Monte Carlo strategies in scientific computing:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2008
|
Ausgabe: | 1. softcover print. |
Schriftenreihe: | Springer series in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 343 S. Ill., graph. Darst. |
ISBN: | 9780387763699 9780387952307 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023115644 | ||
003 | DE-604 | ||
005 | 20131115 | ||
007 | t | ||
008 | 080206s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780387763699 |c (softcover) |9 978-0-387-76369-9 | ||
020 | |a 9780387952307 |c (hardcover) |9 978-0-387-95230-7 | ||
035 | |a (OCoLC)191760006 | ||
035 | |a (DE-599)BVBBV023115644 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-19 |a DE-739 |a DE-91G |a DE-83 |a DE-11 |a DE-862 | ||
050 | 0 | |a Q180.55.S7 | |
082 | 0 | |a 501.519282 |2 21 | |
084 | |a QH 239 |0 (DE-625)141554: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a 65C05 |2 msc | ||
084 | |a 82C80 |2 msc | ||
084 | |a MAT 629f |2 stub | ||
084 | |a PHY 011f |2 stub | ||
084 | |a 82B80 |2 msc | ||
100 | 1 | |a Liu, Jun S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Monte Carlo strategies in scientific computing |c Jun S. Liu |
250 | |a 1. softcover print. | ||
264 | 1 | |a New York, NY |b Springer |c 2008 | |
300 | |a XVI, 343 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer series in statistics | |
650 | 4 | |a Naturwissenschaft | |
650 | 4 | |a Monte Carlo method | |
650 | 4 | |a Science |x Statistical methods | |
650 | 0 | 7 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016318171&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016318171 |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/SK 840 L783 |
DE-BY-FWS_katkey | 559506 |
DE-BY-FWS_media_number | 083000512621 |
_version_ | 1824553982355308544 |
adam_text | Contents
Preface
vii
1
Introduction
and Examples
1
1.1
The Need of Monte Carlo Techniques
............. 1
1.2
Scope and Outline of the Book
................ 3
1.3
Computations in Statistical Physics
............. 7
1.4
Molecular Structure Simulation
................ 9
1.5
Bioinformatics: Finding Weak Repetitive Patterns
..... 10
1.6
Nonlinear Dynamic System: Target Tracking
........ 14
1.7
Hypothesis Testing for Astronomical Observations
..... 16
1.8
Bayesian Inference of Multilevel Models
........... 18
1.9
Monte Carlo and Missing Data Problems
.......... 19
2
Basic Principles: Rejection, Weighting, and Others
23
2.1
Generating Simple Random Variables
............ 23
2.2
The Rejection Method
..................... 24
2.3
Variance Reduction Methods
................. 26
2.4
Exact Methods for Chain-Structured Models
........ 28
2.4.1
Dynamic programming
................. 29
2.4.2
Exact simulation
.................... 30
2.5
Importance Sampling and Weighted Sample
......... 31
2.5.1
An example
....................... 31
2.5.2
The basic idea
..................... 33
2.5.3
The rule of thumb for importance sampling
.... 34
xii Contents
2.5.4
Concept
of the weighted sample
............ 36
2.5.5
Marginalization in importance sampling
....... 37
2.5.6
Example: Solving a linear system
........... 38
2.5.7
Example: A Bayesian missing data problem
..... 40
2.6
Advanced Importance Sampling Techniques
......... 42
2.6.1
Adaptive importance sampling
............ 42
2.6.2
Rejection and weighting
................ 43
2.6.3
Sequential importance sampling
............ 46
2.6.4
Rejection control in sequential importance sampling
48
2.7
Application of SIS in Population Genetics
.......... 49
2.8
Problems
............................ 51
3
Theory of Sequential Monte Carlo
53
3.1
Early Developments: Growing a Polymer
........... 55
3.1.1
A simple model of polymer: Self-avoid walk
..... 55
3.1.2
Growing a polymer on the square lattice
....... 56
3.1.3
Limitations of the growth method
.......... 59
3.2
Sequential Imputation for Statistical Missing Data Problems
60
3.2.1
Likelihood computation
................ 60
3.2.2
Bayesian computation
................. 62
3.3
Nonlinear Filtering
....................... 64
3.4
A General Framework
..................... 67
3.4.1
