An introduction to Riemann surfaces, algebraic curves and moduli spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Theoretical and mathematical physics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 217 S. graph. Darst. |
ISBN: | 9783540711742 3540711740 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023105725 | ||
003 | DE-604 | ||
005 | 20080214 | ||
007 | t | ||
008 | 080130s2007 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 983130140 |2 DE-101 | |
020 | |a 9783540711742 |c Pp. : EUR 64.15 (freier Pr.), ca. sfr 98.50 (freier Pr.) |9 978-3-540-71174-2 | ||
020 | |a 3540711740 |c Pp. : EUR 64.15 (freier Pr.), ca. sfr 98.50 (freier Pr.) |9 3-540-71174-0 | ||
035 | |a (OCoLC)141385326 | ||
035 | |a (DE-599)DNB983130140 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE |a xxu |c XD-US | ||
049 | |a DE-703 |a DE-20 |a DE-355 |a DE-19 |a DE-83 |a DE-739 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA333 | |
082 | 0 | |a 516.3 |2 22/ger | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Schlichenmaier, Martin |e Verfasser |4 aut | |
245 | 1 | 0 | |a An introduction to Riemann surfaces, algebraic curves and moduli spaces |c Martin Schlichenmaier |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
300 | |a XIII, 217 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Theoretical and mathematical physics | |
650 | 4 | |a Courbes algébriques | |
650 | 4 | |a Modules, Théorie des | |
650 | 4 | |a Riemann, Surfaces de | |
650 | 4 | |a Curves, Algebraic | |
650 | 4 | |a Moduli theory | |
650 | 4 | |a Riemann surfaces | |
650 | 0 | 7 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulraum |0 (DE-588)4183462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modultheorie |0 (DE-588)4170336-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Kurve |0 (DE-588)4001165-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |D s |
689 | 0 | 1 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 0 | 2 | |a Modulraum |0 (DE-588)4183462-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |D s |
689 | 1 | 1 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Modultheorie |0 (DE-588)4170336-4 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016308400&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016308400 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137366082813952 |
---|---|
adam_text | Contents
Introduction
from a Physicist s Viewpoint
................. 1
1
Manifolds
.................................................. 7
1.1
Generalities
............................................. 7
1.2
Complex Manifolds
...................................... 9
1.3
The Classification Problem
............................... 13
Hints for Further Reading
..................................... 14
2
Topology of Riemann Surfaces
............................. 17
2.1
Fundamental Group
..................................... 17
2.2
Simplicial Homology
..................................... 21
2.3
Universal Covering Space
................................. 28
Hints for Further Reading
..................................... 29
3
Analytic Structure
......................................... 31
3.1
Holomorphic and Meromorphic Functions
.................. 31
3.2
Divisors and the Theorem of Riemann-Roch
................ 35
3.3
Meromorphic Functions on the Torus
...................... 38
Hints for Further Reading
..................................... 41
4
Differentials and Integration
............................... 43
4.1
Tangent Space and Differentials
........................... 43
4.2
Differential Forms of Second Order
........................ 48
4.3
Integration
............................................. 50
Hints for Further Reading
..................................... 52
5
Tori and Jacobians
........................................ 53
5.1
Higher Dimensional Tori
................................. 53
5.2
Jacobians
............................................... 55
Hints for Further Reading
..................................... 59
XII Contents
6
Projective
Varieties
........................................ 61
6.1
Generalities
............................................. 61
6.2
Embedding of One-Dimensional Tori
....................... 65
6.3
Theta Functions
......................................... 67
Hints for Further Reading
..................................... 69
7
Moduli Spaces of Curves
.................................. 71
7.1
The Definition
.......................................... 71
7.2
Methods of Construction
................................. 74
7.3
The Geometry of the Moduli Space and Its Compactification
.. 78
Hints for Further Reading
..................................... 85
8
Vector Bundles, Sheaves and Cohomology
................. 87
8.1
Vector Bundles
.......................................... 87
8.2
Sheaves
................................................ 91
8.3
Cohomology
............................................ 95
Hints for Further Reading
.....................................100
9
The Theorem of Riemann-Roch for Line Bundles
..........103
9.1
Divisors and Line Bundles
................................103
9.2
An Application: The Krichever-Novikov Algebra
............109
Hints for Further Reading
.....................................117
10
The Mumford Isomorphism on the Moduli Space
