 rvk | ||
084 | |a MSR 632f |2 stub | ||
084 | |a ELT 479f |2 stub | ||
100 | 1 | |a Zarchan, Paul |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of Kalman filtering |b a practical approach |
250 | |a 2. ed. | ||
264 | 1 | |a Reston, Va. |b American Inst. of Aeronautics and Astronautics |c 2005 | |
300 | |a XXV, 765 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in astronautics and aeronautics |v 208 | |
650 | 4 | |a Aéronautique - Méthodes statistiques | |
650 | 4 | |a Commande, Théorie de la | |
650 | 4 | |a Kalman, Filtrage de | |
650 | 4 | |a Aeronautics |x Statistical methods | |
650 | 4 | |a Control theory | |
650 | 4 | |a Kalman filtering | |
650 | 0 | 7 | |a Kalman-Filter |0 (DE-588)4130759-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kalman-Filter |0 (DE-588)4130759-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Musoff, Howard |e Verfasser |4 aut | |
830 | 0 | |a Progress in astronautics and aeronautics |v 208 |w (DE-604)BV001890233 |9 208 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016349420&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016349420&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016349420 |
Datensatz im Suchindex
_version_ | 1804137424533585920 |
---|---|
adam_text | Table of Contents
Preface
............................................ xv
Introduction
........................................ xvii
Acknowledgments
.................................... xxv
Chapter
1.
Numerical Basics
........................... 1
Introduction
................................ 1
Simple Vector Operations
........................ 1
Simple Matrix Operations
........................ 3
Numerical Integration of Differential Equations
........... 13
Noise and Random Variables
...................... 19
Gaussian Noise Example
........................ 23
Calculating Standard Deviation
.................... 26
White Noise
................................ 28
Simulating White Noise
......................... 30
State-Space Notation
........................... 33
Fundamental Matrix
........................... 34
Summary
.................................. 38
References
.................................. 38
Chapter
2.
Method of Least Squares
..................... 41
Introduction
................................ 41
Overview
.................................. 41
Zeroth-Order or One-State Filter
.................... 42
First-Order or Two-State Filter
..................... 46
Second-Order or Three-State Least-Squares Filter
......... 50
Third-Order System
........................... 56
Experiments with Zeroth-Order or One-State Filter
........ 59
Experiments with First-Order or Two-State Filter
.......... 64
Experiments with Second-Order or Three-State Filter
....... 71
Comparison of Filters
.......................... 78
Accelerometer Testing Example
.................... 80
Summan
.................................. 89
References
................................. 90
Chapter
3.
Recursive Least-Squares Filtering
............... 91
Introduction
................................ 91
Making Zeroth-Order Least-Squares Filter Recursive
....... 91
Properties of Zeroth-Order or One-State Filter
........... 93
Properties of First-Order or Two-State Filter
............. 103
Properties of Second-Order or Three-State Filter
.......... 112
Summary
.................................. 124
References
................................. 128
ix
χ
TABLE OF CONTENTS
Chapter
4.
Polynomial
Kalman
Filters
.................... 129
Introduction
................................ 129
General Equations
............................ 129
Derivation of Scalar Riccati Equations
................ 131
Polynomial
Kalman
Filter (Zero Process Noise)
.......... 134
Comparing Zeroth-Order Recursive Least-Squares and
Kalman
Filters
.................................. 136
Comparing First-Order Recursive Least-Squares and
Kalman
Filters
.................................. 139
Comparing Second-Order Recursive Least-Squares and
Kalman
Filters
.................................. 142
Comparing Different-Order Filters
................... 148
Initial Covariance Matrix
........................ 151
Riccati Equations with Process Noise
................. 155
Example of
Kalman
Filter Tracking a Falling Object
....... 159
Revisiting Accelerometer Testing Example
............. 171
Summary
.................................. 179
References
................................. 182
Chapter
5.
Kalman
Filters in a Nonpolynomial World
......... 183
Introduction
................................ 183
Polynomial
Kalman
Filter and Sinusoidal Measurement
...... 183
Sinusoidal
Kalman
Filter and Sinusoidal Measurement
...... 194
Suspension System Example
...................... 203
Kalman
Filter for Suspension System
................. 207
Summary
.................................. 218
References
................................. 218
Chapter
6.