The choice of the sampling distribution
....... 69
3.4.2
Normalizing constant
................. 69
3.4.3
Pruning, enrichment, and resampling
......... 71
3.4.4
More about resampling
................ 72
3.4.5
Partial rejection control
................ 75
3.4.6
Marginalization, look-ahead, and delayed estimate
. 76
3.5
Problems
............................ 77
4
Sequential Monte Carlo in Action
79
4.1
Some Biological Problems
................... 79
4.1.1
Molecular Simulation
................. 79
4.1.2
Inference in population genetics
............ 81
4.1.3
Finding motif patterns in
DNA
sequences
...... 84
4.2
Approximating
Permanents
.................. 90
4.3
Counting
0-1
Tables with Fixed Margins
........... 92
4.4
Bayesian Missing Data Problems
............... 94
4.4.1
Murray s data
...................... 94
4.4.2
Nonparametric
Bayes
analysis of binomial data
... 95
4.5
Problems in Signal Processing
................. 98
4.5.1
Target tracking in clutter and mixture
Kalman
filter
98
4.5.2
Digital signal extraction in fading channels
..... 102
4.6
Problems
............................ 103
Contents xiii
Metropolis
Algorithm and Beyond
105
5.1
The Metropolis Algorithm
................... 106
5.2
Mathematical Formulation and Hastings s Generalization
.
Ill
5.3
Why Does the Metropolis Algorithm Work?
......... 112
5.4
Some Special Algorithms
.................... 114
5.4.1
Random-walk Metropolis
............... 114
5.4.2
Metropolized independence sampler
......... 115
5.4.3
Configurational bias Monte Carlo
........... 116
5.5
Multipoint Metropolis Methods
................ 117
5.5.1
Multiple independent proposals
............ 118
5.5.2
Correlated multipoint proposals
............ 120
5.6
Reversible Jumping Rule
.................... 122
5.7
Dynamic Weighting
...................... 124
5.8
Output Analysis and Algorithm Efficiency
.......... 125
5.9
Problems
............................ 127
The Gibbs Sampler
129
6.1
Gibbs Sampling Algorithms
.................. 129
6.2
Illustrative Examples
...................... 131
6.3
Some Special Samplers
..................... 133
6.3.1
Slice sampler
...................... 133
6.3.2
Metropolized Gibbs sampler
.............. 133
6.3.3
Hit-and-run algorithm
................. 134
6.4
Data Augmentation Algorithm
................ 135
6.4.1
Bayesian missing data problem
............ 135
6.4.2
The original DA algorithm
.............. 136
6.4.3
Connection with the Gibbs sampler
......... 137
6.4.4
An example: Hierarchical
Bayes
model
........ 138
6.5
Finding Repetitive Motifs in Biological Sequences
..... 139
6.5.1
A Gibbs sampler for detecting subtle motifs
..... 140
6.5.2
Alignment and classification
.............. 141
6.6
Covariance Structures of the Gibbs Sampler
......... 143
6.6.1
Data Augmentation
.................. 143
6.6.2
Autocovariances for the random-scan Gibbs sampler
144
6.6.3
More efficient use of Monte Carlo samples
...... 146
6.7
Collapsing and Grouping in a Gibbs Sampler
........ 146
6.8
Problems
............................ 151
Cluster Algorithms for the Ising Model
153
7.1
Ising and Potts Model Revisit
................. 153
7.2
The Swendsen-Wang Algorithm as Data Augmentation
. . . 154
7.3
Convergence Analysis and Generalization
.......... 155
7.4
The Modification by Wolff
................... 157
7.5
Further Generalization
..................... 157
7.6
Discussion
............................ 158
xiv Contents
7.7 Problems............................ 159
8 General
Conditional Sampling
161
8.1
Partial Resampling
....................... 161
8.2
Case Studies for Partial Resampling
............. 163
8.2.1
Gaussian random field model
............. 163
8.2.2
Texture synthesis
.................... 165
8.2.3
Inference with multivariate t-distribution
...... 169
8.3
Transformation Group and Generalized Gibbs
........ 171
8.4
Application: Parameter Expansion for Data Augmentation
. 174
8.5
Some Examples in Bayesian Inference
............ 176
8.5.1
Probit
regression
.................... 176
8.5.2
Monte Carlo bridging for stochastic differential equa¬
tion
........................... 178
8.6
Problems
