Linear algebra in action:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, R.I.
American Math. Soc.
2007
|
Schriftenreihe: | Graduate studies in mathematics
78 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XVI, 541 S. graph. Darst. 27 cm |
ISBN: | 082183813X 9780821838136 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV023164959 | ||
003 | DE-604 | ||
005 | 20081002 | ||
007 | t | ||
008 | 080214s2007 xxud||| |||| 00||| eng d | ||
010 | |a 2006049906 | ||
020 | |a 082183813X |c alk. paper |9 0-8218-3813-X | ||
020 | |a 9780821838136 |9 978-0-8218-3813-6 | ||
035 | |a (OCoLC)70778386 | ||
035 | |a (DE-599)DNB 2006049906 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-91G |a DE-824 |a DE-20 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA184.2 | |
082 | 0 | |a 512/.5 |2 22 | |
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a MAT 150f |2 stub | ||
084 | |a 15-01 |2 msc | ||
084 | |a 30-01 |2 msc | ||
100 | 1 | |a Dym, Harry |d 1938- |e Verfasser |0 (DE-588)124041205 |4 aut | |
245 | 1 | 0 | |a Linear algebra in action |c Harry Dym |
264 | 1 | |a Providence, R.I. |b American Math. Soc. |c 2007 | |
300 | |a XVI, 541 S. |b graph. Darst. |c 27 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate studies in mathematics |v 78 | |
650 | 4 | |a Algèbre linéaire - Manuels d'enseignement supérieur | |
650 | 4 | |a Algebras, Linear | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Graduate studies in mathematics |v 78 |w (DE-604)BV009739289 |9 78 | |
856 | 4 | |u http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2106960&custom_att_2=simple_viewer |3 Inhaltsverzeichnis | |
856 | 4 | |u http://www.gbv.de/dms/goettingen/515266868.pdf |z lizenzfrei |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016333143&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016333143 |
Datensatz im Suchindex
_version_ | 1804137404388343808 |
---|---|
adam_text | LINEAR ALGEBRA IN ACTION HARRY DYM GRADUATE STUDIES IN MATHEMATICS
VOLUME 78 AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND
CONTENTS PREFACE XV CHAPTER 1. VECTOR SPACES 1 §1.1. PREVIEW 1 §1.2. THE
ABSTRACT DEFINITION OF A VECTOR SPACE 2 §1.3. SOME DEFINITIONS 5 §1.4.
MAPPINGS 11 §1.5. TRIANGULAR MATRICES 13 §1.6. BLOCK TRIANGULAR MATRICES
16 §1.7. SCHUR COMPLEMENTS 17 §1.8. OTHER MATRIX PRODUCTS 19 CHAPTER 2.
GAUSSIAN ELIMINATION 21 §2.1. SOME PRELIMINARY OBSERVATIONS 22 §2.2.
EXAMPLES 24 §2.3. UPPER ECHELON MATRICES 30 §2.4. THE CONSERVATION OF
DIMENSION 36 §2.5. QUOTIENT SPACES 38 §2.6. CONSERVATION OF DIMENSION
FOR MATRICES 38 §2.7. FROM U TO A 40 §2.8. SQUARE MATRICES 41 CHAPTER 3.
ADDITIONAL APPLICATIONS OF GAUSSIAN ELIMINATION 45 §3.1. GAUSSIAN
ELIMINATION REDUX 45 VI CONTENTS §3.2. PROPERTIES OF BA AND AC 48 §3.3.
EXTRACTING A BASIS 50 §3.4. COMPUTING THE COEFFICIENTS IN A BASIS 51
§3.5. THE GAUSS-SEIDEL METHOD 52 §3.6. BLOCK GAUSSIAN ELIMINATION 55
§3.7. {0, 1, OO} 56 §3.8. REVIEW 57 CHAPTER 4. EIGENVALUES AND
EIGENVECTORS 61 §4.1. CHANGE OF BASIS AND SIMILARITY 62 §4.2. INVARIANT
SUBSPACES 64 §4.3. EXISTENCE OF EIGENVALUES 64 §4.4. EIGENVALUES FOR
MATRICES 66 §4.5. DIRECT SUMS 69 §4.6. DIAGONALIZABLE MATRICES 71 §4.7.
AN ALGORITHM FOR DIAGONALIZING MATRICES 73 §4.8. COMPUTING EIGENVALUES
AT THIS POINT 74 §4.9. NOT ALL MATRICES ARE DIAGONALIZABLE 76 §4.10. THE
JORDAN DECOMPOSITION THEOREM 78 §4.11. AN INSTRUCTIVE EXAMPLE 79 §4.12.
THE BINOMIAL FORMULA 82 §4.13. MORE DIRECT SUM DECOMPOSITIONS 82 §4.14.
VERIFICATION OF THEOREM 4.12 84 §4.15. BIBLIOGRAPHICAL NOTES 87 CHAPTER
5. DETERMINANTS 89 §5.1. FUNCTIONALS 89 §5.2. DETERMINANTS 90 §5.3.
USEFUL RULES FOR CALCULATING DETERMINANTS 93 §5.4. EIGENVALUES 97 §5.5.
