The Riemann hypothesis: a resource for the afficionado and virtuoso alike
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2008
|
Schriftenreihe: | CMS books in mathematics
27 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [483] - 500. - Literaturangaben |
Beschreibung: | XIV, 533 S. Ill., graph. Darst. |
ISBN: | 9780387721255 0387721258 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023096280 | ||
003 | DE-604 | ||
005 | 20080221 | ||
007 | t | ||
008 | 080124s2008 ad|| |||| 00||| eng d | ||
015 | |a 07,N16,0672 |2 dnb | ||
016 | 7 | |a 983609640 |2 DE-101 | |
020 | |a 9780387721255 |c Gb. (Pr. in Vorb.) |9 978-0-387-72125-5 | ||
020 | |a 0387721258 |c Gb. (Pr. in Vorb.) |9 0-387-72125-8 | ||
024 | 3 | |a 9780387721255 | |
028 | 5 | 2 | |a 11609056 |
035 | |a (OCoLC)190760103 | ||
035 | |a (DE-599)DNB983609640 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-20 |a DE-29T |a DE-355 |a DE-19 |a DE-11 |a DE-188 |a DE-739 |a DE-83 | ||
050 | 0 | |a QA246 | |
082 | 0 | |a 512.7/3 |2 22 | |
084 | |a SG 590 |0 (DE-625)143069: |2 rvk | ||
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 11-02 |2 msc | ||
084 | |a 11-03 |2 msc | ||
084 | |a 11M26 |2 msc | ||
084 | |a 510 |2 sdnb | ||
245 | 1 | 0 | |a The Riemann hypothesis |b a resource for the afficionado and virtuoso alike |c Peter Borwein ... (eds.) |
264 | 1 | |a New York, NY |b Springer |c 2008 | |
300 | |a XIV, 533 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a CMS books in mathematics |v 27 | |
500 | |a Literaturverz. S. [483] - 500. - Literaturangaben | ||
600 | 1 | 4 | |a Riemann, Bernhard <1826-1866> |
600 | 1 | 4 | |a Riemann, Bernhard <1826-1866> |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 4 | |a Nombres premiers | |
650 | 4 | |a Riemann, Hypothèse de | |
650 | 4 | |a Théorie des nombres | |
650 | 4 | |a Number theory | |
650 | 4 | |a Numbers, Prime | |
650 | 4 | |a Riemann hypothesis | |
650 | 0 | 7 | |a Riemannsche Vermutung |0 (DE-588)4704537-1 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4135952-5 |a Quelle |2 gnd-content | |
689 | 0 | 0 | |a Riemannsche Vermutung |0 (DE-588)4704537-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Riemannsche Vermutung |0 (DE-588)4704537-1 |D s |
689 | 1 | 1 | |a Geschichte |A z |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Borwein, Peter |e Sonstige |4 oth | |
830 | 0 | |a CMS books in mathematics |v 27 |w (DE-604)BV013248581 |9 27 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016299076&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016299076 |
Datensatz im Suchindex
_version_ | 1804137351978418176 |
---|---|
adam_text | Contents
Part I Introduction to the Riemann Hypothesis
1
Why This Book
............................................ 3
1.1
The Holy Grail
.......................................... 3
1.2
Riemann s
Zeta
and Liouville s Lambda
.................... 5
1.3
The Prime Number Theorem
............................. 7
2
Analytic Prelimmaries
..................................... 9
2.1
The Riemann
Zeta
Function
.............................. 9
2.2
Zero-free Region
......................................... 16
2.3
Counting the Zeros of ((s)
................................ 18
2.4
Hardy s Theorem
........................................ 24
3
Algorithms for Calculating C(s)
............................ 29
3.1
Euler-MacLaurin Summation
............................. 29
3.2
Backlund
............................................... 30
3.3
Hardy s Function
........................................ 31
3.4
The Riemann-Siegel Formula
............................. 32
3.5
Gram s Law
............................................ 33
3.6
Turing
................................................. 34
3.7
The
Odlyzko-Schönhage
Algorithm
........................ 35
3.8
A Simple Algorithm for the
Zeta
Function
.................. 35
3.9
Further Reading
......................................... 36
X
Contents
4
Empirical Evidence
........................................ 37
4.1
Verification in an Interval
................................ 37