........................... . 181
9
Molecular Dynamics and Hybrid Monte Carlo
183
9.1
Basics of Newtonian Mechanics
................ 184
9.2
Molecular Dynamics Simulation
................ 185
9.3
Hybrid Monte Carlo
...................... 189
9.4
Algorithms Related to HMC
.................. 192
9.4.1
Langevin-Euler moves
................. 192
9.4.2
Generalized hybrid Monte Carlo
........... 193
9.4.3
Surrogate transition method
.............. 194
9.5
Multipoint Strategies for Hybrid Monte Carlo
........ 195
9.5.1
Neal s window method
................. 195
9.5.2
Multipoint method
................... 197
9.6
Application of HMC in Statistics
............... 198
9.6.1
Indirect observation model
.............. 199
9.6.2
Estimation in the stochastic volatility model
.... 201
10
Multilevel Sampling and Optimization Methods
205
10.1
Umbrella Sampling
....................... 206
10.2
Simulated Annealing
...................... 209
10.3
Simulated Tempering
...................... 210
10.4
Parallel Tempering
....................... 212
10.5
Generalized Ensemble Simulation
............... 215
10.5.1
Multicanonical sampling
................ 216
10.5.2
The l/i-ensemble method
............... 217
10.5.3
Comparison of algorithms
............... 218
10.6
Tempering with Dynamic Weighting
............. 219
10.6.1
Ising model simulation at sub-critical temperature
. 221
10.6.2
Neural network training
................ 222
Contents xv
11
Population-Based
Monte Carlo
Methods
225
11.
X Adaptive Direction Sampling: Snooker Algorithm
...... 226
11.2
Conjugate Gradient Monte Carlo
............... 227
11.3
Evolutionary Monte Carlo
................... 228
11.3.1
Evolutionary movements in binary-coded space
. . . 230
11.3.2
Evolutionary movements in continuous space
.... 231
11.4
Some Further Thoughts
.................... 233
11.5
Numerical Examples
...................... 235
11.5.1
Simulating from a bimodal distribution
....... 235
11.5.2
Comparing algorithms for
a
multimodal
example
. . 236
11.5.3
Variable selection with binary-coded EMC
...... 237
11.5.4
Bayesian neural network training
........... 239
11.6
Problems
............................ 242
12
Markov Chains and Their Convergence
245
12.1
Basic Properties of a Markov Chain
............. 245
12.1.1
Chapman-Kolmogorov equation
............ 247
12.1.2
Convergence to stationarity
.............. 248
12.2
Coupling Method for Card Shuffling
............. 250
12.2.1
Random-to-top shuffling
................ 250
12.2.2
Riffle shuffling
..................... 251
12.3
Convergence Theorem for Finite-State Markov Chains
. . . 252
12.4
Coupling Method for General Markov Chain
......... 254
12.5
Geometric Inequalities
..................... 256
12.5.1
Basic setup
....................... 257
12.5.2
Poincaré
inequality
................... 257
12.5.3
Example: Simple random walk on a graph
...... 259
12.5.4
Cheeger s inequality
.................. 261
12.6
Functional Analysis for Markov Chains
............ 263
12.6.1
Forward and backward operators
........... 264
12.6.2
Convergence rate of Markov chains
.......... 266
12.6.3
Maximal correlation
.................. 267
12.7
Behavior of the Averages
................... 269
13
Selected Theoretical Topics
271
13.1
MCMC Convergence and Convergence Diagnostics
..... 271
13.2
Iterative Conditional Sampling
................ 273
13.2.1
Data augmentation
................... 273
13.2.2
Random-scan Gibbs sampler
............. 275
13.3
Comparison of Metropolis-Type Algorithms
......... 277
13.3.1
Peskun s ordering
.................... 277
13.3.2
Comparing schemes using Peskun s ordering
..... 279
13.4
Eigenvalue Analysis for the Independence Sampler
..... 281
13.5
Perfect Simulation
....................... 284
13.6
A Theory for Dynamic Weighting
............... 287
13.6.1
Definitions
....................... 287
xvi Contents
13.6.2
Weight behavior under different scenarios
...... 288
13.6.3
Estimation with weighted samples
.......... 291
13.6.4
A simulation study
................... 292
A Basics in Probability and Statistics
295
A.I Basic Probability Theory
................... 295
A.