EXPLOITING BLOCK STRUCTURE 99 §5.6. THE BINET-CAUCHY FORMULA 102 §5.7.
MINORS 104 §5.8. USES OF DETERMINANTS 108 §5.9. COMPANION MATRICES 108
§5.10. CIRCULANTS AND VANDERMONDE MATRICES 109 CONTENTS . VII CHAPTER 6.
CALCULATING JORDAN FORMS 111 §6.1. OVERVIEW 112 §6.2. STRUCTURE OF THE
NULLSPACES J F BJ 112 §6.3. CHAINS AND CELLS 115 §6.4. COMPUTING J 116
§6.5. AN ALGORITHM FOR U 117 §6.6. AN EXAMPLE 120 §6.7. ANOTHER EXAMPLE
122 §6.8. JORDAN DECOMPOSITIONS FOR REAL MATRICES 126 §6.9. COMPANION
AND GENERALIZED VANDERMONDE MATRICES 128 CHAPTER 7. NORMED LINEAR SPACES
133 §7.1. FOUR INEQUALITIES 133 §7.2. NORMED LINEAR SPACES 138 §7.3.
EQUIVALENCE OF NORMS 140 §7.4. NORMS OF LINEAR TRANSFORMATIONS 142 §7.5.
MULTIPLICATIVE NORMS 143 §7.6. EVALUATING SOME OPERATOR NORMS 145 §7.7.
SMALL PERTURBATIONS 147 §7.8. ANOTHER ESTIMATE 149 §7.9. BOUNDED LINEAR
FUNCTIONAL 150 §7.10. EXTENSIONS OF BOUNDED LINEAR FUNCTIONALS 152
§7.11. BANACH SPACES 155 CHAPTER 8. INNER PRODUCT SPACES AND
ORTHOGONALITY 157 §8.1. INNER PRODUCT SPACES 157 §8.2. A
CHARACTERIZATION OF INNER PRODUCT SPACES 160 §8.3. ORTHOGONALITY 161
§8.4. GRAM MATRICES 163 §8.5. ADJOINTS 163 §8.6. THE RIESZ
REPRESENTATION THEOREM 166 §8.7. NORMAL, SELFADJOINT AND UNITARY
TRANSFORMATIONS 168 §8.8. PROJECTIONS AND DIRECT SUM DECOMPOSITIONS 170
§8.9. ORTHOGONAL PROJECTIONS 172 §8.10. ORTHOGONAL EXPANSIONS 174 §8.11.
THE GRAM-SCHMIDT METHOD 177 VIII CONTENTS §8.12. TOEPLITZ AND HANKEL
MATRICES 178 §8.13. GAUSSIAN QUADRATURE 180 §8.14. BIBLIOGRAPHICAL NOTES
183 CHAPTER 9. SYMMETRIC, HERMITIAN AND NORMAL MATRICES 185 §9.1.
HERMITIAN MATRICES ARE DIAGONALIZABLE 186 §9.2. COMMUTING HERMITIAN
MATRICES 188 §9.3. REAL HERMITIAN MATRICES 190 §9.4. PROJECTIONS AND
DIRECT SUMS IN F N 191 §9.5. PROJECTIONS AND RANK 195 §9.6. NORMAL
MATRICES 195 §9.7. SCHUR S THEOREM 198 §9.8. QR FACTORIZATION 201 §9.9.
AREAS, VOLUMES AND DETERMINANTS 202 §9.10. BIBLIOGRAPHICAL NOTES 206
CHAPTER 10. SINGULAR VALUES AND RELATED INEQUALITIES 207 §10.1. SINGULAR
VALUE DECOMPOSITIONS 207 §10.2. COMPLEX SYMMETRIC MATRICES 212 §10.3.
APPROXIMATE SOLUTIONS OF LINEAR EQUATIONS 213 §10.4. THE COURANT-FISCHER
THEOREM 215 §10.5. INEQUALITIES FOR SINGULAR VALUES 218 §10.6.
BIBLIOGRAPHICAL NOTES 225 CHAPTER 11. PSEUDOINVERSES 227 §11.1.
PSEUDOINVERSES 227 §11.2. THE MOORE-PENROSE INVERSE 234 §11.3. BEST
APPROXIMATION IN TERMS OF MOORE-PENROSE INVERSES 237 CHAPTER 12.
TRIANGULAR FACTORIZATION AND POSITIVE DEFINITE MATRICES 239 §12.1. A
DETOUR ON TRIANGULAR FACTORIZATION 240 §12.2. DEFINITE AND SEMIDEFMITE
MATRICES 242 §12.3. CHARACTERIZATIONS OF POSITIVE DEFINITE MATRICES 244
§12.4. AN APPLICATION OF FACTORIZATION 247 §12.5. POSITIVE DEFINITE
TOEPLITZ MATRICES 248 §12.6. DETOUR ON BLOCK TOEPLITZ MATRICES 254
§12.7. A MAXIMUM ENTROPY MATRIX COMPLETION PROBLEM 258 §12.8. SCHUR
COMPLEMENTS FOR SEMIDEFINITE MATRICES 262 CONTENTS IX §12.9. SQUARE
ROOTS 265 §12.10. POLAR FORMS 267 §12.11. MATRIX INEQUALITIES 268
§12.12. A MINIMAL NORM COMPLETION PROBLEM 271 §12.13. A DESCRIPTION OF
ALL SOLUTIONS TO THE MINIMAL NORM COMPLETION PROBLEM 273 §12.14.