Continuous Polynomial
Kalman
Filter
............ 219
Introduction
................................ 219
Theoretical Equations
.......................... 219
Zeroth-Order or One-State Continuous Polynomial
Kalman
Filter
.................................. 221
First-Order or Two-State Continuous Polynomial
Kalman
Filter
.................................. 227
Second-Order or Three-State Continuous Polynomial
Kalman
Filter
.............................. . . . . 232
Transfer Function for Zeroth-Order Filter
.............. 238
Transfer Function for First-Order Filter
................ 243
Transfer Function for Second-Order Filter
.............. 248
Filter Comparison
............................ 251
Summary
.................................. 255
References
................................. 255
Chapter
7.
Extended
Kalman
Filtering
.................... 257
Introduction
................................ 257
Theoretical Equations
.......................... 257
TABLE
OF
CONTENTS
χι
Drag Acting on Falling Object
..................... 259
First Attempt at Extended
Kalman
Filter
............... 261
Second Attempt at Extended
Kalman
Filter
............. 274
Third Attempt at Extended
Kalman
Filter
.............. 284
Summary
.................................. 291
References
................................. 291
Chapter
8.
Drag and Falling Object
...................... 293
Introduction
................................ 293
Problem Setup
.............................. 293
Changing Filter States
.......................... 309
Why Process Noise Is Required
.................... 311
Linear Polynomial
Kalman
Filter
................... 320
Summary
.................................. 329
References
................................. 329
Chapter
9.
Cannon-Launched Projectile Tracking Problem
..... 331
Introduction
................................ 331
Problem Statement
............................ 331
Extended Cartesian
Kalman
Filter
................... 334
Polar Coordinate System
........................ 349
Extended Polar
Kalman
Filter
..................... 354
Using Linear Decoupled Polynomial
Kalman
Filters
........ 367
Using Linear Coupled Polynomial
Kalman
Filters
......... 376
Robustness Comparison of Extended and Linear Coupled
Kalman
Filters
............................ 385
Summary
.................................. 393
Reference
................................. 394
Chapter
10.
Tracking a Sine Wave
........................ 395
Introduction
................................ 395
Extended
Kalman
Filter
......................... 395
Two-State Extended
Kalman
Filter with a Priori Information
. . . 408
Alternate Extended
Kalman
Filter for Sinusoidal Signal
...... 417
Another Extended
Kalman
Filter for Sinusoidal Model
...... 431
Summary
.................................. 441
References
................................. 441
Chapter
11.
Satellite Navigation
.......................... 443
Introduction
................................ 443
Problem with Perfect Range Measurements
............. 443
Estimation Without Filtering
...................... 447
Linear Filtering of Range
........................ 453
Using Extended
Kalman
Filtering
................... 455
Using Extended
Kalman
Filtering with One Satellite
....... 465
Using Extended
Kalman
Filtering with Constant Velocity
Receiver
................................ 474
XII
TABLE OF
CONTENTS
Single
Satellite
with Constant Velocity Receiver
.......... 479
Using Extended
Kalman
Filtering with Variable Velocity
Receiver
................................ 493
Variable Velocity Receiver and Single Satellite
........... 505
Summary
.................................. 513
References
................................. 513
Chapter
12.
Biases
................................... 515
Introduction
................................ 515
Influence of Bias-
............................. 515
Estimating Satellite Bias with Known Receiver Location
..... 519
Estimating Receiver Bias with Unknown Receiver Location
and Two Satellites
.......................... 525
Estimating Receiver Bias with Unknown Receiver Location
and Three Satellites
......................... 533
Summary
.................................. 544
Reference
................................. 547
Chapter
13.
Linearized
Kalman
Filtering
................... 549
Introduction
................................ 549
Theoretical Equations
.......................... 549
Falling Object Revisited
......................... 552
Developing a Linearized
Kalman
Filter
................ 556
Cannon-Launched Projectile Revisited
................ 569
Linearized Cartesian
Kalman
Filter
.................. 570
Summary
.................................. 583
References
................................. 585
Chapter
14.
