Probability: a graduate course
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2007
|
Ausgabe: | Corr. 2. print. |
Schriftenreihe: | Springer texts in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 603 S. |
ISBN: | 9780387228334 0387228330 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023096699 | ||
003 | DE-604 | ||
005 | 20111102 | ||
007 | t | ||
008 | 080124s2007 |||| 00||| eng d | ||
015 | |a 04,N32,0556 |2 dnb | ||
020 | |a 9780387228334 |9 978-0-387-22833-4 | ||
020 | |a 0387228330 |9 0-387-22833-0 | ||
035 | |a (OCoLC)254222247 | ||
035 | |a (DE-599)BVBBV023096699 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-20 |a DE-11 |a DE-91G |a DE-824 | ||
082 | 0 | |a 519.2 | |
082 | 0 | |a 510 | |
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 600f |2 stub | ||
100 | 1 | |a Gut, Allan |d 1944- |e Verfasser |0 (DE-588)110855329 |4 aut | |
245 | 1 | 0 | |a Probability |b a graduate course |c Allan Gut |
250 | |a Corr. 2. print. | ||
264 | 1 | |a New York, NY |b Springer |c 2007 | |
300 | |a XXIII, 603 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer texts in statistics | |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
655 | 4 | |a Lehrbuch - Wahrscheinlichkeitstheorie | |
689 | 0 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016299494&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016299494 |
Datensatz im Suchindex
_version_ | 1804137352579252224 |
---|---|
adam_text | Contents
Preface
..................................................
V
Outline
of Contents
.....................................XVII
Notation and Symbols
..................................XXI
Introductory Measure Theory
............................ 1
1
Probability Theory. An Introduction
...................... 1
2
Basics from Measure Theory
............................. 2
2.1
Sets
.............................................. 3
2.2
Collections of Sets
.................................. 5
2.3
Generators
........................................ 7
2.4
A Metatheorem and Some Consequences
.............. 9
3
The Probability Space
................................... 10
3.1
Limits and Completeness
............................ 11
3.2
An Approximation Lemma
.......................... 13
3.3
The
Borei
Sets on
E
................................ 14
3.4
The
Borei
Sets on R
............................... 16
4
Independence; Conditional Probabilities
................... 16
4.1
The Law of Total Probability:
Bayes
Formula
......... 17
4.2
Independence of Collections of Events
................. 18
4.3
Pair-wise Independence
............................. 19
•5
The Kolmogorov Zero-one Law
........................... 20
6
Problems
.............................................. 22
Random Variables
....................................... 25
1
Definition and Basic Properties
........................... 25
1.1
Functions of Random Variables
...................... 28
2
Distributions
........................................... 30
2.1
Distribution Functions
.............................. 30
2.2 .
Integration: A Preview
.............................. 32
X
Cont
(mts
2.3
Decomposition of Distributions
....................... 36
2.4
Some Standard Discrete Distributions
................. 39
2.5
Some Standard Absolutely Continuous Distributions
.... 40
■ 2.
G
The Cantor Distribution
............................ 40
2.7
Two Perverse Examples
............................. 42
3
Random Vectors: Random Elements
....................... 43
3.1
Random Vectors
................................... 43
3.2
Random Elements
.................................. 45
4
Expectation: Definitions and Basics
....................... 46
4.1
Definitions
........................................ 46
.4.2
Basic Properties
.................................... 48
5
Expectation; Convergence
................................ 54
6
Indefinite Expectations
.................................. 58
7
A Change of Variables Formula
........................... 60
8
Moments, Mean, Variance
................................ 62
9
Product Spaces: Fubini s Theorem
........................ 64
9.1
Finite-dimensional Product Measures
................. 64
9.2
Fubini s Theorem
.................................. 65
9.3
Partial Integration
.................................. 66
9.4
The Convolution Formula
...........................