BIBLIOGRAPHICAL NOTES 274 CHAPTER 13. DIFFERENCE EQUATIONS AND
DIFFERENTIAL EQUATIONS 275 §13.1. SYSTEMS OF DIFFERENCE EQUATIONS 276
§13.2. THE EXPONENTIAL E TA 277 §13.3. SYSTEMS OF DIFFERENTIAL EQUATIONS
279 §13.4. UNIQUENESS 281 §13.5. ISOMETRIC AND ISOSPECTRAL FLOWS 282
§13.6. SECOND-ORDER DIFFERENTIAL SYSTEMS 283 §13.7. STABILITY 284 §13.8.
NONHOMOGENEOUS DIFFERENTIAL SYSTEMS 285 §13.9. STRATEGY FOR EQUATIONS
285 §13.10. SECOND-ORDER DIFFERENCE EQUATIONS 286 §13.11. HIGHER ORDER
DIFFERENCE EQUATIONS 289 §13.12. ORDINARY DIFFERENTIAL EQUATIONS 290
§13.13. WRONSKIANS 293 §13.14. VARIATION OF PARAMETERS 295 CHAPTER 14.
VECTOR VALUED FUNCTIONS 297 §14.1. MEAN VALUE THEOREMS 298 §14.2.
TAYLOR S FORMULA WITH REMAINDER 299 §14.3. APPLICATION OF TAYLOR S
FORMULA WITH REMAINDER 300 §14.4. MEAN VALUE THEOREM FOR FUNCTIONS OF
SEVERAL VARIABLES 301 §14.5. MEAN VALUE THEOREMS FOR VECTOR VALUED
FUNCTIONS OF SEVERAL VARIABLES 301 §14.6. NEWTON S METHOD 304 §14.7. A
CONTRACTIVE FIXED POINT THEOREM 306 §14.8. A REFINED CONTRACTIVE FIXED
POINT THEOREM 308 §14.9. SPECTRAL RADIUS 309 §14.10. THE BROUWER FIXED
POINT THEOREM 313 §14.11. BIBLIOGRAPHICAL NOTES 316 X . CONTENTS CHAPTER
15. THE IMPLICIT FUNCTION THEOREM 317 §15.1. PRELIMINARY DISCUSSION 317
§15.2. THE MAIN THEOREM 319 §15.3. A GENERALIZATION OF THE IMPLICIT
FUNCTION THEOREM 324 §15.4. CONTINUOUS DEPENDENCE OF SOLUTIONS 326
§15.5. THE INVERSE FUNCTION THEOREM 327 §15.6. ROOTS OF POLYNOMIALS 329
§15.7. AN INSTRUCTIVE EXAMPLE 329 §15.8. A MORE SOPHISTICATED APPROACH
331 §15.9. DYNAMICAL SYSTEMS 333 §15.10. LYAPUNOV FUNCTIONS 335 §15.11.
BIBLIOGRAPHICAL NOTES 336 CHAPTER 16. EXTREMAL PROBLEMS 337 §16.1.
CLASSICAL EXTREMAL PROBLEMS 337 §16.2. EXTREMAL PROBLEMS WITH
CONSTRAINTS 341 §16.3. EXAMPLES 344 §16.4. KRYLOV SUBSPACES 349 §16.5.
THE CONJUGATE GRADIENT METHOD 349 §16.6. DUAL EXTREMAL PROBLEMS 354
§16.7. BIBLIOGRAPHICAL NOTES 356 CHAPTER 17. MATRIX VALUED HOLOMORPHIC
FUNCTIONS 357 §17.1. DIFFERENTIATION 357 §17.2. CONTOUR INTEGRATION 361
§17.3. EVALUATING INTEGRALS BY CONTOUR INTEGRATION 365 §17.4. A SHORT
DETOUR ON FOURIER ANALYSIS 370 §17.5. CONTOUR INTEGRALS OF MATRIX VALUED
FUNCTIONS 372 §17.6. CONTINUOUS DEPENDENCE OF THE EIGENVALUES 375 §17.7.
MORE ON SMALL PERTURBATIONS 377 §17.8. SPECTRAL RADIUS REDUX 378 §17.9.
FRACTIONAL POWERS 381 CHAPTER 18. MATRIX EQUATIONS 383 §18.1. THE
EQUATION X - AXB = C 38 3 §18.2. THE SYLVESTER EQUATION AX - XB = C 385
§18.3. SPECIAL CLASSES OF SOLUTIONS 388 CONTENTS . XI §18.4. §18.5.
§18.6. §18.7. CHAPTER §19.1. §19.2. §19.3. §19.4. §19.5. §19.6. §19.7.
CHAPTER §20.1. §20.2. §20.3. §20.4. §20.5. §20.6. §20.7. §20.8. §20.9.