Miscellaneous Topics
........................ 587
Introduction
................................ 587
Sinusoidal
Kalman
Filter and Signal-to-Noise Ratio
........ 587
When Only a Few Measurements Are Available
.......... 595
Detecting Filter Divergence in the Real World
........... 606
Observability Example
......................... 618
Aiding
................................... 629
Summary
.................................. 642
References
................................. 646
Chapter
15.
Fading-Memory Filter
........................ 647
Introduction
................................ 647
Fading-Memory-Filter Structure and Properties
........... 647
Radar Tracking Problem
........................ 662
Summary
.................................. 673
References
................................. 675
Chapter
16.
Assorted Techniques for Improving
Kalman-Filter
Performance
.............................. 677
TABLE
OF
CONTENTS
XIII
Introduction
................................ 677
Increasing Data Rate
........................... 677
Adding a Second Measurement
.................... 682
Batch Processing
............................. 690
Adaptive Filtering
—
Multiple Filters
................. 701
Adaptive Filtering
—
Single Filter with Variable Process Noise
. . 710
Summary
.................................. 720
Appendix A Fundamentals of
Kalman-Filtering
Software
........ 723
Software Details
............................. 723
MATLAB*
................................ 724
True BASIC
................................ 730
Reference
................................. 738
Appendix
В
Key Formula and Concept Summary
............. 739
Overview of
Kalman-Filter
Operation Principles
.......... 739
Kalman-Filter
Gains and the Riccati Equations
........... 739
Kalman-Filter
Gain Logic
........................ 740
Matrix Inverse
............................... 740
Numerical Integration
.......................... 741
Postprocessing Formulas
........................ 741
Simulating
Pseudo
White Noise
.................... 742
Fundamental Matrix
........................... 742
Method of Least-Squares Summary
.................. 742
Fading-Memory Filter Summary
.................... 745
Index
.............................................. 747
Supporting Materials
................................... 765
LEARN ABOUT ONE OF THE MOST IMPORTANT ALGORITHMIC
TECHNIQUES EVER DEVISED
·
A PRACTICAL GUIDE WITH
APPLICATIONS TO REAL-WORLD PROBLEMS
ABOUT THE AUTHORS
Paul Zarchan has a BSEE degree from the City College of New York
and an MSEE degree from Columbia University. He has more than
35
years of experience in the missile guidance and control field,
has worked as Principal Engineer for Raytheon, served as Senior
Research Engineer with the Israeli Ministry of Defense, and as a
Principal Member of the Technical Staff at the Charles Stark
Draper Laboratory. He is currently a member of the technical staff
at MIT Lincoln Laboratory and is working on problems related to
missile defense.
Howard Musoff had a BSEE degree from the City College of New York, an MSEE degree from
Northeastern University and an Sc.D. degree from MIT. He was a Principal Member of the Technical
Staff at the Charles Stark Draper Laboratory, where he had been employed for more than
40
years where he designed
Kalman
filters for applications in the Held of
inerţial
navigation. Dr.
Musoff was also a co-holder of two patents in that field. He died suddenly in April
2004.
ABOUT THE BOOK
This text is a practical guide to building
Kalman
fil¬
ters and shows how the filtering equations can be
applied to real-life problems. Numerous examples
are presented in detail, showing the many ways in
which
Kalman
filters can be designed. Computer
code written in FORTRAN,
MATLAB®,
and True BASIC
accompanies all of the examples so that the inter¬
ested reader can verify concepts and explore issues
beyond the scope of the text.
Sometimes mistakes are introduced intentionally to
the initial filter designs to show the reader what
happens when the filter is not working properly.
The text spends a great deal of time setting up a
problem before the
Kalman
filter is actually formu¬
lated to give the reader an intuitive feel for the
problem being addressed. Real problems are seldom
presented in the form of differential equations and
they usually do not have unique solutions.
Therefore, the authors illustrate several different
filtering approaches for tackling a problem. Readers
will gain experience in software and performance
tradeoffs for determining the best filtering
approach for the application at hand.
The second edition has two new chapters and an
additional appendix. In the first new chapter a
recursive digital filter, known as the fading-
memory filter, is introduced and it is shown that
for some radar tracking applications the fading-
memory filter can yield similar performance to a
Kalman
filter at far less computational cost. A
second new chapter presents techniques for
improving
Kalman
filter performance. Included
is a practical method for preprocessing measure¬
ment data when there are too many measure¬
ments for the filter to utilize in a given amount
of time. The chapter also contains practical
methods for making the
Kalman
filter adaptive.