4.2
A Brief History of Computational Evidence
................. 39
4.3
The Riemann Hypothesis and Random Matrices
............. 40
4.4
The Skewes Number
..................................... 43
5
Equivalent Statements
..................................... 45
5.1
Number-Theoretic Equivalences
........................... 45
5.2
Analytic Equivalences
.................................... 49
5.3
Other Equivalences
...................................... 52
6
Extensions of the Riemann Hypothesis
.................... 55
6.1
The Riemann Hypothesis
................................. 55
6.2
The Generalized Riemann Hypothesis
...................... 56
6.3
The Extended Riemann Hypothesis
........................ 57
6.4
An Equivalent Extended Riemann Hypothesis
............... 57
6.5
Another Extended Riemann Hypothesis
.................... 58
6.6
The Grand Riemann Hypothesis
........................... 58
7
Assuming the Riemann Hypothesis and Its Extensions
.... 61
7.1
Another Proof of The Prime Number Theorem
.............. 61
7.2
Goldbach s Conjecture
................................... 62
7.3
More
Goldbach.......................................... 62
7.4
Primes in a Given Interval
................................ 63
7.5
The Least Prime in Arithmetic Progressions
................ 63
7.6
Primality Testing
........................................ 63
7.7
Artin s Primitive Root Conjecture
......................... 64
7.8
Bounds on Dirichlet L-Series
.............................. 64
7.9
The
Lindelof
Hypothesis
.................................. 65
7.10
Titchmarsh s
ЦТ)
Function
.............................. 65
7.11
Mean Values of C(s)
..................................... 66
8
Failed Attempts at Proof
.................................. 69
8.1
Stieltjes
and Mertens Conjecture
.......................... 69
8.2
Hans Rademacher and False Hopes
........................ 70
8.3
Turán s
Condition
....................................... 71
8.4
Louis
de Branges s
Approach
.............................. 71
8.5
No Really Good Idea
.................................... 72
Contents
XI
9
Formulas
.................................................. 73
10 Timeline................................................... 81
Part II
Original
Papers
11
Expert Witnesses
.......................................... 93
11.1
E. Bombierì
(2000-2001)................................ 94
11.2
P.
Sárnak
(2004).......................................106
11.3
J. B.
Conrey
(2003) ....................................116
11.4
A. Ivić
(2003) .........................................130
12
The Experts Speak for Themselves
........................161
12.1
P. L. Chebyshev
(1852).................................162
12.2
B. Riemann
(1859).....................................183
12.3
J.
Hadamard
(1896)....................................199
12.4
С.
de la Vallèe
Poussin
(1899) ...........................222
12.5
G. H. Hardy
(1914) ....................................296
12.6
G. H. Hardy
(1915) ....................................300
12.7
G. H. Hardy and J. E. Littlewood
(1915)..................307
12.8
A.
Weil (1941).........................................313
12.9
P.
Turan
(1948)........................................317
12.10
A. Selberg
(1949) ......................................353
12.11
P.
Erdős
(1949)........................................363
12.12
S. Skewes
(1955).......................................375
12.13
С. В.
Haselgrove
(1958).................................399
12.14
H.
Montgomery
(1973)..................................405
12.15
D. J.
Newman
(1980)...................................419
12.16
J.
Korevaar
(1982).....................................424
12.17
H. Daboussi
(1984).....................................433
12.18
Α.
Hildebrand (1986)...................................438
12.19
D.
Goldston
and H.
Montgomery
(1987) ..................447
12.20
M. AgrawaI,
N.
Kayal, and
N.
Saxena
(2004) ..............469
References
.....................................................483
References.....................................................