G
7
10
Independence
.......................................... 68
10.1
Independence of Functions of Random Variables
........ 71
10.2
Independence of
σ-
Algebras
......................... 71
10.3
Pair-wise Independence
............................. 71
10.4
The Kolmogorov Zero-one Law Revisited
.............. 72
11
The Cantor Distribution
................................. 73
12
Tail Probabilities and Moments
........................... 74
13
Conditional Distributions
................................ 79
14
Distributions with Random Parameters
.................... 81
15
Sums of a Random Number of Random Variables
........... 83
15.1
Applications
....................................... 85
16
Random Walks; Renewal Theory
.......................... 88
•16.1
Random Walks
..................................... 88
16.2
Renewal Theory
.................................... 89
16.3
Renewal Theory for Random Walks
................... 90
16.4
The Likelihood Ratio Test
........................... 91
16.5
Sequential Analysis
................................. 91
16.6
Replacement Based on Age
.......................... 92
17
Extremes: Records
...................................... 93
17.1
Extremes
.......................................... 93
17.2
Records
........................................... 93
18
Borei-Cantelli
Lemmas
.................................. 96
18.1
The Borel-Cantclli Lemmas
1
and
2 .................. 96
18.2
Some (Very) Elementary Examples
................... 98
18.3
Records
........................................... 101
ι οι
it
ei
its XI
18.4
Recurrence and Transience of Simple Random Walks
. . . 102
18.5
Eľ=i
P(An)
=
°° and
P
(An i.o.)
= 0.................104
18.6
Pair-wise Independence
.............................104
18.7
Generalizations Without Independence;
................105
18.8
Extremes
..........................................107
18.9
Further Generalizations
.............................109
19
A Convolution Table
....................................113
20
Problems
..............................................114
Inequalities
..............................................119
1
Tail Probabilities Estimated via Moments
..................119
2
Moment Inequalities
....................................127
3
Covariance; Correlation
..................................130
4
Interlude on ¿ -spaces
...................................131
5
Convexity
..............................................132
G Symmetrizatiori
.........................................133
7
Probability Inequalities for Maxima
.......................138
8
The Marcinkicwics-Zygmund Inequalities
..................146
9
Rosenthaľs
Inequality
...................................151
10
Problems
..............................................153
Characteristic Functions
.................................157
1
Definition and Basics
....................................157
1.1
Uniqueness; Inversion
...............................159
1.2
Multiplication
.....................................164
1.3
Some Further Results
...............................165
2
Some Special Examples
..................................166
2.1
The Cantor Distribution
............................166
2.2
The Convolution Table Revisited
.....................168
2.3
The Cauchy Distribution
............................170
2.4
Symmetric
Stablo
Distributions
......................171
2.5
Parsevaľs
Relation
.................................172
3
Two Surprises
..........................................173
4
Refinements
............................................175
5
Characteristic Functions of Random Vectors
................180
5.1.
The Multivariate Normal Distribution
................180
5.2
The Mean and the Sample Variance Are Independent
. . . 183
6
The
Cumulant
Generating Function
.......................184
7
The Probability Generating Function
......................186
7.1
Random Vectors
...................................188
8
The Moment Generating Function
........................189
8.1
Random Vectors
...................................191
8.2
Two Boundary Cases
...............................191
9
Sums of a Random Number of Random Variables
...........192
10
The Moment Problem
...................................194
XII Contents
ЮЛ
The Moment Problem for Random Sums
..............196
11
Problems
..............................................197
5
Convergence
.............................................201
1
Definitions
.............................................202
1.1
Continuity Points and Continuity Sets
................203
1.2
Measurability
......................................205
1.3
Some Examples
....................................206
2
Uniqueness
.............................................207
3
Relations Between Convergence Concepts
..................209
3.1
Converses
.........................................212
4
Uniform Integrability
....................................214
5
Convergence of Moments
................................218
•5.1
Almost Sure Convergence
...........................218
5.2
Convergence in Probability
..........................220
5.3
Convergence in Distribution
.........................222
6
Distributional Convergence Revisited
......................225
6.1
Scheffe s Lemma
...................................226
7
A Subsequence Principle
.................................229
8
Vague Convergence: Helly s Theorem
......................230
8.1
Vague Convergence
.................................231
8.2
Helly s Selection Principle
...........................232
8.3
Vague Convergence and Tightness
....................234
8.4
The Method of Moments
............................237
9
Continuity Theorems
....................................238
9.1
The Characteristic Function
.........................238
9.2
The
Cumulant
Generating Function
..................240
9.3
The (Probability) Generating Function
................241
9.4
The Moment Generating Function
....................242
10
Convergence of Functions of Random Variables
.............243
10.1
The Continuous Mapping Theorem
...................245
11
Convergence of Sums of Sequences
........................247
11.1
Applications
.......................................249
11.2
Converses
.........................................252
11.3
Symmetrization and
Desy
nimetrizat ion
................255
12
Cauchy Convergence
....................................256
13
Skorohod s Representation Theorem
.......................258
14
Problems
..............................................260
6
The Law of Large Numbers
..............................265
1
Preliminaries
...........................................266
1.1
Convergence Equivalence
............................266
1.2
Distributional Equivalence
...........................267
1.3
Sums and Maxima
.................................268
1.4
Moments and Tails
.................................268
C oulent.s
XIII
2
A Weak Law for Partial Maxima
...........................269
3
The Weak Law of Large Numbers
.........................270
3.1
Two Applications
..................................