1.1
Experiments, events, and probability
......... 295
A.
1.2
Univariate random variables and their properties
. . 296
A.
1.3
Multivariate random variable
............. 298
A.
1.4
Convergence of random variables
........... 300
A.
2
Statistical Modeling and Inference
.............. 301
A.2.1 Parametric statistical modeling
............ 301
A.2.2 FVequentist approach to statistical inference
..... 302
A.2.3 Bayesian methodology
................. 304
A.3
Bayes
Procedure and Missing Data Formalism
........ 306
A.3.1 The joint and posterior distributions
......... 306
A.3.
2
The missing data problem
............... 308
A.4 The Expectation-Maximization Algorithm
.......... 310
References
313
Author Index
333
Subject Index
338
|
adam_txt |
Contents
Preface
vii
1
Introduction
and Examples
1
1.1
The Need of Monte Carlo Techniques
. 1
1.2
Scope and Outline of the Book
. 3
1.3
Computations in Statistical Physics
. 7
1.4
Molecular Structure Simulation
. 9
1.5
Bioinformatics: Finding Weak Repetitive Patterns
. 10
1.6
Nonlinear Dynamic System: Target Tracking
. 14
1.7
Hypothesis Testing for Astronomical Observations
. 16
1.8
Bayesian Inference of Multilevel Models
. 18
1.9
Monte Carlo and Missing Data Problems
. 19
2
Basic Principles: Rejection, Weighting, and Others
23
2.1
Generating Simple Random Variables
. 23
2.2
The Rejection Method
. 24
2.3
Variance Reduction Methods
. 26
2.4
Exact Methods for Chain-Structured Models
. 28
2.4.1
Dynamic programming
. 29
2.4.2
Exact simulation
. 30
2.5
Importance Sampling and Weighted Sample
. 31
2.5.1
An example
. 31
2.5.2
The basic idea
. 33
2.5.3
The "rule of thumb" for importance sampling
. 34
xii Contents
2.5.4
Concept
of the weighted sample
. 36
2.5.5
Marginalization in importance sampling
. 37
2.5.6
Example: Solving a linear system
. 38
2.5.7
Example: A Bayesian missing data problem
. 40
2.6
Advanced Importance Sampling Techniques
. 42
2.6.1
Adaptive importance sampling
. 42
2.6.2
Rejection and weighting
. 43
2.6.3
Sequential importance sampling
. 46
2.6.4
Rejection control in sequential importance sampling
48
2.7
Application of SIS in Population Genetics
. 49
2.8
Problems
. 51
3
Theory of Sequential Monte Carlo
53
3.1
Early Developments: Growing a Polymer
. 55
3.1.1
A simple model of polymer: Self-avoid walk
. 55
3.1.2
Growing a polymer on the square lattice
. 56
3.1.3
Limitations of the growth method
. 59
3.2
Sequential Imputation for Statistical Missing Data Problems
60
3.2.1
Likelihood computation
. 60
3.2.2
Bayesian computation
. 62
3.3
Nonlinear Filtering
. 64
3.4
A General Framework
. 67
3.4.1
The choice of the sampling distribution
. 69
3.4.2
Normalizing constant
. 69
3.4.3
Pruning, enrichment, and resampling
. 71
3.4.4
More about resampling
. 72
3.4.5
Partial rejection control
. 75
3.4.6
Marginalization, look-ahead, and delayed estimate
. 76
3.5
Problems
. 77
4
Sequential Monte Carlo in Action
79
4.1
Some Biological Problems
. 79
4.1.1
Molecular Simulation
. 79
4.1.2
Inference in population genetics
. 81
4.1.3
Finding motif patterns in
DNA
sequences
. 84
4.2
Approximating
Permanents
. 90
4.3
Counting
0-1
Tables with Fixed Margins
. 92
4.4
Bayesian Missing Data Problems
. 94
4.4.1
Murray's data
. 94
4.4.2
Nonparametric
Bayes
analysis of binomial data
. 95
4.5
Problems in Signal Processing
. 98
4.5.1
Target tracking in clutter and mixture
Kalman
filter
98
4.5.2
Digital signal extraction in fading channels
. 102
4.6
Problems
. 103
Contents xiii
Metropolis
Algorithm and Beyond
105
5.1
The Metropolis Algorithm
. 106
5.2
Mathematical Formulation and Hastings's Generalization
.