A new appendix has been added which serves as
a central location and summary for the text s
most important concepts and formulas.
American Institute of Aeronautics and Astronautics
1801
Alexander Bell Drive. Suite
500
Reston,
VA
20191—4344
USA
Web site: www.aiaa.org
ISBN
1563476940
|
adam_txt |
Table of Contents
Preface
. xv
Introduction
. xvii
Acknowledgments
. xxv
Chapter
1.
Numerical Basics
. 1
Introduction
. 1
Simple Vector Operations
. 1
Simple Matrix Operations
. 3
Numerical Integration of Differential Equations
. 13
Noise and Random Variables
. 19
Gaussian Noise Example
. 23
Calculating Standard Deviation
. 26
White Noise
. 28
Simulating White Noise
. 30
State-Space Notation
. 33
Fundamental Matrix
. 34
Summary
. 38
References
. 38
Chapter
2.
Method of Least Squares
. 41
Introduction
. 41
Overview
. 41
Zeroth-Order or One-State Filter
. 42
First-Order or Two-State Filter
. 46
Second-Order or Three-State Least-Squares Filter
. 50
Third-Order System
. 56
Experiments with Zeroth-Order or One-State Filter
. 59
Experiments with First-Order or Two-State Filter
. 64
Experiments with Second-Order or Three-State Filter
. 71
Comparison of Filters
. 78
Accelerometer Testing Example
. 80
Summan'
. 89
References
. 90
Chapter
3.
Recursive Least-Squares Filtering
. 91
Introduction
. 91
Making Zeroth-Order Least-Squares Filter Recursive
. 91
Properties of Zeroth-Order or One-State Filter
. 93
Properties of First-Order or Two-State Filter
. 103
Properties of Second-Order or Three-State Filter
. 112
Summary
. 124
References
. 128
ix
χ
TABLE OF CONTENTS
Chapter
4.
Polynomial
Kalman
Filters
. 129
Introduction
. 129
General Equations
. 129
Derivation of Scalar Riccati Equations
. 131
Polynomial
Kalman
Filter (Zero Process Noise)
. 134
Comparing Zeroth-Order Recursive Least-Squares and
Kalman
Filters
. 136
Comparing First-Order Recursive Least-Squares and
Kalman
Filters
. 139
Comparing Second-Order Recursive Least-Squares and
Kalman
Filters
. 142
Comparing Different-Order Filters
. 148
Initial Covariance Matrix
. 151
Riccati Equations with Process Noise
. 155
Example of
Kalman
Filter Tracking a Falling Object
. 159
Revisiting Accelerometer Testing Example
. 171
Summary
. 179
References
. 182
Chapter
5.
Kalman
Filters in a Nonpolynomial World
. 183
Introduction
. 183
Polynomial
Kalman
Filter and Sinusoidal Measurement
. 183
Sinusoidal
Kalman
Filter and Sinusoidal Measurement
. 194
Suspension System Example
. 203
Kalman
Filter for Suspension System
. 207
Summary
. 218
References
. 218
Chapter
6.
Continuous Polynomial
Kalman
Filter
. 219
Introduction
. 219
Theoretical Equations
. 219
Zeroth-Order or One-State Continuous Polynomial
Kalman
Filter
. 221
First-Order or Two-State Continuous Polynomial
Kalman
Filter
. 227
Second-Order or Three-State Continuous Polynomial
Kalman
Filter
.'. . . . 232
Transfer Function for Zeroth-Order Filter
. 238
Transfer Function for First-Order Filter
. 243
Transfer Function for Second-Order Filter
. 248
Filter Comparison
. 251
Summary
. 255
References
. 255
Chapter
7.
Extended
Kalman
Filtering
. 257
Introduction
. 257
Theoretical Equations
. 257
TABLE
OF
CONTENTS
χι
Drag Acting on Falling Object
. 259
First Attempt at Extended
Kalman
Filter
. 261
Second Attempt at Extended
Kalman
Filter
. 274
Third Attempt at Extended
Kalman
Filter
. 284
Summary
. 291
References
. 291
Chapter
8.