27G
4
A Weak Law Without
Finito
Mean
........................278
4.1
The St.. Petersburg Game
...........................283
5
Convergence of Series
...................................284
5.1
The Kolmogorov Convergence Criterion
...............286
5.2
A Preliminary Strong Law
...........................288
5.3
The Kolmogorov Three-series Theorem
................289
5.4
Levy s Theorem on the Convergence of Series
..........292
6
The Strong Law of Large Numbers
........................294
7
The Marcinkiewicz-Zygnmnd Strong Law
..................298
8
Randomly Indexed Sequences
............................301
9
Applications
...........................................305
9.1
Normal Numbers
...................................305
9.2
The Glivenko-CantelH Theorem
......................306
9.3
Renewal Theory for Random Walks
...................306
9.4
Records
...........................................307
10
Uniform Integrability: Moment Convergence
................309
11
Complete Convergence
..................................311
11.1
The
Hsu-Robbhis-Erdös
Strong Law
..................312
11.2
Complete Convergence and the Strong Law
............314
12
Some Additional Results and Remarks
.....................315
12.1
Convergence Rates
.................................315
12.2
Counting Variables
.................................320
12.3
The Case
r
=
p
Revisited
............................321
12.4
Random Indices
....................................322
13
Problems
..............................................323
The Central Limit Theorem
..............................329
1
The i.i.d. Case
..........................................330
2
The
Lindeberg-Lévy-Feller
Theorem
.......................330
2.1
Lyapounov s Condition
..............................339
2.2
Remarks and Complements
..........................340
2.3
Pair-wise Independence
.............................343
2.4
The Central Limit Theorem for Arrays
................344
3
Anscombe s Theorem
....................................345
4
Applications
...........................................348
4.1
The Delta Method
..................................349
4.2
Stirling s Formula
..................................350
4.3
Renewal Theory for Random Walks
...................350
4.4
Records
...........................................351
5
Uniform Integrability: Moment Convergence
................352
6
Remainder Term Estimates
..............................354
6.1
The Berrv-Esseen Theorem
..........................355
XIV
Contents
6.2
Proof of the Berry-Esseen Theorem
6.2................357
7
Some Additional Results and Remarks
.....................362
7.1
Rates of Rates
.....................................362
7.2
Non-uniform Estimates
.............................363
7.3
Renewal Theory
....................................364
7.4
Records
...........................................364
7.5
Local Limit Theorems
..............................365
7.6
Large Deviations
...................................365
7.7
Convergence Rates
.................................366
7.8
Precise Asymptotics
................................371
7.9
A Short Outlook on Extensions
......................374
8
Problems
..............................................376
8
The Law of the Iterated Logarithm
......................383
1
The Kolmogorov and
Hartman-Wint
nor LILs
...............384
.1.1
Outline of Proof
....................................385
2
Exponential Bounds
.....................................385
3
Proof of the
Hartman-
Wintner Theorem
...................387
4
Proof of the Converse
...................................396
5
The
LIL
for Subsequences
................................398
5.1
A Borei-Cantelli
Sum for Subsequences
...............401
5.2
Proof of Theorem
5.2...............................402
5.3
Examples
.........................................404
6
Cluster Sets
............................................404
6.1
Proofs
............................................406
7
Some Additional Results and Remarks
.....................412
7.1
Hartman-
Wintner via Berry-Esseen
...................412
7.2
Examples Not Covered by Theorems
5.2
and
5.1 .......413
7.3
Further Remarks on Sparse Subsequences
.............414
7.4
An Anscombe
LIL
..................................416
7.5
Renewal Theory for Random Walks
...................417
7.6
Record Times
......................................417
7.7
Convergence Rates
.................................418
7.8
Precise Asymptotics
................................419
7.9
The Other
LIL
.....................................419
8
Problems
..............................................420
9
Limit Theorems; Extensions and Generalizations
.........423
1
Stable Distributions
.....................................424
2
The Convergence to Types Theorem
......................427
3
Domains of Attraction
...................................430
3.1
Sketch of Preliminary Steps
..........................433
3.2
Proof of Theorems
3.2
and
3.3.......................435
3.3
Two Examples
.....................................438
3.4
Two Variations
....................................439
<.