§20.10 §20.11 CHAPTER §21.1. §21.2. §21.3. §21.4. §21.5. §21.6. §21.7.
§21.8. 521.9. RICCATI EQUATIONS TWO LEMMAS AN LQR PROBLEM
BIBLIOGRAPHICAL NOTES 19. REALIZATION THEORY MINIMAL REALIZATIONS
STABILIZABLE AND DETECTABLE REALIZATIONS REPRODUCING KERNEL HILBERT
SPACES DE BRANGES SPACES R A INVARIANCE FACTORIZATION OF (A)
BIBLIOGRAPHICAL NOTES 20. .EIGENVALUE LOCATION PROBLEMS INTERLACING
SYLVESTER S LAW OF INERTIA CONGRUENCE COUNTING POSITIVE AND NEGATIVE
EIGENVALUES EXPLOITING CONTINUITY GERSGORIN DISKS THE SPECTRAL MAPPING
PRINCIPLE AX = XB INERTIA THEOREMS . AN EIGENVALUE ASSIGNMENT PROBLEM .
BIBLIOGRAPHICAL NOTES 21. ZERO LOCATION PROBLEMS BEZOUTIANS A DERIVATION
OF THE FORMULA FOR HF BASED ON REALIZATION THE BARNETT IDENTITY THE MAIN
THEOREM ON BEZOUTIANS RESULTANTS OTHER DIRECTIONS BEZOUTIANS FOR REAL
POLYNOMIALS STABLE POLYNOMIALS KHARITONOV S THEOREM 390 396 398 400 401
408 415 416 418 420 421 425 427 427 430 431 433 437 438 439 440 441 443
446 447 447 452 453 455 457 461 463 464 466 XII CONTENTS §21.10.
BIBLIOGRAPHICAL NOTES 467 CHAPTER 22. CONVEXITY 469 §22.1. PRELIMINARIES
469 §22.2. CONVEX FUNCTIONS 471 §22.3. CONVEX SETS IN R N 473 §22.4.
SEPARATION THEOREMS IN R N 475 §22.5. HYPERPLANES 477 §22.6. SUPPORT
HYPERPLANES 479 §22.7. CONVEX HULLS 480 §22.8. EXTREME POINTS 482 §22.9.
BROUWER S THEOREM FOR COMPACT CONVEX SETS 485 §22.10. THE MINKOWSKI
FUNCTIONAL 485 §22.11. THE GAUSS-LUCAS THEOREM 488 §22.12. THE NUMERICAL
RANGE 489 §22.13. EIGENVALUES VERSUS NUMERICAL RANGE 491 §22.14. THE
HEINZ INEQUALITY 492 §22.15. BIBLIOGRAPHICAL NOTES 494 CHAPTER 23.
MATRICES WITH NONNEGATIVE ENTRIES 495 §23.1. PERRON-FROBENIUS THEORY 496
§23.2. STOCHASTIC MATRICES 503 §23.3. DOUBLY STOCHASTIC MATRICES 504
§23.4. AN INEQUALITY OF KY FAN 507 §23.5. THE SCHUR-HORN CONVEXITY
THEOREM 509 §23.6. BIBLIOGRAPHICAL NOTES 513 APPENDIX A. SOME FACTS FROM
ANALYSIS 515 §A.L. CONVERGENCE OF SEQUENCES OF POINTS 515 §A.2.
CONVERGENCE OF SEQUENCES OF FUNCTIONS 516 §A.3. CONVERGENCE OF SUMS 516
§A.4. SUPS AND INFS 517 §A.5. TOPOLOGY 518 §A.6. COMPACT SETS 518 §A.7.
NORMED LINEAR SPACES 518 APPENDIX B. MORE COMPLEX VARIABLES 521 §B.L.
POWER SERIES 521 CONTENTS - XIII §B.2. ISOLATED ZEROS 523 §B.3. THE
MAXIMUM MODULUS PRINCIPLE 525 §B.4. IN (1 - A) WHEN |A| 1 525 §B.5.
ROUCHE S THEOREM 526 §B.6. LIOUVILLE S THEOREM 528 §B.7. LAURENT
EXPANSIONS 528 §B.8. PARTIAL FRACTION EXPANSIONS 529 BIBLIOGRAPHY 531
NOTATION INDEX 535 SUBJECT INDEX 537
|
adam_txt |
LINEAR ALGEBRA IN ACTION HARRY DYM GRADUATE STUDIES IN MATHEMATICS
VOLUME 78 AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND
CONTENTS PREFACE XV CHAPTER 1. VECTOR SPACES 1 §1.1. PREVIEW 1 §1.2. THE
ABSTRACT DEFINITION OF A VECTOR SPACE 2 §1.3. SOME DEFINITIONS 5 §1.4.
MAPPINGS 11 §1.5. TRIANGULAR MATRICES 13 §1.6. BLOCK TRIANGULAR MATRICES
16 §1.7. SCHUR COMPLEMENTS 17 §1.8. OTHER MATRIX PRODUCTS 19 CHAPTER 2.
GAUSSIAN ELIMINATION 21 §2.1. SOME PRELIMINARY OBSERVATIONS 22 §2.2.