Ill
5.3
Why Does the Metropolis Algorithm Work?
. 112
5.4
Some Special Algorithms
. 114
5.4.1
Random-walk Metropolis
. 114
5.4.2
Metropolized independence sampler
. 115
5.4.3
Configurational bias Monte Carlo
. 116
5.5
Multipoint Metropolis Methods
. 117
5.5.1
Multiple independent proposals
. 118
5.5.2
Correlated multipoint proposals
. 120
5.6
Reversible Jumping Rule
. 122
5.7
Dynamic Weighting
. 124
5.8
Output Analysis and Algorithm Efficiency
. 125
5.9
Problems
. 127
The Gibbs Sampler
129
6.1
Gibbs Sampling Algorithms
. 129
6.2
Illustrative Examples
. 131
6.3
Some Special Samplers
. 133
6.3.1
Slice sampler
. 133
6.3.2
Metropolized Gibbs sampler
. 133
6.3.3
Hit-and-run algorithm
. 134
6.4
Data Augmentation Algorithm
. 135
6.4.1
Bayesian missing data problem
. 135
6.4.2
The original DA algorithm
. 136
6.4.3
Connection with the Gibbs sampler
. 137
6.4.4
An example: Hierarchical
Bayes
model
. 138
6.5
Finding Repetitive Motifs in Biological Sequences
. 139
6.5.1
A Gibbs sampler for detecting subtle motifs
. 140
6.5.2
Alignment and classification
. 141
6.6
Covariance Structures of the Gibbs Sampler
. 143
6.6.1
Data Augmentation
. 143
6.6.2
Autocovariances for the random-scan Gibbs sampler
144
6.6.3
More efficient use of Monte Carlo samples
. 146
6.7
Collapsing and Grouping in a Gibbs Sampler
. 146
6.8
Problems
. 151
Cluster Algorithms for the Ising Model
153
7.1
Ising and Potts Model Revisit
. 153
7.2
The Swendsen-Wang Algorithm as Data Augmentation
. . . 154
7.3
Convergence Analysis and Generalization
. 155
7.4
The Modification by Wolff
. 157
7.5
Further Generalization
. 157
7.6
Discussion
. 158
xiv Contents
7.7 Problems. 159
8 General
Conditional Sampling
161
8.1
Partial Resampling
. 161
8.2
Case Studies for Partial Resampling
. 163
8.2.1
Gaussian random field model
. 163
8.2.2
Texture synthesis
. 165
8.2.3
Inference with multivariate t-distribution
. 169
8.3
Transformation Group and Generalized Gibbs
. 171
8.4
Application: Parameter Expansion for Data Augmentation
. 174
8.5
Some Examples in Bayesian Inference
. 176
8.5.1
Probit
regression
. 176
8.5.2
Monte Carlo bridging for stochastic differential equa¬
tion
. 178
8.6
Problems
. . 181
9
Molecular Dynamics and Hybrid Monte Carlo
183
9.1
Basics of Newtonian Mechanics
. 184
9.2
Molecular Dynamics Simulation
. 185
9.3
Hybrid Monte Carlo
. 189
9.4
Algorithms Related to HMC
. 192
9.4.1
Langevin-Euler moves
. 192
9.4.2
Generalized hybrid Monte Carlo
. 193
9.4.3
Surrogate transition method
. 194
9.5
Multipoint Strategies for Hybrid Monte Carlo
. 195
9.5.1
Neal's window method
. 195
9.5.2
Multipoint method
. 197
9.6
Application of HMC in Statistics
. 198
9.6.1
Indirect observation model
. 199
9.6.2
Estimation in the stochastic volatility model
. 201
10
Multilevel Sampling and Optimization Methods
205
10.1
Umbrella Sampling
. 206
10.2
Simulated Annealing
. 209
10.3
Simulated Tempering
. 210
10.4
Parallel Tempering
. 212
10.5
Generalized Ensemble Simulation
. 215
10.5.1
Multicanonical sampling
. 216
10.5.2
The l/i-ensemble method
. 217
10.5.3
Comparison of algorithms
. 218
10.6
Tempering with Dynamic Weighting
. 219
10.6.1
Ising model simulation at sub-critical temperature
. 221
10.6.2
Neural network training
. 222
Contents xv
11
Population-Based
Monte Carlo
Methods
225
11.