outonts
XV
3.5
Additional Results
..................................440
4
Infinitely
Divisi
lile
Distributions
..........................442
5
S unis
of Dependent Random Variables
.....................448
6
Convergence of Extremes
................................451
6.1
Max-stable and Extremal Distributions
...............451
6.2
Domains of Attraction
..............................456
6.3
Record Values
.....................................457
7
The Stein-Chen Method
.................................459
8
Problems
..............................................464
10
Martingales
..............................................467
1
Conditional Expectation
.................................468
1.1
Properties of Conditional Expectation
................471
1.2
Smoothing
........................................474
1.3
The Rao-Blackwell Theorem
.........................475
1.4
Conditional Moment Inequalities
.....................476
2
Martingale Definitions
...................................477
2.1
The Defining Relation
..............................479
2.2
Two Equivalent Definitions
..........................479
3
Examples
..............................................481
4
Orthogonality
..........................................487
5
Decompositions
.........................................489
6
Stopping Times
.........................................491
7
Doob s Optional Sampling Theorem
.......................495
8
Joining and Stopping Martingales
.........................497
9
Martingale Inequalities
..................................501
10
Convergence
...........................................508
10.1
Garsia s Proof
.....................................508
10.2
The Upcrossings Proof
..............................511
10.3
Some Remarks on Additional Proofs
..................513
10.4
Some Questions
....................................514
10.5
A Non-convergent Martingale
........................515
10.6
A Central Limit Theorem?
..........................515
11
The Martingale {E(Z |
ƒ*„)} .............................515
12
Regular Martingales and Submartingales
...................516
12.1
A Main Martingale Theorem
.........................517
12.2
A Main
Submartingale
Theorem
.....................518
12.3
Two Non-regular Martingales
........................519
12.4
Regular Martingales Revisited
.......................519
13
The Kolmogorov Zero-one Law
...........................520
14
Stopped Random Walks
.................................521
14.1
Finiteness of Moments
..............................521
14.2
The
Wald
Equations
................................522
14.3
Tossing a Coin Until Success
.........................525
14.4
The Gambler s Ruin Problem
........................526
XVI
Contents
14.5
A Converse
........................................529
15
Regularity
.............................................531
15.1
First Passage Times for Random Walks
...............535
15.2
Complements
......................................537
15.3
The
Wald
Fundamental Identity
......................538
16
Reversed Martingales and
Submartingales
..................541
1G.1 The Law of Large1 Numbers
..........................544
16.2
fZ-statistics
........................................547
17
Problems
..............................................548
A Some Useful Mathematics
................................555
1
Taylor Expansion
.......................................555
2
Mill s Ratio
............................................558
3
Sums and Integrals
......................................559
4 ■
Sums and Products
.....................................560
5
Convexity;
Clarkson
s Inequality
..........................561
6
Convergence of (Weighted) Averages
......................564
7
Regularly and Slowly Varying Functions
...................566
8
Cauchy s Functional Equation
............................568
9
Functions and Dense Sets
................................570
References
.....................................................577
Index
..........................................................589
|
adam_txt |
Contents
Preface
.