..........119
10.1
The Mumford Isomorphism
...............................119
10.2
The Grothendieck-Riemann-Roch Theorem
................125
Hints for Further Reading
.....................................131
11
Modern Algebraic Geometry
..............................133
11.1
Varieties
...............................................133
11.2
The Spectrum of a Ring
..................................139
11.3
Homomorphisms
........................................146
11.4
Noncommutative
Spaces
..................................149
Hints for Further Reading
.....................................153
12
Schemes
...................................................155
12.1
Affine
Schemes
..........................................155
12.2
General Schemes
........................................159
12.3
The Structure Sheaf Or
..................................162
12.4
Examples of Schemes
....................................164
Hints for Further Reading
.....................................167
Contents XIII
13
Hodge Decomposition and
Kahler
Manifold
................169
13.1
Some Introductory Remarks on Mirror Symmetry
...........169
13.2
Compact Complex Manifolds and Hodge Decomposition
......171
13.3 Kahler
Manifolds
........................................177
13.4
Hodge Numbers of the
Projective
Space
....................181
Hints for Further Reading
.....................................182
14
Calabi-Yau Manifolds and Mirror Symmetry
..............183
14.1
Calabi-Yau Manifolds
....................................183
14.2
КЗ
Surfaces, Hypersurfaces and Complete Intersections
.......187
14.3
Geometric Mirror Symmetry
..............................192
14.4
Example of a Calabi-Yau Three-fold and Its Mirror: Results
of Givental
.............................................196
Hints for Further Reading
.....................................200
Appendix p-adic Numbers
.....................................203
Index
..........................................................213
|
adam_txt |
Contents
Introduction
from a Physicist's Viewpoint
. 1
1
Manifolds
. 7
1.1
Generalities
. 7
1.2
Complex Manifolds
. 9
1.3
The Classification Problem
. 13
Hints for Further Reading
. 14
2
Topology of Riemann Surfaces
. 17
2.1
Fundamental Group
. 17
2.2
Simplicial Homology
. 21
2.3
Universal Covering Space
. 28
Hints for Further Reading
. 29
3
Analytic Structure
. 31
3.1
Holomorphic and Meromorphic Functions
. 31
3.2
Divisors and the Theorem of Riemann-Roch
. 35
3.3
Meromorphic Functions on the Torus
. 38
Hints for Further Reading
. 41
4
Differentials and Integration
. 43
4.1
Tangent Space and Differentials
. 43
4.2
Differential Forms of Second Order
. 48
4.3
Integration
. 50
Hints for Further Reading
. 52
5
Tori and Jacobians
. 53
5.1
Higher Dimensional Tori
. 53
5.2
Jacobians
. 55
Hints for Further Reading
. 59
XII Contents
6
Projective
Varieties
. 61
6.1
Generalities
. 61
6.2
Embedding of One-Dimensional Tori
. 65
6.3
Theta Functions
. 67
Hints for Further Reading
. 69
7
Moduli Spaces of Curves
. 71
7.1
The Definition
. 71
7.2
Methods of Construction
. 74
7.3
The Geometry of the Moduli Space and Its Compactification
. 78
Hints for Further Reading
. 85
8
Vector Bundles, Sheaves and Cohomology
. 87
8.1
Vector Bundles
. 87
8.2
Sheaves
. 91
8.3
Cohomology
. 95
Hints for Further Reading
.100
9
The Theorem of Riemann-Roch for Line Bundles
.103
9.1
Divisors and Line Bundles
.103
9.2
An Application: The Krichever-Novikov Algebra
.109
Hints for Further Reading
.117
10
The Mumford Isomorphism on the Moduli Space
.119
10.1
The Mumford Isomorphism
.119
10.2
The Grothendieck-Riemann-Roch Theorem
.125
Hints for Further Reading
.131
11
Modern Algebraic Geometry
.133
11.1
Varieties
.133
11.2
The Spectrum of a Ring
.139
11.3
Homomorphisms
.146
11.4
Noncommutative
Spaces
.149
Hints for Further Reading
.153
12
Schemes
.155
12.1
Affine
Schemes
.155
12.2
General Schemes
.159
12.3
The Structure Sheaf Or
.162
12.4
Examples of Schemes
.164
Hints for Further Reading
.167
Contents XIII
13
Hodge Decomposition and
Kahler
Manifold
.169
13.1
Some Introductory Remarks on Mirror Symmetry
.169
13.2
Compact Complex Manifolds and Hodge Decomposition
.171
13.3 Kahler
Manifolds
.177
13.4
Hodge Numbers of the
Projective
Space
.181
Hints for Further Reading
.182
14
Calabi-Yau Manifolds and Mirror Symmetry
.183
14.1
Calabi-Yau Manifolds
.183
14.2
КЗ
Surfaces, Hypersurfaces and Complete Intersections
.187
14.3
Geometric Mirror Symmetry
.192
14.4
Example of a Calabi-Yau Three-fold and Its Mirror: Results
of Givental
.196
Hints for Further Reading
.200
Appendix p-adic Numbers
.203
Index
.213 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schlichenmaier, Martin |
author_facet | Schlichenmaier, Martin |
author_role | aut |
author_sort | Schlichenmaier, Martin |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV023105725 |
callnumber-first | Q - Science |
callnumber-label | QA333 |
callnumber-raw | QA333 |
callnumber-search | QA333 |
callnumber-sort | QA 3333 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 SK 350 SK 370 SK 750 SK 950 |
ctrlnum | (OCoLC)141385326 (DE-599)DNB983130140 |
dewey-full | 516.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3 |
dewey-search | 516.3 |