X Adaptive Direction Sampling: Snooker Algorithm
. 226
11.2
Conjugate Gradient Monte Carlo
. 227
11.3
Evolutionary Monte Carlo
. 228
11.3.1
Evolutionary movements in binary-coded space
. . . 230
11.3.2
Evolutionary movements in continuous space
. 231
11.4
Some Further Thoughts
. 233
11.5
Numerical Examples
. 235
11.5.1
Simulating from a bimodal distribution
. 235
11.5.2
Comparing algorithms for
a
multimodal
example
. . 236
11.5.3
Variable selection with binary-coded EMC
. 237
11.5.4
Bayesian neural network training
. 239
11.6
Problems
. 242
12
Markov Chains and Their Convergence
245
12.1
Basic Properties of a Markov Chain
. 245
12.1.1
Chapman-Kolmogorov equation
. 247
12.1.2
Convergence to stationarity
. 248
12.2
Coupling Method for Card Shuffling
. 250
12.2.1
Random-to-top shuffling
. 250
12.2.2
Riffle shuffling
. 251
12.3
Convergence Theorem for Finite-State Markov Chains
. . . 252
12.4
Coupling Method for General Markov Chain
. 254
12.5
Geometric Inequalities
. 256
12.5.1
Basic setup
. 257
12.5.2
Poincaré
inequality
. 257
12.5.3
Example: Simple random walk on a graph
. 259
12.5.4
Cheeger's inequality
. 261
12.6
Functional Analysis for Markov Chains
. 263
12.6.1
Forward and backward operators
. 264
12.6.2
Convergence rate of Markov chains
. 266
12.6.3
Maximal correlation
. 267
12.7
Behavior of the Averages
. 269
13
Selected Theoretical Topics
271
13.1
MCMC Convergence and Convergence Diagnostics
. 271
13.2
Iterative Conditional Sampling
. 273
13.2.1
Data augmentation
. 273
13.2.2
Random-scan Gibbs sampler
. 275
13.3
Comparison of Metropolis-Type Algorithms
. 277
13.3.1
Peskun's ordering
. 277
13.3.2
Comparing schemes using Peskun's ordering
. 279
13.4
Eigenvalue Analysis for the Independence Sampler
. 281
13.5
Perfect Simulation
. 284
13.6
A Theory for Dynamic Weighting
. 287
13.6.1
Definitions
. 287
xvi Contents
13.6.2
Weight behavior under different scenarios
. 288
13.6.3
Estimation with weighted samples
. 291
13.6.4
A simulation study
. 292
A Basics in Probability and Statistics
295
A.I Basic Probability Theory
. 295
A.
1.1
Experiments, events, and probability
. 295
A.
1.2
Univariate random variables and their properties
. . 296
A.
1.3
Multivariate random variable
. 298
A.
1.4
Convergence of random variables
. 300
A.