V
Outline
of Contents
.XVII
Notation and Symbols
.XXI
Introductory Measure Theory
. 1
1
Probability Theory. An Introduction
. 1
2
Basics from Measure Theory
. 2
2.1
Sets
. 3
2.2
Collections of Sets
. 5
2.3
Generators
. 7
2.4
A Metatheorem and Some Consequences
. 9
3
The Probability Space
. 10
3.1
Limits and Completeness
. 11
3.2
An Approximation Lemma
. 13
3.3
The
Borei
Sets on
E
. 14
3.4
The
Borei
Sets on R"
. 16
4
Independence; Conditional Probabilities
. 16
4.1
The Law of Total Probability:
Bayes'
Formula
. 17
4.2
Independence of Collections of Events
. 18
4.3
Pair-wise Independence
. 19
•5
The Kolmogorov Zero-one Law
. 20
6
Problems
. 22
Random Variables
. 25
1
Definition and Basic Properties
. 25
1.1
Functions of Random Variables
. 28
2
Distributions
. 30
2.1
Distribution Functions
. 30
2.2 .
Integration: A Preview
. 32
X
Cont
(mts
2.3
Decomposition of Distributions
. 36
2.4
Some Standard Discrete Distributions
. 39
2.5
Some Standard Absolutely Continuous Distributions
. 40
■ 2.
G
The Cantor Distribution
. 40
2.7
Two Perverse Examples
. 42
3
Random Vectors: Random Elements
. 43
3.1
Random Vectors
. 43
3.2
Random Elements
. 45
4
Expectation: Definitions and Basics
. 46
4.1
Definitions
. 46
.4.2
Basic Properties
. 48
5
Expectation; Convergence
. 54
6
Indefinite Expectations
. 58
7
A Change of Variables Formula
. 60
8
Moments, Mean, Variance
. 62
9
Product Spaces: Fubini's Theorem
. 64
9.1
Finite-dimensional Product Measures
. 64
9.2
Fubini's Theorem
. 65
9.3
Partial Integration
. 66
9.4
The Convolution Formula
.
G
7
10
Independence
. 68
10.1
Independence of Functions of Random Variables
. 71
10.2
Independence of
σ-
Algebras
. 71
10.3
Pair-wise Independence
. 71
10.4
The Kolmogorov Zero-one Law Revisited
. 72
11
The Cantor Distribution
. 73
12
Tail Probabilities and Moments
. 74
13
Conditional Distributions
. 79
14
Distributions with Random Parameters
. 81
15
Sums of a Random Number of Random Variables
. 83
15.1
Applications
. 85
16
Random Walks; Renewal Theory
. 88
•16.1
Random Walks
. 88
16.2
Renewal Theory
. 89
16.3
Renewal Theory for Random Walks
. 90
16.4
The Likelihood Ratio Test
. 91
16.5
Sequential Analysis
. 91
16.6
Replacement Based on Age
. 92
17
Extremes: Records
. 93
17.1
Extremes
. 93
17.2
Records
. 93
18
Borei-Cantelli
Lemmas
. 96
18.1
The Borel-Cantclli Lemmas
1
and
2 . 96
18.2
Some (Very) Elementary Examples
. 98
18.3
Records
. 101
ι" 'οι
it
ei
its XI
18.4
Recurrence and Transience of Simple Random Walks
. . . 102
18.5
Eľ=i
P(An)
=
°° and
P
(An i.o.)
= 0.104
18.6
Pair-wise Independence
.104
18.7
Generalizations Without Independence;
.105
18.8
Extremes
.107
18.9
Further Generalizations
.109
19
A Convolution Table
.113
20
Problems
.114
Inequalities
.119
1
Tail Probabilities Estimated via Moments
.119
2
Moment Inequalities
.127
3
Covariance; Correlation
.130
4
Interlude on ¿''-spaces
.131
5
Convexity
.132
G Symmetrizatiori
.133
7
Probability Inequalities for Maxima
.138
8
The Marcinkicwics-Zygmund Inequalities
.146
9
Rosenthaľs
Inequality
.151
10
Problems
.153
Characteristic Functions
.157
1
Definition and Basics
.157
1.1
Uniqueness; Inversion
.159
1.2
Multiplication
.164
1.3
Some Further Results
.165
2
Some Special Examples
.166
2.1
The Cantor Distribution
.166
2.2
The Convolution Table Revisited
.168
2.3
The Cauchy Distribution
.170
2.4
Symmetric
Stablo
Distributions
.171
2.5
Parsevaľs
Relation
.172
3
Two Surprises
.173
4
Refinements
.175
5
Characteristic Functions of Random Vectors
.180
5.1.