dewey-sort | 3516.3 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02836nam a2200697 c 4500</leader><controlfield tag="001">BV023105725</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080214 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080130s2007 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">983130140</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540711742</subfield><subfield code="c">Pp. : EUR 64.15 (freier Pr.), ca. sfr 98.50 (freier Pr.)</subfield><subfield code="9">978-3-540-71174-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540711740</subfield><subfield code="c">Pp. : EUR 64.15 (freier Pr.), ca. sfr 98.50 (freier Pr.)</subfield><subfield code="9">3-540-71174-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)141385326</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB983130140</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA333</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schlichenmaier, Martin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to Riemann surfaces, algebraic curves and moduli spaces</subfield><subfield code="c">Martin Schlichenmaier</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 217 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Theoretical and mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Courbes algébriques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules, Théorie des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann, Surfaces de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Moduli theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surfaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016308400&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016308400</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023105725 |
illustrated | Illustrated |
index_date | 2024-07-02T19:46:34Z |
indexdate | 2024-07-09T21:11:09Z |
institution | BVB |
isbn | 9783540711742 3540711740 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016308400 |
oclc_num | 141385326 |
open_access_boolean | |
owner | DE-703 DE-20 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-739 DE-11 DE-188 |
owner_facet | DE-703 DE-20 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-739 DE-11 DE-188 |
physical | XIII, 217 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series2 | Theoretical and mathematical physics |
spelling | Schlichenmaier, Martin Verfasser aut An introduction to Riemann surfaces, algebraic curves and moduli spaces Martin Schlichenmaier 2. ed. Berlin [u.a.] Springer 2007 XIII, 217 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Theoretical and mathematical physics Courbes algébriques Modules, Théorie des Riemann, Surfaces de Curves, Algebraic Moduli theory Riemann surfaces Riemannsche Fläche (DE-588)4049991-1 gnd rswk-swf Modulraum (DE-588)4183462-8 gnd rswk-swf Modultheorie (DE-588)4170336-4 gnd rswk-swf Algebraische Kurve (DE-588)4001165-3 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Riemannsche Fläche (DE-588)4049991-1 s Algebraische Kurve (DE-588)4001165-3 s Modulraum (DE-588)4183462-8 s DE-604 Algebraische Geometrie (DE-588)4001161-6 s 1\p DE-604 Modultheorie (DE-588)4170336-4 s 2\p DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016308400&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schlichenmaier, Martin An introduction to Riemann surfaces, algebraic curves and moduli spaces Courbes algébriques Modules, Théorie des Riemann, Surfaces de Curves, Algebraic Moduli theory Riemann surfaces Riemannsche Fläche (DE-588)4049991-1 gnd Modulraum (DE-588)4183462-8 gnd Modultheorie (DE-588)4170336-4 gnd Algebraische Kurve (DE-588)4001165-3 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
subject_GND | (DE-588)4049991-1 (DE-588)4183462-8 (DE-588)4170336-4 (DE-588)4001165-3 (DE-588)4001161-6 |
title | An introduction to Riemann surfaces, algebraic curves and moduli spaces |
title_auth | An introduction to Riemann surfaces, algebraic curves and moduli spaces |
title_exact_search | An introduction to Riemann surfaces, algebraic curves and moduli spaces |
title_exact_search_txtP | An introduction to Riemann surfaces, algebraic curves and moduli spaces |
title_full | An introduction to Riemann surfaces, algebraic curves and moduli spaces Martin Schlichenmaier |
title_fullStr | An introduction to Riemann surfaces, algebraic curves and moduli spaces Martin Schlichenmaier |
title_full_unstemmed | An introduction to Riemann surfaces, algebraic curves and moduli spaces Martin Schlichenmaier |
title_short | An introduction to Riemann surfaces, algebraic curves and moduli spaces |
title_sort | an introduction to riemann surfaces algebraic curves and moduli spaces |
topic | Courbes algébriques Modules, Théorie des Riemann, Surfaces de Curves, Algebraic Moduli theory Riemann surfaces Riemannsche Fläche (DE-588)4049991-1 gnd Modulraum (DE-588)4183462-8 gnd Modultheorie (DE-588)4170336-4 gnd Algebraische Kurve (DE-588)4001165-3 gnd Algebraische Geometrie (DE-588)4001161-6 gnd |
topic_facet | Courbes algébriques Modules, Théorie des Riemann, Surfaces de Curves, Algebraic Moduli theory Riemann surfaces Riemannsche Fläche Modulraum Modultheorie Algebraische Kurve Algebraische Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016308400&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schlichenmaiermartin anintroductiontoriemannsurfacesalgebraiccurvesandmodulispaces |