EXAMPLES 24 §2.3. UPPER ECHELON MATRICES 30 §2.4. THE CONSERVATION OF
DIMENSION 36 §2.5. QUOTIENT SPACES 38 §2.6. CONSERVATION OF DIMENSION
FOR MATRICES 38 §2.7. FROM U TO A 40 §2.8. SQUARE MATRICES 41 CHAPTER 3.
ADDITIONAL APPLICATIONS OF GAUSSIAN ELIMINATION 45 §3.1. GAUSSIAN
ELIMINATION REDUX 45 VI CONTENTS §3.2. PROPERTIES OF BA AND AC 48 §3.3.
EXTRACTING A BASIS 50 §3.4. COMPUTING THE COEFFICIENTS IN A BASIS 51
§3.5. THE GAUSS-SEIDEL METHOD 52 §3.6. BLOCK GAUSSIAN ELIMINATION 55
§3.7. {0, 1, OO} 56 §3.8. REVIEW 57 CHAPTER 4. EIGENVALUES AND
EIGENVECTORS 61 §4.1. CHANGE OF BASIS AND SIMILARITY 62 §4.2. INVARIANT
SUBSPACES 64 §4.3. EXISTENCE OF EIGENVALUES 64 §4.4. EIGENVALUES FOR
MATRICES 66 §4.5. DIRECT SUMS 69 §4.6. DIAGONALIZABLE MATRICES 71 §4.7.
AN ALGORITHM FOR DIAGONALIZING MATRICES 73 §4.8. COMPUTING EIGENVALUES
AT THIS POINT 74 §4.9. NOT ALL MATRICES ARE DIAGONALIZABLE 76 §4.10. THE
JORDAN DECOMPOSITION THEOREM 78 §4.11. AN INSTRUCTIVE EXAMPLE 79 §4.12.
THE BINOMIAL FORMULA 82 §4.13. MORE DIRECT SUM DECOMPOSITIONS 82 §4.14.
VERIFICATION OF THEOREM 4.12 84 §4.15. BIBLIOGRAPHICAL NOTES 87 CHAPTER
5. DETERMINANTS 89 §5.1. FUNCTIONALS 89 §5.2. DETERMINANTS 90 §5.3.
USEFUL RULES FOR CALCULATING DETERMINANTS 93 §5.4. EIGENVALUES 97 §5.5.
EXPLOITING BLOCK STRUCTURE 99 §5.6. THE BINET-CAUCHY FORMULA 102 §5.7.
MINORS 104 §5.8. USES OF DETERMINANTS 108 §5.9. COMPANION MATRICES 108
§5.10. CIRCULANTS AND VANDERMONDE MATRICES 109 CONTENTS . VII CHAPTER 6.
CALCULATING JORDAN FORMS 111 §6.1. OVERVIEW 112 §6.2. STRUCTURE OF THE
NULLSPACES J\F BJ 112 §6.3. CHAINS AND CELLS 115 §6.4. COMPUTING J 116
§6.5. AN ALGORITHM FOR U 117 §6.6. AN EXAMPLE 120 §6.7. ANOTHER EXAMPLE
122 §6.8. JORDAN DECOMPOSITIONS FOR REAL MATRICES 126 §6.9. COMPANION
AND GENERALIZED VANDERMONDE MATRICES 128 CHAPTER 7. NORMED LINEAR SPACES
133 §7.1. FOUR INEQUALITIES 133 §7.2. NORMED LINEAR SPACES 138 §7.3.
EQUIVALENCE OF NORMS 140 §7.4. NORMS OF LINEAR TRANSFORMATIONS 142 §7.5.
MULTIPLICATIVE NORMS 143 §7.6. EVALUATING SOME OPERATOR NORMS 145 §7.7.
SMALL PERTURBATIONS 147 §7.8. ANOTHER ESTIMATE 149 §7.9. BOUNDED LINEAR
FUNCTIONAL 150 §7.10. EXTENSIONS OF BOUNDED LINEAR FUNCTIONALS 152
§7.11. BANACH SPACES 155 CHAPTER 8. INNER PRODUCT SPACES AND
ORTHOGONALITY 157 §8.1. INNER PRODUCT SPACES 157 §8.2. A
CHARACTERIZATION OF INNER PRODUCT SPACES 160 §8.3. ORTHOGONALITY 161
§8.4. GRAM MATRICES 163 §8.5. ADJOINTS 163 §8.6. THE RIESZ
REPRESENTATION THEOREM 166 §8.7. NORMAL, SELFADJOINT AND UNITARY
TRANSFORMATIONS 168 §8.8. PROJECTIONS AND DIRECT SUM DECOMPOSITIONS 170
§8.9. ORTHOGONAL PROJECTIONS 172 §8.10. ORTHOGONAL EXPANSIONS 174 §8.11.