The Multivariate Normal Distribution
.180
5.2
The Mean and the Sample Variance Are Independent
. . . 183
6
The
Cumulant
Generating Function
.184
7
The Probability Generating Function
.186
7.1
Random Vectors
.188
8
The Moment Generating Function
.189
8.1
Random Vectors
.191
8.2
Two Boundary Cases
.191
9
Sums of a Random Number of Random Variables
.192
10
The Moment Problem
.194
XII Contents
ЮЛ
The Moment Problem for Random Sums
.196
11
Problems
.197
5
Convergence
.201
1
Definitions
.202
1.1
Continuity Points and Continuity Sets
.203
1.2
Measurability
.205
1.3
Some Examples
.206
2
Uniqueness
.207
3
Relations Between Convergence Concepts
.209
3.1
Converses
.212
4
Uniform Integrability
.214
5
Convergence of Moments
.218
•5.1
Almost Sure Convergence
.218
5.2
Convergence in Probability
.220
5.3
Convergence in Distribution
.222
6
Distributional Convergence Revisited
.225
6.1
Scheffe's Lemma
.226
7
A Subsequence Principle
.229
8
Vague Convergence: Helly's Theorem
.230
8.1
Vague Convergence
.231
8.2
Helly's Selection Principle
.232
8.3
Vague Convergence and Tightness
.234
8.4
The Method of Moments
.237
9
Continuity Theorems
.238
9.1
The Characteristic Function
.238
9.2
The
Cumulant
Generating Function
.240
9.3
The (Probability) Generating Function
.241
9.4
The Moment Generating Function
.242
10
Convergence of Functions of Random Variables
.243
10.1
The Continuous Mapping Theorem
.245
11
Convergence of Sums of Sequences
.247
11.1
Applications
.249
11.2
Converses
.252
11.3
Symmetrization and
Desy
nimetrizat ion
.255
12
Cauchy Convergence
.256
13
Skorohod's Representation Theorem
.258
14
Problems
.260
6
The Law of Large Numbers
.265
1
Preliminaries
.266
1.1
Convergence Equivalence
.266
1.2
Distributional Equivalence
.267
1.3
Sums and Maxima
.268
1.4
Moments and Tails
.268
C'oulent.s
XIII
2
A Weak Law for Partial Maxima
.269
3
The Weak Law of Large Numbers
.270
3.1
Two Applications
.
27G
4
A Weak Law Without
Finito
Mean
.278
4.1
The St. Petersburg Game
.283
5
Convergence of Series
.284
5.1
The Kolmogorov Convergence Criterion
.286
5.2
A Preliminary Strong Law
.288
5.3
The Kolmogorov Three-series Theorem
.289
5.4
Levy's Theorem on the Convergence of Series
.292
6
The Strong Law of Large Numbers
.294
7
The Marcinkiewicz-Zygnmnd Strong Law
.298
8
Randomly Indexed Sequences
.301
9
Applications
.305
9.1
Normal Numbers
.305
9.2
The Glivenko-CantelH Theorem
.306
9.3
Renewal Theory for Random Walks
.306
9.4
Records
.307
10
Uniform Integrability: Moment Convergence
.309
11
Complete Convergence
.311
11.1
The
Hsu-Robbhis-Erdös
Strong Law
.312
11.2
Complete Convergence and the Strong Law
.314
12
Some Additional Results and Remarks
.315
12.1
Convergence Rates
.315
12.2
Counting Variables
.320
12.3
The Case
r
=
p
Revisited
.321
12.4
Random Indices
.322
13
Problems
.323
The Central Limit Theorem
.329
1
The i.i.d. Case
.330