491
Index
..........................................................501
|
adam_txt |
Contents
Part I Introduction to the Riemann Hypothesis
1
Why This Book
. 3
1.1
The Holy Grail
. 3
1.2
Riemann's
Zeta
and Liouville's Lambda
. 5
1.3
The Prime Number Theorem
. 7
2
Analytic Prelimmaries
. 9
2.1
The Riemann
Zeta
Function
. 9
2.2
Zero-free Region
. 16
2.3
Counting the Zeros of ((s)
. 18
2.4
Hardy's Theorem
. 24
3
Algorithms for Calculating C(s)
. 29
3.1
Euler-MacLaurin Summation
. 29
3.2
Backlund
. 30
3.3
Hardy's Function
. 31
3.4
The Riemann-Siegel Formula
. 32
3.5
Gram's Law
. 33
3.6
Turing
. 34
3.7
The
Odlyzko-Schönhage
Algorithm
. 35
3.8
A Simple Algorithm for the
Zeta
Function
. 35
3.9
Further Reading
. 36
X
Contents
4
Empirical Evidence
. 37
4.1
Verification in an Interval
. 37
4.2
A Brief History of Computational Evidence
. 39
4.3
The Riemann Hypothesis and Random Matrices
. 40
4.4
The Skewes Number
. 43
5
Equivalent Statements
. 45
5.1
Number-Theoretic Equivalences
. 45
5.2
Analytic Equivalences
. 49
5.3
Other Equivalences
. 52
6
Extensions of the Riemann Hypothesis
. 55
6.1
The Riemann Hypothesis
. 55
6.2
The Generalized Riemann Hypothesis
. 56
6.3
The Extended Riemann Hypothesis
. 57
6.4
An Equivalent Extended Riemann Hypothesis
. 57
6.5
Another Extended Riemann Hypothesis
. 58
6.6
The Grand Riemann Hypothesis
. 58
7
Assuming the Riemann Hypothesis and Its Extensions
. 61
7.1
Another Proof of The Prime Number Theorem
. 61
7.2
Goldbach's Conjecture
. 62
7.3
More
Goldbach. 62
7.4
Primes in a Given Interval
. 63
7.5
The Least Prime in Arithmetic Progressions
. 63
7.6
Primality Testing
. 63
7.7
Artin's Primitive Root Conjecture
. 64
7.8
Bounds on Dirichlet L-Series
. 64
7.9
The
Lindelof
Hypothesis
. 65
7.10
Titchmarsh's
ЦТ)
Function
. 65
7.11
Mean Values of C(s)
. 66
8
Failed Attempts at Proof
. 69
8.1
Stieltjes
and Mertens' Conjecture
. 69
8.2
Hans Rademacher and False Hopes
. 70
8.3
Turán's
Condition
. 71
8.4
Louis
de Branges's
Approach
. 71
8.5
No Really Good Idea
. 72
Contents
XI
9
Formulas
. 73
10 Timeline. 81
Part II
Original
Papers
11
Expert Witnesses
. 93
11.1
E. Bombierì
(2000-2001). 94
11.2
P.
Sárnak
(2004).106
11.3
J. B.
Conrey
(2003) .116
11.4
A. Ivić
(2003) .130
12
The Experts Speak for Themselves
.161
12.1
P. L. Chebyshev
(1852).162
12.2
B. Riemann
(1859).183
12.3
J.
Hadamard
(1896).199
12.4
С.
de la Vallèe
Poussin
(1899) .222
12.5
G. H. Hardy
(1914) .296
12.6
G. H. Hardy
(1915) .300
12.7
G. H. Hardy and J. E. Littlewood
(1915).307
12.8
A.
Weil (1941).313
12.9
P.
Turan
(1948).317
12.10
A. Selberg
(1949) .353
12.11
P.
Erdős
(1949).363
12.12
S. Skewes
(1955).375
12.13
С. В.
Haselgrove
(1958).399
12.14
H.
Montgomery
(1973).405
12.15
D. J.
Newman
(1980).419
12.16
J.
Korevaar
(1982).424
12.17
H. Daboussi
(1984).433
12.18
Α.
Hildebrand (1986).438
12.19
D.
Goldston
and H.
Montgomery
(1987) .447
12.20
M. AgrawaI,
N.
Kayal, and
N.
Saxena
(2004) .469
References
.483
References.