THE GRAM-SCHMIDT METHOD 177 VIII CONTENTS §8.12. TOEPLITZ AND HANKEL
MATRICES 178 §8.13. GAUSSIAN QUADRATURE 180 §8.14. BIBLIOGRAPHICAL NOTES
183 CHAPTER 9. SYMMETRIC, HERMITIAN AND NORMAL MATRICES 185 §9.1.
HERMITIAN MATRICES ARE DIAGONALIZABLE 186 §9.2. COMMUTING HERMITIAN
MATRICES 188 §9.3. REAL HERMITIAN MATRICES 190 §9.4. PROJECTIONS AND
DIRECT SUMS IN F N 191 §9.5. PROJECTIONS AND RANK 195 §9.6. NORMAL
MATRICES 195 §9.7. SCHUR'S THEOREM 198 §9.8. QR FACTORIZATION 201 §9.9.
AREAS, VOLUMES AND DETERMINANTS 202 §9.10. BIBLIOGRAPHICAL NOTES 206
CHAPTER 10. SINGULAR VALUES AND RELATED INEQUALITIES 207 §10.1. SINGULAR
VALUE DECOMPOSITIONS 207 §10.2. COMPLEX SYMMETRIC MATRICES 212 §10.3.
APPROXIMATE SOLUTIONS OF LINEAR EQUATIONS 213 §10.4. THE COURANT-FISCHER
THEOREM 215 §10.5. INEQUALITIES FOR SINGULAR VALUES 218 §10.6.
BIBLIOGRAPHICAL NOTES 225 CHAPTER 11. PSEUDOINVERSES 227 §11.1.
PSEUDOINVERSES 227 §11.2. THE MOORE-PENROSE INVERSE 234 §11.3. BEST
APPROXIMATION IN TERMS OF MOORE-PENROSE INVERSES 237 CHAPTER 12.
TRIANGULAR FACTORIZATION AND POSITIVE DEFINITE MATRICES 239 §12.1. A
DETOUR ON TRIANGULAR FACTORIZATION 240 §12.2. DEFINITE AND SEMIDEFMITE
MATRICES 242 §12.3. CHARACTERIZATIONS OF POSITIVE DEFINITE MATRICES 244
§12.4. AN APPLICATION OF FACTORIZATION 247 §12.5. POSITIVE DEFINITE
TOEPLITZ MATRICES 248 §12.6. DETOUR ON BLOCK TOEPLITZ MATRICES 254
§12.7. A MAXIMUM ENTROPY MATRIX COMPLETION PROBLEM 258 §12.8. SCHUR
COMPLEMENTS FOR SEMIDEFINITE MATRICES 262 CONTENTS IX §12.9. SQUARE
ROOTS 265 §12.10. POLAR FORMS 267 §12.11. MATRIX INEQUALITIES 268
§12.12. A MINIMAL NORM COMPLETION PROBLEM 271 §12.13. A DESCRIPTION OF
ALL SOLUTIONS TO THE MINIMAL NORM COMPLETION PROBLEM 273 §12.14.
BIBLIOGRAPHICAL NOTES 274 CHAPTER 13. DIFFERENCE EQUATIONS AND
DIFFERENTIAL EQUATIONS 275 §13.1. SYSTEMS OF DIFFERENCE EQUATIONS 276
§13.2. THE EXPONENTIAL E TA 277 §13.3. SYSTEMS OF DIFFERENTIAL EQUATIONS
279 §13.4. UNIQUENESS 281 §13.5. ISOMETRIC AND ISOSPECTRAL FLOWS 282
§13.6. SECOND-ORDER DIFFERENTIAL SYSTEMS 283 §13.7. STABILITY 284 §13.8.
NONHOMOGENEOUS DIFFERENTIAL SYSTEMS 285 §13.9. STRATEGY FOR EQUATIONS
285 §13.10. SECOND-ORDER DIFFERENCE EQUATIONS 286 §13.11. HIGHER ORDER
DIFFERENCE EQUATIONS 289 §13.12. ORDINARY DIFFERENTIAL EQUATIONS 290
§13.13. WRONSKIANS 293 §13.14. VARIATION OF PARAMETERS 295 CHAPTER 14.
VECTOR VALUED FUNCTIONS 297 §14.1. MEAN VALUE THEOREMS 298 §14.2.
TAYLOR'S FORMULA WITH REMAINDER 299 §14.3. APPLICATION OF TAYLOR'S
FORMULA WITH REMAINDER 300 §14.4. MEAN VALUE THEOREM FOR FUNCTIONS OF
SEVERAL VARIABLES 301 §14.5. MEAN VALUE THEOREMS FOR VECTOR VALUED
FUNCTIONS OF SEVERAL VARIABLES 301 §14.6. NEWTON'S METHOD 304 §14.7. A
CONTRACTIVE FIXED POINT THEOREM 306 §14.8. A REFINED CONTRACTIVE FIXED
POINT THEOREM 308 §14.9. SPECTRAL RADIUS 309 §14.10. THE BROUWER FIXED
POINT THEOREM 313 §14.11. BIBLIOGRAPHICAL NOTES 316 X . CONTENTS CHAPTER
15. THE IMPLICIT FUNCTION THEOREM 317 §15.1. PRELIMINARY DISCUSSION 317
§15.2. THE MAIN THEOREM 319 §15.3. A GENERALIZATION OF THE IMPLICIT
FUNCTION THEOREM 324 §15.4. CONTINUOUS DEPENDENCE OF SOLUTIONS 326
§15.5. THE INVERSE FUNCTION THEOREM 327 §15.6. ROOTS OF POLYNOMIALS 329
§15.7. AN INSTRUCTIVE EXAMPLE 329 §15.8. A MORE SOPHISTICATED APPROACH
331 §15.9. DYNAMICAL SYSTEMS 333 §15.10. LYAPUNOV FUNCTIONS 335 §15.11.