2
The
Lindeberg-Lévy-Feller
Theorem
.330
2.1
Lyapounov's Condition
.339
2.2
Remarks and Complements
.340
2.3
Pair-wise Independence
.343
2.4
The Central Limit Theorem for Arrays
.344
3
Anscombe's Theorem
.345
4
Applications
.348
4.1
The Delta Method
.349
4.2
Stirling's Formula
.350
4.3
Renewal Theory for Random Walks
.350
4.4
Records
.351
5
Uniform Integrability: Moment Convergence
.352
6
Remainder Term Estimates
.354
6.1
The Berrv-Esseen Theorem
.355
XIV
Contents
6.2
Proof of the Berry-Esseen Theorem
6.2.357
7
Some Additional Results and Remarks
.362
7.1
Rates of Rates
.362
7.2
Non-uniform Estimates
.363
7.3
Renewal Theory
.364
7.4
Records
.364
7.5
Local Limit Theorems
.365
7.6
Large Deviations
.365
7.7
Convergence Rates
.366
7.8
Precise Asymptotics
.371
7.9
A Short Outlook on Extensions
.374
8
Problems
.376
8
The Law of the Iterated Logarithm
.383
1
The Kolmogorov and
Hartman-Wint
nor LILs
.384
.1.1
Outline of Proof
.385
2
Exponential Bounds
.385
3
Proof of the
Hartman-
Wintner Theorem
.387
4
Proof of the Converse
.396
5
The
LIL
for Subsequences
.398
5.1
A Borei-Cantelli
Sum for Subsequences
.401
5.2
Proof of Theorem
5.2.402
5.3
Examples
.404
6 '
Cluster Sets
.404
6.1
Proofs
.406
7
Some Additional Results and Remarks
.412
7.1
Hartman-
Wintner via Berry-Esseen
.412
7.2
Examples Not Covered by Theorems
5.2
and
5.1 .413
7.3
Further Remarks on Sparse Subsequences
.414
7.4
An Anscombe
LIL
.416
7.5
Renewal Theory for Random Walks
.417
7.6
Record Times
.417
7.7
Convergence Rates
.418
7.8
Precise Asymptotics
.419
7.9
The Other
LIL
.419
8
Problems
.420
9
Limit Theorems; Extensions and Generalizations
.423
1
Stable Distributions
.424
2
The Convergence to Types Theorem
.427
3
Domains of Attraction
.430
3.1
Sketch of Preliminary Steps
.433
3.2
Proof of Theorems
3.2
and
3.3.435
3.3
Two Examples
.438
3.4
Two Variations
.439
<.
'outonts
XV
3.5
Additional Results
.440
4
Infinitely
Divisi
lile
Distributions
.442
5
S unis
of Dependent Random Variables
.448
6
Convergence of Extremes
.451
6.1'
Max-stable and Extremal Distributions
.451
6.2
Domains of Attraction
.456
6.3
Record Values
.457
7
The Stein-Chen Method
.459
8
Problems
.464
10
Martingales
.467
1
Conditional Expectation
.468
1.1
Properties of Conditional Expectation
.471
1.2
Smoothing
.474
1.3
The Rao-Blackwell Theorem
.475
1.4
Conditional Moment Inequalities
.476
2
Martingale Definitions
.477
2.1
The Defining Relation
.479
2.2
Two Equivalent Definitions
.479
3
Examples
.481
4
Orthogonality
.487
5
Decompositions
.489
6
Stopping Times
.491
7
Doob's Optional Sampling Theorem
.495
8
Joining and Stopping Martingales
.497
9
Martingale Inequalities
.501
10
Convergence
.508
10.1
Garsia's Proof
.508
10.2
The Upcrossings Proof
.511
10.3
Some Remarks on Additional Proofs
.513
10.4
Some Questions
.514
10.5
A Non-convergent Martingale
.515
10.6
A Central Limit Theorem?