Drag and Falling Object
. 293
Introduction
. 293
Problem Setup
. 293
Changing Filter States
. 309
Why Process Noise Is Required
. 311
Linear Polynomial
Kalman
Filter
. 320
Summary
. 329
References
. 329
Chapter
9.
Cannon-Launched Projectile Tracking Problem
. 331
Introduction
. 331
Problem Statement
. 331
Extended Cartesian
Kalman
Filter
. 334
Polar Coordinate System
. 349
Extended Polar
Kalman
Filter
. 354
Using Linear Decoupled Polynomial
Kalman
Filters
. 367
Using Linear Coupled Polynomial
Kalman
Filters
. 376
Robustness Comparison of Extended and Linear Coupled
Kalman
Filters
. 385
Summary
. 393
Reference
. 394
Chapter
10.
Tracking a Sine Wave
. 395
Introduction
. 395
Extended
Kalman
Filter
. 395
Two-State Extended
Kalman
Filter with a Priori Information
. . . 408
Alternate Extended
Kalman
Filter for Sinusoidal Signal
. 417
Another Extended
Kalman
Filter for Sinusoidal Model
. 431
Summary
. 441
References
. 441
Chapter
11.
Satellite Navigation
. 443
Introduction
. 443
Problem with Perfect Range Measurements
. 443
Estimation Without Filtering
. 447
Linear Filtering of Range
. 453
Using Extended
Kalman
Filtering
. 455
Using Extended
Kalman
Filtering with One Satellite
. 465
Using Extended
Kalman
Filtering with Constant Velocity
Receiver
. 474
XII
TABLE OF
CONTENTS
Single
Satellite
with Constant Velocity Receiver
. 479
Using Extended
Kalman
Filtering with Variable Velocity
Receiver
. 493
Variable Velocity Receiver and Single Satellite
. 505
Summary
. 513
References
. 513
Chapter
12.
Biases
. 515
Introduction
. 515
Influence of Bias-
. 515
Estimating Satellite Bias with Known Receiver Location
. 519
Estimating Receiver Bias with Unknown Receiver Location
and Two Satellites
. 525
Estimating Receiver Bias with Unknown Receiver Location
and Three Satellites
. 533
Summary
. 544
Reference
. 547
Chapter
13.
Linearized
Kalman
Filtering
. 549
Introduction
. 549
Theoretical Equations
. 549
Falling Object Revisited
. 552
Developing a Linearized
Kalman
Filter
. 556
Cannon-Launched Projectile Revisited
. 569
Linearized Cartesian
Kalman
Filter
. 570
Summary
. 583
References
. 585
Chapter
14.
Miscellaneous Topics
. 587
Introduction
. 587
Sinusoidal
Kalman
Filter and Signal-to-Noise Ratio
. 587
When Only a Few Measurements Are Available
. 595
Detecting Filter Divergence in the Real World
. 606
Observability Example
. 618
Aiding
. 629
Summary
. 642
References
. 646
Chapter
15.
Fading-Memory Filter
. 647
Introduction
. 647
Fading-Memory-Filter Structure and Properties
. 647
Radar Tracking Problem
. 662
Summary
. 673
References
. 675
Chapter
16.
Assorted Techniques for Improving
Kalman-Filter
Performance
. 677
TABLE
OF
CONTENTS
XIII
Introduction
. 677
Increasing Data Rate
. 677
Adding a Second Measurement
. 682
Batch Processing
. 690
Adaptive Filtering
—
Multiple Filters
. 701
Adaptive Filtering
—
Single Filter with Variable Process Noise
. . 710
Summary
. 720
Appendix A Fundamentals of
Kalman-Filtering
Software
. 723
Software Details
. 723
MATLAB*
. 724
True BASIC
. 730
Reference
. 738
Appendix
В
Key Formula and Concept Summary
. 739
Overview of
Kalman-Filter
Operation Principles
. 739
Kalman-Filter
Gains and the Riccati Equations
. 739
Kalman-Filter
Gain Logic
. 740
Matrix Inverse
. 740
Numerical Integration
. 741
Postprocessing Formulas
. 741
Simulating
Pseudo
White Noise
. 742
Fundamental Matrix
. 742
Method of Least-Squares Summary
. 742
Fading-Memory Filter Summary
. 745
Index
. 747
Supporting Materials
. 765
LEARN ABOUT ONE OF THE MOST IMPORTANT ALGORITHMIC
TECHNIQUES EVER DEVISED
·
A PRACTICAL GUIDE WITH
APPLICATIONS TO REAL-WORLD PROBLEMS
ABOUT THE AUTHORS
Paul Zarchan has a BSEE degree from the City College of New York
and an MSEE degree from Columbia University. He has more than
35
years of experience in the missile guidance and control field,
has worked as Principal Engineer for Raytheon, served as Senior
Research Engineer with the Israeli Ministry of Defense, and as a
Principal Member of the Technical Staff at the Charles Stark
Draper Laboratory. He is currently a member of the technical staff
at MIT Lincoln Laboratory and is working on problems related to
missile defense.