2
Statistical Modeling and Inference
. 301
A.2.1 Parametric statistical modeling
. 301
A.2.2 FVequentist approach to statistical inference
. 302
A.2.3 Bayesian methodology
. 304
A.3
Bayes
Procedure and Missing Data Formalism
. 306
A.3.1 The joint and posterior distributions
. 306
A.3.
2
The missing data problem
. 308
A.4 The Expectation-Maximization Algorithm
. 310
References
313
Author Index
333
Subject Index
338 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Liu, Jun S. |
author_facet | Liu, Jun S. |
author_role | aut |
author_sort | Liu, Jun S. |
author_variant | j s l js jsl |
building | Verbundindex |
bvnumber | BV023115644 |
callnumber-first | Q - Science |
callnumber-label | Q180 |
callnumber-raw | Q180.55.S7 |
callnumber-search | Q180.55.S7 |
callnumber-sort | Q 3180.55 S7 |
callnumber-subject | Q - General Science |
classification_rvk | QH 239 SK 820 SK 840 |
classification_tum | MAT 629f PHY 011f |
ctrlnum | (OCoLC)191760006 (DE-599)BVBBV023115644 |
dewey-full | 501.519282 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 501 - Philosophy and theory |
dewey-raw | 501.519282 |
dewey-search | 501.519282 |
dewey-sort | 3501.519282 |
dewey-tens | 500 - Natural sciences and mathematics |
discipline | Allgemeine Naturwissenschaft Physik Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Allgemeine Naturwissenschaft Physik Mathematik Wirtschaftswissenschaften |
edition | 1. softcover print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01782nam a2200493 c 4500</leader><controlfield tag="001">BV023115644</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131115 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080206s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387763699</subfield><subfield code="c">(softcover)</subfield><subfield code="9">978-0-387-76369-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387952307</subfield><subfield code="c">(hardcover)</subfield><subfield code="9">978-0-387-95230-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)191760006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023115644</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q180.55.S7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">501.519282</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 239</subfield><subfield code="0">(DE-625)141554:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65C05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">82C80</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 629f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 011f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">82B80</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jun S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Monte Carlo strategies in scientific computing</subfield><subfield code="c">Jun S. Liu</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. softcover print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 343 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016318171&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016318171</subfield></datafield></record></collection> |
id | DE-604.BV023115644 |
illustrated | Illustrated |
index_date | 2024-07-02T19:49:54Z |
indexdate | 2025-02-20T06:44:31Z |
institution | BVB |
isbn | 9780387763699 9780387952307 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016318171 |
oclc_num | 191760006 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-739 DE-91G DE-BY-TUM DE-83 DE-11 DE-862 DE-BY-FWS |
owner_facet | DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-739 DE-91G DE-BY-TUM DE-83 DE-11 DE-862 DE-BY-FWS |
physical | XVI, 343 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series2 | Springer series in statistics |
spellingShingle | Liu, Jun S. Monte Carlo strategies in scientific computing Naturwissenschaft Monte Carlo method Science Statistical methods Monte-Carlo-Simulation (DE-588)4240945-7 gnd |
subject_GND | (DE-588)4240945-7 |
title | Monte Carlo strategies in scientific computing |
title_auth | Monte Carlo strategies in scientific computing |
title_exact_search | Monte Carlo strategies in scientific computing |
title_exact_search_txtP | Monte Carlo strategies in scientific computing |
title_full | Monte Carlo strategies in scientific computing Jun S. Liu |
title_fullStr | Monte Carlo strategies in scientific computing Jun S. Liu |
title_full_unstemmed | Monte Carlo strategies in scientific computing Jun S. Liu |
title_short | Monte Carlo strategies in scientific computing |
title_sort | monte carlo strategies in scientific computing |
topic | Naturwissenschaft Monte Carlo method Science Statistical methods Monte-Carlo-Simulation (DE-588)4240945-7 gnd |
topic_facet | Naturwissenschaft Monte Carlo method Science Statistical methods Monte-Carlo-Simulation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016318171&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT liujuns montecarlostrategiesinscientificcomputing |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 SK 840 L783 |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |