Introduction to robust estimation and hypothesis testing:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier Acad. Press
2005
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 588 S. graph. Darst. |
ISBN: | 0127515429 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023094372 | ||
003 | DE-604 | ||
005 | 20110804 | ||
007 | t | ||
008 | 080123s2005 d||| |||| 00||| eng d | ||
020 | |a 0127515429 |9 0-12-751542-9 | ||
035 | |a (OCoLC)254082984 | ||
035 | |a (DE-599)BVBBV023094372 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-N2 |a DE-384 |a DE-634 |a DE-11 |a DE-M49 |a DE-19 |a DE-473 |a DE-M382 | ||
050 | 0 | |a QA276.8 | |
082 | 0 | |a 519.5/44 |2 22 | |
084 | |a CM 4000 |0 (DE-625)18951: |2 rvk | ||
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a MAT 626f |2 stub | ||
100 | 1 | |a Wilcox, Rand R. |e Verfasser |0 (DE-588)141426241 |4 aut | |
245 | 1 | 0 | |a Introduction to robust estimation and hypothesis testing |c Rand R. Wilcox |
246 | 1 | 3 | |a Robust estimation and hypothesis testing |
250 | |a 2. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier Acad. Press |c 2005 | |
300 | |a XIX, 588 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Robuustheid |2 gtt | |
650 | 7 | |a Schattingstheorie |2 gtt | |
650 | 7 | |a Statistische toetsen |2 gtt | |
650 | 4 | |a Estimation theory | |
650 | 4 | |a Robust statistics | |
650 | 4 | |a Statistical hypothesis testing | |
650 | 0 | 7 | |a Robuste Schätzung |0 (DE-588)4178265-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistischer Test |0 (DE-588)4077852-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Statistischer Test |0 (DE-588)4077852-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Robuste Schätzung |0 (DE-588)4178265-3 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016297193&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016297193 |
Datensatz im Suchindex
_version_ | 1804137348881973248 |
---|---|
adam_text | Contents
Preface
................................................................. xvii
Chapter I Introduction
..............................................
I
1.1
Problems with Assuming Normality
................................ 2
1.2
Transformations
.................................................... 6
1.3
The Influence Curve
................................................ 7
1.4
The Central Limit Theorem
......................................... 8
1.5
Is the ANOVA
F
Robust?
........................................... 9
1.6
Regression
.......................................................... 10
1.7
More Remarks
...................................................... 10
1.8
Using the Computer:
R
and S-PLUS
................................. 11
1.9
Some Data-Managment Issues
...................................... 13
1.9.1
Eliminating Missing Values
................................ 17
Chapter
2
A Foundation for Robust Methods
........................ 19
2.1
Basic Tools for Judging Robustness
................................. 20
2.1.1
Qualitative Robustness
.................................... 21
2.1.2
Infinitesimal Robustness
................................... 23
2.1.3
Quantitative Robustness
................................... 25
2.2
Some Measures of Location and Their Influence Function
........... 26
2.2.1
Quantiles
.................................................. 26
2.2.2
The Winsorized Mean
..................................... 27
iii
/v
Contents
2.2.3
The Trimmed Mean
....................................... 29
2.2.4
M-Measures of Location
................................... 30
2.2.5
R-Measures of Location
.................................... 33
2.3
Measures of Scale
................................................... 33
2.3.1
Mean Deviation from the Mean
............................ 34
2.3.2
Mean Deviation from the Median
.......................... 35
2.3.3
Median Absolute Deviation
................................ 35
2.3.4
The (j-Quantile Range
...................................... 35
2.3.5
The Winsorized Variance
.................................. 36
2.4
Scale-Equivariant M-Measures of Location
.......................... 36
2.5
Winsorized Expected Values
........................................ 38
Chapter
3
Estimating Measures of Location and Scale
.............. 43
3.1
A Bootstrap Estimate of a Standard Error
........................... 44
3.1.1
R
and S-PLUS Function bootse
............................ 46
3.2
Density Estimators
................................................. 47
3.2.1
Normal Kernel
............................................ 47
3.2.2
Rosenblatt s Shifted Histogram
............................ 48
3.2.3
The Expected Frequency Curve
............................ 48
3.2.4
An Adaptive Kernel Estimator
............................. 49
3.2.5
R
and S-PLUS Functions skerd, kerden, kdplot, rdplot,
akerd, and
splot
.......................................... 50
3.3
The Sample Trimmed Mean
......................................... 56
3.3.1
R
and S-PLUS Function tmean
............................. 59
3.3.2
Estimating the Standard Error of the Trimmed Mean
....... 59
3.3.3
R
and S-PLUS Functions win, winvar, and trimse
.......... 64
3.3.4
Estimating the Standard Error of the Sample Median,
M
... 64
3.3.5
R
and S-PLUS Function msmedse
........................... 65
3.4
The Finite-Sample Breakdown Point
................................ 65
3.5
Estimating Quantiles
............................................... 66
3.5.1
Estimating the Standard Error of the Sample Quantile
...... 67
3.5.2
R
and S-PLUS Function qse
................................ 69
3.5.3
The Maritz-Jarrett Estimate of the Standard Error of x,
..... 69
Contents
3.5.4
R
and S-PLUS
Function
m j
se
.............................. 70
3.5.5
The Harrell-Davis Estimator
............................... 71
3.5.6
R
and S-PLUS Function hd
................................. 72
3.5.7
A Bootstrap Estimate of the Standard Error of