BIBLIOGRAPHICAL NOTES 336 CHAPTER 16. EXTREMAL PROBLEMS 337 §16.1.
CLASSICAL EXTREMAL PROBLEMS 337 §16.2. EXTREMAL PROBLEMS WITH
CONSTRAINTS 341 §16.3. EXAMPLES 344 §16.4. KRYLOV SUBSPACES 349 §16.5.
THE CONJUGATE GRADIENT METHOD 349 §16.6. DUAL EXTREMAL PROBLEMS 354
§16.7. BIBLIOGRAPHICAL NOTES 356 CHAPTER 17. MATRIX VALUED HOLOMORPHIC
FUNCTIONS 357 §17.1. DIFFERENTIATION 357 §17.2. CONTOUR INTEGRATION 361
§17.3. EVALUATING INTEGRALS BY CONTOUR INTEGRATION 365 §17.4. A SHORT
DETOUR ON FOURIER ANALYSIS 370 §17.5. CONTOUR INTEGRALS OF MATRIX VALUED
FUNCTIONS 372 §17.6. CONTINUOUS DEPENDENCE OF THE EIGENVALUES 375 §17.7.
MORE ON SMALL PERTURBATIONS 377 §17.8. SPECTRAL RADIUS REDUX 378 §17.9.
FRACTIONAL POWERS 381 CHAPTER 18. MATRIX EQUATIONS 383 §18.1. THE
EQUATION X - AXB = C 38 3 §18.2. THE SYLVESTER EQUATION AX - XB = C 385
§18.3. SPECIAL CLASSES OF SOLUTIONS 388 CONTENTS . XI §18.4. §18.5.
§18.6. §18.7. CHAPTER §19.1. §19.2. §19.3. §19.4. §19.5. §19.6. §19.7.
CHAPTER §20.1. §20.2. §20.3. §20.4. §20.5. §20.6. §20.7. §20.8. §20.9.
§20.10 §20.11 CHAPTER §21.1. §21.2. §21.3. §21.4. §21.5. §21.6. §21.7.
§21.8. 521.9. RICCATI EQUATIONS TWO LEMMAS AN LQR PROBLEM
BIBLIOGRAPHICAL NOTES 19. REALIZATION THEORY MINIMAL REALIZATIONS
STABILIZABLE AND DETECTABLE REALIZATIONS REPRODUCING KERNEL HILBERT
SPACES DE BRANGES SPACES R A INVARIANCE FACTORIZATION OF (A)
BIBLIOGRAPHICAL NOTES 20. .EIGENVALUE LOCATION PROBLEMS INTERLACING
SYLVESTER'S LAW OF INERTIA CONGRUENCE COUNTING POSITIVE AND NEGATIVE
EIGENVALUES EXPLOITING CONTINUITY GERSGORIN DISKS THE SPECTRAL MAPPING
PRINCIPLE AX = XB INERTIA THEOREMS . AN EIGENVALUE ASSIGNMENT PROBLEM .
BIBLIOGRAPHICAL NOTES 21. ZERO LOCATION PROBLEMS BEZOUTIANS A DERIVATION
OF THE FORMULA FOR HF BASED ON REALIZATION THE BARNETT IDENTITY THE MAIN
THEOREM ON BEZOUTIANS RESULTANTS OTHER DIRECTIONS BEZOUTIANS FOR REAL
POLYNOMIALS STABLE POLYNOMIALS KHARITONOV'S THEOREM 390 396 398 400 401
408 415 416 418 420 421 425 427 427 430 431 433 437 438 439 440 441 443
446 447 447 452 453 455 457 461 463 464 466 XII CONTENTS §21.10.
BIBLIOGRAPHICAL NOTES 467 CHAPTER 22. CONVEXITY 469 §22.1. PRELIMINARIES
469 §22.2. CONVEX FUNCTIONS 471 §22.3. CONVEX SETS IN R N 473 §22.4.
SEPARATION THEOREMS IN R N 475 §22.5. HYPERPLANES 477 §22.6. SUPPORT
HYPERPLANES 479 §22.7. CONVEX HULLS 480 §22.8. EXTREME POINTS 482 §22.9.
BROUWER'S THEOREM FOR COMPACT CONVEX SETS 485 §22.10. THE MINKOWSKI
FUNCTIONAL 485 §22.11. THE GAUSS-LUCAS THEOREM 488 §22.12. THE NUMERICAL
RANGE 489 §22.13. EIGENVALUES VERSUS NUMERICAL RANGE 491 §22.14. THE
HEINZ INEQUALITY 492 §22.15. BIBLIOGRAPHICAL NOTES 494 CHAPTER 23.