.515
11
The Martingale {E(Z |
ƒ*„)} .515
12
Regular Martingales and Submartingales
.516
12.1
A Main Martingale Theorem
.517
12.2
A Main
Submartingale
Theorem
.518
12.3
Two Non-regular Martingales
.519
12.4
Regular Martingales Revisited
.519
13
The Kolmogorov Zero-one Law
.520
14
Stopped Random Walks
.521
14.1
Finiteness of Moments
.521
14.2
The
Wald
Equations
.522
14.3
Tossing a Coin Until Success
.525
14.4
The Gambler's Ruin Problem
.526
XVI
Contents
14.5
A Converse
.529
15
Regularity
.531
15.1
First Passage Times for Random Walks
.535
15.2
Complements
.537
15.3
The
Wald
Fundamental Identity
.538
16
Reversed Martingales and
Submartingales
.541
1G.1 The Law of Large1 Numbers
.544
' 16.2
fZ-statistics
.547
17
Problems
.548
A Some Useful Mathematics
.555
1
Taylor Expansion
.555
2
Mill's Ratio
.558
3
Sums and Integrals
.559
4 ■
Sums and Products
.560
5
Convexity;
Clarkson
's Inequality
.561
6
Convergence of (Weighted) Averages
.564
7
Regularly and Slowly Varying Functions
.566
8
Cauchy's Functional Equation
.568
9
Functions and Dense Sets
.570
References
.577
Index
.589 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Gut, Allan 1944- |
author_GND | (DE-588)110855329 |
author_facet | Gut, Allan 1944- |
author_role | aut |
author_sort | Gut, Allan 1944- |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV023096699 |
classification_rvk | SK 800 |
classification_tum | MAT 600f |
ctrlnum | (OCoLC)254222247 (DE-599)BVBBV023096699 |
dewey-full | 519.2 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics 510 - Mathematics |
dewey-raw | 519.2 510 |
dewey-search | 519.2 510 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Corr. 2. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01734nam a2200469 c 4500</leader><controlfield tag="001">BV023096699</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111102 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080124s2007 |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">04,N32,0556</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387228334</subfield><subfield code="9">978-0-387-22833-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387228330</subfield><subfield code="9">0-387-22833-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254222247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023096699</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gut, Allan</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110855329</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability</subfield><subfield code="b">a graduate course</subfield><subfield code="c">Allan Gut</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Corr. 2. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 603 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer texts in statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Lehrbuch - Wahrscheinlichkeitstheorie</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016299494&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016299494</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content Lehrbuch - Wahrscheinlichkeitstheorie |
genre_facet | Lehrbuch Lehrbuch - Wahrscheinlichkeitstheorie |
id | DE-604.BV023096699 |
illustrated | Not Illustrated |
index_date | 2024-07-02T19:43:18Z |
indexdate | 2024-07-09T21:10:56Z |
institution | BVB |
isbn | 9780387228334 0387228330 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016299494 |
oclc_num | 254222247 |
open_access_boolean | |
owner | DE-384 DE-20 DE-11 DE-91G DE-BY-TUM DE-824 |
owner_facet | DE-384 DE-20 DE-11 DE-91G DE-BY-TUM DE-824 |
physical | XXIII, 603 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series2 | Springer texts in statistics |
spelling | Gut, Allan 1944- Verfasser (DE-588)110855329 aut Probability a graduate course Allan Gut Corr. 2. print. New York, NY Springer 2007 XXIII, 603 S. txt rdacontent n rdamedia nc rdacarrier Springer texts in statistics Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Lehrbuch - Wahrscheinlichkeitstheorie Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s DE-604 Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016299494&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gut, Allan 1944- Probability a graduate course Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4064324-4 (DE-588)4079013-7 (DE-588)4123623-3 |
title | Probability a graduate course |
title_auth | Probability a graduate course |
title_exact_search | Probability a graduate course |
title_exact_search_txtP | Probability a graduate course |
title_full | Probability a graduate course Allan Gut |
title_fullStr | Probability a graduate course Allan Gut |
title_full_unstemmed | Probability a graduate course Allan Gut |
title_short | Probability |
title_sort | probability a graduate course |
title_sub | a graduate course |
topic | Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Wahrscheinlichkeitsrechnung Wahrscheinlichkeitstheorie Lehrbuch Lehrbuch - Wahrscheinlichkeitstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016299494&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gutallan probabilityagraduatecourse |