Howard Musoff had a BSEE degree from the City College of New York, an MSEE degree from
Northeastern University and an Sc.D. degree from MIT. He was a Principal Member of the Technical
Staff at the Charles Stark Draper Laboratory, where he had been employed for more than
40
years where he designed
Kalman
filters for applications in the Held of
inerţial
navigation. Dr.
Musoff was also a co-holder of two patents in that field. He died suddenly in April
2004.
ABOUT THE BOOK
This text is a practical guide to building
Kalman
fil¬
ters and shows how the filtering equations can be
applied to real-life problems. Numerous examples
are presented in detail, showing the many ways in
which
Kalman
filters can be designed. Computer
code written in FORTRAN,
MATLAB®,
and True BASIC
accompanies all of the examples so that the inter¬
ested reader can verify concepts and explore issues
beyond the scope of the text.
Sometimes mistakes are introduced intentionally to
the initial filter designs to show the reader what
happens when the filter is not working properly.
The text spends a great deal of time setting up a
problem before the
Kalman
filter is actually formu¬
lated to give the reader an intuitive feel for the
problem being addressed. Real problems are seldom
presented in the form of differential equations and
they usually do not have unique solutions.
Therefore, the authors illustrate several different
filtering approaches for tackling a problem. Readers
will gain experience in software and performance
tradeoffs for determining the best filtering
approach for the application at hand.
The second edition has two new chapters and an
additional appendix. In the first new chapter a
recursive digital filter, known as the fading-
memory filter, is introduced and it is shown that
for some radar tracking applications the fading-
memory filter can yield similar performance to a
Kalman
filter at far less computational cost. A
second new chapter presents techniques for
improving
Kalman
filter performance. Included
is a practical method for preprocessing measure¬
ment data when there are too many measure¬
ments for the filter to utilize in a given amount
of time. The chapter also contains practical
methods for making the
Kalman
filter adaptive.
A new appendix has been added which serves as
a central location and summary for the text's
most important concepts and formulas.
American Institute of Aeronautics and Astronautics
1801
Alexander Bell Drive. Suite
500
Reston,
VA
20191—4344
USA
Web site: www.aiaa.org
ISBN
1563476940 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Zarchan, Paul Musoff, Howard |
author_facet | Zarchan, Paul Musoff, Howard |
author_role | aut aut |
author_sort | Zarchan, Paul |
author_variant | p z pz h m hm |
building | Verbundindex |
bvnumber | BV023167135 |
callnumber-first | Q - Science |
callnumber-label | QA402 |
callnumber-raw | QA402.3 TL507 |
callnumber-search | QA402.3 TL507 |
callnumber-sort | QA 3402.3 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 880 ZQ 5085 |
classification_tum | MSR 632f ELT 479f |
ctrlnum | (OCoLC)60334628 (DE-599)BVBBV023167135 |
dewey-full | 629.8312 519.54 |
dewey-hundreds | 600 - Technology (Applied sciences) 500 - Natural sciences and mathematics |
dewey-ones | 629 - Other branches of engineering 519 - Probabilities and applied mathematics |
dewey-raw | 629.8312 519.54 |
dewey-search | 629.8312 519.54 |
dewey-sort | 3629.8312 |
dewey-tens | 620 - Engineering and allied operations 510 - Mathematics |
discipline | Elektrotechnik Mathematik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Elektrotechnik Mathematik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02101nam a2200529zcb4500</leader><controlfield tag="001">BV023167135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100106 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080218s2005 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1563476940</subfield><subfield code="9">1-56347-694-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)60334628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023167135</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA402.3</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TL507</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8312</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.54</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 880</subfield><subfield code="0">(DE-625)143266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 5085</subfield><subfield code="0">(DE-625)158114:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MSR 632f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 479f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zarchan, Paul</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of Kalman filtering</subfield><subfield code="b">a practical approach</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Reston, Va.