MATRICES WITH NONNEGATIVE ENTRIES 495 §23.1. PERRON-FROBENIUS THEORY 496
§23.2. STOCHASTIC MATRICES 503 §23.3. DOUBLY STOCHASTIC MATRICES 504
§23.4. AN INEQUALITY OF KY FAN 507 §23.5. THE SCHUR-HORN CONVEXITY
THEOREM 509 §23.6. BIBLIOGRAPHICAL NOTES 513 APPENDIX A. SOME FACTS FROM
ANALYSIS 515 §A.L. CONVERGENCE OF SEQUENCES OF POINTS 515 §A.2.
CONVERGENCE OF SEQUENCES OF FUNCTIONS 516 §A.3. CONVERGENCE OF SUMS 516
§A.4. SUPS AND INFS 517 §A.5. TOPOLOGY 518 §A.6. COMPACT SETS 518 §A.7.
NORMED LINEAR SPACES 518 APPENDIX B. MORE COMPLEX VARIABLES 521 §B.L.
POWER SERIES 521 CONTENTS - XIII §B.2. ISOLATED ZEROS 523 §B.3. THE
MAXIMUM MODULUS PRINCIPLE 525 §B.4. IN (1 - A) WHEN |A| 1 525 §B.5.
ROUCHE'S THEOREM 526 §B.6. LIOUVILLE'S THEOREM 528 §B.7. LAURENT
EXPANSIONS 528 §B.8. PARTIAL FRACTION EXPANSIONS 529 BIBLIOGRAPHY 531
NOTATION INDEX 535 SUBJECT INDEX 537 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Dym, Harry 1938- |
author_GND | (DE-588)124041205 |
author_facet | Dym, Harry 1938- |
author_role | aut |
author_sort | Dym, Harry 1938- |
author_variant | h d hd |
building | Verbundindex |
bvnumber | BV023164959 |
callnumber-first | Q - Science |
callnumber-label | QA184 |
callnumber-raw | QA184.2 |
callnumber-search | QA184.2 |
callnumber-sort | QA 3184.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 220 |
classification_tum | MAT 150f |
ctrlnum | (OCoLC)70778386 (DE-599)DNB 2006049906 |
dewey-full | 512/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.5 |
dewey-search | 512/.5 |
dewey-sort | 3512 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01909nam a2200481zcb4500</leader><controlfield tag="001">BV023164959</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081002 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080214s2007 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006049906</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">082183813X</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-8218-3813-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821838136</subfield><subfield code="9">978-0-8218-3813-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)70778386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB 2006049906</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA184.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dym, Harry</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124041205</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear algebra in action</subfield><subfield code="c">Harry Dym</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, R.I.</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 541 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">27 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">78</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre linéaire - Manuels d'enseignement supérieur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">78</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">78</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2106960&custom_att_2=simple_viewer</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.gbv.de/dms/goettingen/515266868.pdf</subfield><subfield code="z">lizenzfrei</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016333143&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016333143</subfield></datafield></record></collection> |
id | DE-604.BV023164959 |
illustrated | Illustrated |
index_date | 2024-07-02T19:55:15Z |
indexdate | 2024-07-09T21:11:45Z |
institution | BVB |
isbn | 082183813X 9780821838136 |
language | English |
lccn | 2006049906 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016333143 |
oclc_num | 70778386 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-824 DE-20 DE-83 DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-824 DE-20 DE-83 DE-11 DE-188 |
physical | XVI, 541 S. graph. Darst. 27 cm |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | American Math. Soc. |
record_format | marc |
series | Graduate studies in mathematics |
series2 | Graduate studies in mathematics |
spelling | Dym, Harry 1938- Verfasser (DE-588)124041205 aut Linear algebra in action Harry Dym Providence, R.I. American Math. Soc. 2007 XVI, 541 S. graph. Darst. 27 cm txt rdacontent n rdamedia nc rdacarrier Graduate studies in mathematics 78 Algèbre linéaire - Manuels d'enseignement supérieur Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 s DE-604 Graduate studies in mathematics 78 (DE-604)BV009739289 78 http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2106960&custom_att_2=simple_viewer Inhaltsverzeichnis http://www.gbv.de/dms/goettingen/515266868.pdf lizenzfrei Inhaltsverzeichnis GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016333143&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dym, Harry 1938- Linear algebra in action Graduate studies in mathematics Algèbre linéaire - Manuels d'enseignement supérieur Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4035811-2 |
title | Linear algebra in action |
title_auth | Linear algebra in action |
title_exact_search | Linear algebra in action |
title_exact_search_txtP | Linear algebra in action |
title_full | Linear algebra in action Harry Dym |
title_fullStr | Linear algebra in action Harry Dym |
title_full_unstemmed | Linear algebra in action Harry Dym |
title_short | Linear algebra in action |
title_sort | linear algebra in action |
topic | Algèbre linéaire - Manuels d'enseignement supérieur Algebras, Linear Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Algèbre linéaire - Manuels d'enseignement supérieur Algebras, Linear Lineare Algebra |
url | http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2106960&custom_att_2=simple_viewer http://www.gbv.de/dms/goettingen/515266868.pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016333143&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV009739289 |
work_keys_str_mv | AT dymharry linearalgebrainaction |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis
Inhaltsverzeichnis