491
Index
.501 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023096280 |
callnumber-first | Q - Science |
callnumber-label | QA246 |
callnumber-raw | QA246 |
callnumber-search | QA246 |
callnumber-sort | QA 3246 |
callnumber-subject | QA - Mathematics |
classification_rvk | SG 590 SK 180 SK 370 |
ctrlnum | (OCoLC)190760103 (DE-599)DNB983609640 |
dewey-full | 512.7/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/3 |
dewey-search | 512.7/3 |
dewey-sort | 3512.7 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
era | Geschichte gnd |
era_facet | Geschichte |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02422nam a2200661 cb4500</leader><controlfield tag="001">BV023096280</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080221 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080124s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N16,0672</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">983609640</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387721255</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">978-0-387-72125-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387721258</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">0-387-72125-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387721255</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11609056</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)190760103</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB983609640</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA246</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 590</subfield><subfield code="0">(DE-625)143069:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11-03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11M26</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Riemann hypothesis</subfield><subfield code="b">a resource for the afficionado and virtuoso alike</subfield><subfield code="c">Peter Borwein ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 533 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">CMS books in mathematics</subfield><subfield code="v">27</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [483] - 500. - Literaturangaben</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Riemann, Bernhard <1826-1866></subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Riemann, Bernhard <1826-1866></subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nombres premiers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann, Hypothèse de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Théorie des nombres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Prime</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann hypothesis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Vermutung</subfield><subfield code="0">(DE-588)4704537-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4135952-5</subfield><subfield code="a">Quelle</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Vermutung</subfield><subfield code="0">(DE-588)4704537-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannsche Vermutung</subfield><subfield code="0">(DE-588)4704537-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borwein, Peter</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">CMS books in mathematics</subfield><subfield code="v">27</subfield><subfield code="w">(DE-604)BV013248581</subfield><subfield code="9">27</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016299076&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016299076</subfield></datafield></record></collection> |
genre | (DE-588)4135952-5 Quelle gnd-content |
genre_facet | Quelle |
id | DE-604.BV023096280 |
illustrated | Illustrated |
index_date | 2024-07-02T19:43:12Z |
indexdate | 2024-07-09T21:10:55Z |
institution | BVB |
isbn | 9780387721255 0387721258 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016299076 |
oclc_num | 190760103 |
open_access_boolean | |
owner | DE-824 DE-20 DE-29T DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-11 DE-188 DE-739 DE-83 |
owner_facet | DE-824 DE-20 DE-29T DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-11 DE-188 DE-739 DE-83 |
physical | XIV, 533 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | CMS books in mathematics |
series2 | CMS books in mathematics |
spelling | The Riemann hypothesis a resource for the afficionado and virtuoso alike Peter Borwein ... (eds.) New York, NY Springer 2008 XIV, 533 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier CMS books in mathematics 27 Literaturverz. S. [483] - 500. - Literaturangaben Riemann, Bernhard <1826-1866> Geschichte gnd rswk-swf Nombres premiers Riemann, Hypothèse de Théorie des nombres Number theory Numbers, Prime Riemann hypothesis Riemannsche Vermutung (DE-588)4704537-1 gnd rswk-swf (DE-588)4135952-5 Quelle gnd-content Riemannsche Vermutung (DE-588)4704537-1 s DE-604 Geschichte z Borwein, Peter Sonstige oth CMS books in mathematics 27 (DE-604)BV013248581 27 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016299076&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | The Riemann hypothesis a resource for the afficionado and virtuoso alike CMS books in mathematics Riemann, Bernhard <1826-1866> Nombres premiers Riemann, Hypothèse de Théorie des nombres Number theory Numbers, Prime Riemann hypothesis Riemannsche Vermutung (DE-588)4704537-1 gnd |
subject_GND | (DE-588)4704537-1 (DE-588)4135952-5 |
title | The Riemann hypothesis a resource for the afficionado and virtuoso alike |
title_auth | The Riemann hypothesis a resource for the afficionado and virtuoso alike |
title_exact_search | The Riemann hypothesis a resource for the afficionado and virtuoso alike |
title_exact_search_txtP | The Riemann hypothesis a resource for the afficionado and virtuoso alike |
title_full | The Riemann hypothesis a resource for the afficionado and virtuoso alike Peter Borwein ... (eds.) |
title_fullStr | The Riemann hypothesis a resource for the afficionado and virtuoso alike Peter Borwein ... (eds.) |
title_full_unstemmed | The Riemann hypothesis a resource for the afficionado and virtuoso alike Peter Borwein ... (eds.) |
title_short | The Riemann hypothesis |
title_sort | the riemann hypothesis a resource for the afficionado and virtuoso alike |
title_sub | a resource for the afficionado and virtuoso alike |
topic | Riemann, Bernhard <1826-1866> Nombres premiers Riemann, Hypothèse de Théorie des nombres Number theory Numbers, Prime Riemann hypothesis Riemannsche Vermutung (DE-588)4704537-1 gnd |
topic_facet | Riemann, Bernhard <1826-1866> Nombres premiers Riemann, Hypothèse de Théorie des nombres Number theory Numbers, Prime Riemann hypothesis Riemannsche Vermutung Quelle |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016299076&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV013248581 |
work_keys_str_mv | AT borweinpeter theriemannhypothesisaresourcefortheafficionadoandvirtuosoalike |