</subfield><subfield code="b">American Inst. of Aeronautics and Astronautics</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 765 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in astronautics and aeronautics</subfield><subfield code="v">208</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aéronautique - Méthodes statistiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commande, Théorie de la</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kalman, Filtrage de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aeronautics</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kalman filtering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kalman-Filter</subfield><subfield code="0">(DE-588)4130759-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kalman-Filter</subfield><subfield code="0">(DE-588)4130759-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Musoff, Howard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in astronautics and aeronautics</subfield><subfield code="v">208</subfield><subfield code="w">(DE-604)BV001890233</subfield><subfield code="9">208</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016349420&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016349420&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016349420</subfield></datafield></record></collection> |
id | DE-604.BV023167135 |
illustrated | Illustrated |
index_date | 2024-07-02T19:56:31Z |
indexdate | 2024-07-09T21:12:05Z |
institution | BVB |
isbn | 1563476940 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016349420 |
oclc_num | 60334628 |
open_access_boolean | |
owner | DE-92 DE-703 DE-83 |
owner_facet | DE-92 DE-703 DE-83 |
physical | XXV, 765 S. graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | American Inst. of Aeronautics and Astronautics |
record_format | marc |
series | Progress in astronautics and aeronautics |
series2 | Progress in astronautics and aeronautics |
spelling | Zarchan, Paul Verfasser aut Fundamentals of Kalman filtering a practical approach 2. ed. Reston, Va. American Inst. of Aeronautics and Astronautics 2005 XXV, 765 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Progress in astronautics and aeronautics 208 Aéronautique - Méthodes statistiques Commande, Théorie de la Kalman, Filtrage de Aeronautics Statistical methods Control theory Kalman filtering Kalman-Filter (DE-588)4130759-8 gnd rswk-swf Kalman-Filter (DE-588)4130759-8 s DE-604 Musoff, Howard Verfasser aut Progress in astronautics and aeronautics 208 (DE-604)BV001890233 208 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016349420&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016349420&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Zarchan, Paul Musoff, Howard Fundamentals of Kalman filtering a practical approach Progress in astronautics and aeronautics Aéronautique - Méthodes statistiques Commande, Théorie de la Kalman, Filtrage de Aeronautics Statistical methods Control theory Kalman filtering Kalman-Filter (DE-588)4130759-8 gnd |
subject_GND | (DE-588)4130759-8 |
title | Fundamentals of Kalman filtering a practical approach |
title_auth | Fundamentals of Kalman filtering a practical approach |
title_exact_search | Fundamentals of Kalman filtering a practical approach |
title_exact_search_txtP | Fundamentals of Kalman filtering a practical approach |
title_full | Fundamentals of Kalman filtering a practical approach |
title_fullStr | Fundamentals of Kalman filtering a practical approach |
title_full_unstemmed | Fundamentals of Kalman filtering a practical approach |
title_short | Fundamentals of Kalman filtering |
title_sort | fundamentals of kalman filtering a practical approach |
title_sub | a practical approach |
topic | Aéronautique - Méthodes statistiques Commande, Théorie de la Kalman, Filtrage de Aeronautics Statistical methods Control theory Kalman filtering Kalman-Filter (DE-588)4130759-8 gnd |
topic_facet | Aéronautique - Méthodes statistiques Commande, Théorie de la Kalman, Filtrage de Aeronautics Statistical methods Control theory Kalman filtering Kalman-Filter |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016349420&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016349420&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001890233 |
work_keys_str_mv | AT zarchanpaul fundamentalsofkalmanfilteringapracticalapproach AT musoffhoward fundamentalsofkalmanfilteringapracticalapproach |