êq
........... 72
3.5.8
R
and S-PLUS Function hdseb
............................. 72
3.6
An M-Estimator of Location
........................................ 73
3.6.1
Computing an M-Estimator of Location
.................... 79
3.6.2
R
and S-PLUS Function
mest
.............................. 81
3.6.3
Estimating the Standard Error of the M-Estimator
.......... 81
3.6.4
R
and S-PLUS Function mestse
............................ 84
3.6.5
A Bootstrap Estimate of the Standard Error of
џт
.......... 84
3.6.6
R
and S-PLUS Function mestseb
........................... 85
3.7
One-Step M-Estimator
.............................................. 85
3.7.1
R
and S-PLUS Function onestep
........................... 86
3.8
W-Estimators
....................................................... 87
3.9
The Hodges-Lehmann Estimator
................................... 88
3.10
Skipped Estimators
................................................. 88
3.10.1
R
and S-PLUS Functions mom and bmean
.................... 89
3.11
Some Comparisons of the Location Estimators
...................... 90
3.12
More Measures of Scale
............................................. 92
3.12.1
The Biweight Midvariance
................................. 93
3.12.2
R
and S-PLUS Function bivar
............................. 96
3.12.3
The Percentage Bend Midvariance
......................... 96
3.12.4
R
and S-PLUS Function pbvar
............................. 98
3.12.5
The Interquartile Range
.................................... 98
3.12.6
R
and S-PLUS Function
ideali
............................ 99
3.13
Some Outlier Detection Methods
.................................... 99
3.13.1
Rules Based on Means and Variances
...................... 99
3.13.2
A Method Based on the Interquartile Range
................ 100
3.13.3
Carling s Modification
..................................... 100
3.13.4
A MAD-Median Rule
...................................... 101
3.13.5
R
and S-PLUS Functions outbox and out
................... 101
3.14
Exercises
........................................................... 102
W
Contents
Chapter
4
Confidence Intervals in the One-Sample Case
...........
1
05
4.1
Problems When Working with Means
............................... 105
4.2
The g-and-h Distribution
........................................... 110
4.3
Inferences About the Trimmed Mean
............................... 113
4.3.1
R
and S-PLUS Function trimci
............................ 117
4.4
Basic Bootstrap Methods
............................................ 117
4.4.1
The Percentile Bootstrap Method
.......................... 118
4.4.2
R
and S-PLUS Function onesampb
.......................... 119
4.4.3
Bootstrap-t Method
........................................ 119
4.4.4
Bootstrap Methods When Using a Trimmed Mean
......... 121
4.4.5
Singh s Modification
....................................... 125
4.4.6
R
and S-PLUS Functions trimpb and trimcibt
............. 126
4.5
Inferences About M-Estimators
..................................... 127
4.5.1
R
and S-PLUS Functions
městci
and
momci
................ 129
4.6
Confidence Intervals for Quantiles
.................................. 130
4.6.1 ·
Alteranative Method for the Median
....................... 132
4.6.2
R
and S-PLUS Functions qmj
ci, hdci,
sint,
qci, and qint
.............................................. 133
4.7
Concluding Remarks
............................................... 134
4.8
Exercises
........................................................... 135
Chapter
5
Comparing Two Groups
.................................. 137
5.1
The Shift Function
.................................................. 139
5.1.1
The Kolmogorov-Smirnov Test
............................ 142
5.1.2
R
and S-PLUS Functions ks, kssig, kswsig,
and kstiesig
.............................................. 145
5.1.3
The
S
Band and
W
Band for the Shift Function
............. 147
5.1.4
R
and S-PLUS Functions sband and wband
................. 148
5.1.5
Confidence Band for the Deciles Only
...................... 151
5.1.6
R
and S-PLUS Function shifthd
........................... 153
5.1.7
R
and S-PLUS Functions g2plot and splotg2
.............. 155
5.2
Student s
t
Test
..................................................... 155
Contents
vii
5.3
The Yuen-Welch Test
............................................... 159
5.3.1
R
and S-PLUS Function yuen
.............................. 161
5.3.2
A Bootstrap-t Method for Comparing Trimmed Means
..... 162
5.3.3
S-PLUS Function yuenbt
................................... 165
5.4
Inferences Based on a Percentile Bootstrap Method
.................. 167
5.4.1
Comparing M-Estimators
.................................. 168
5.4.2
Comparing Trimmed Means
............................... 169
5.4.3
R
and S-PLUS Functions trimpb2, pb2gen, and m2ci
....... 169
5.5
Comparing Measures of Scale
....................................... 170
5.5.1
Comparing Variances
...................................... 170
5.5.2
R
and S-PLUS Function comvar2
........................... 171
5.5.3
Comparing Biweight Mid variances
........................ 171
5.5.4
R
and S-PLUS Function b2ci
.............................. 171
5.6
Permutation Tests
.................................................. 172
5.6.1
R
and S-PLUS Function permg
............................. 173
5.7
Some Heteroscedastic, Rank-Based Methods
........................ 173
5.7.1
R
and S-PLUS Function
mee
................................ 174
5.7.2
Handling Tied Values
..................................... 176
5.7.3
R
and S-PLUS Functions
cid
and bmp
...................... 180
5.8
Comparing Two Independent Binomials
............................ 181
5.8.1
Storer-Kim Method
....................................... 182
5.8.2
Beal s Method
............................................. 183
5.8.3
R
and S-PLUS Functions twobinom and twobici
........... 184
5.9
Comparing Dependent Groups
..................................... 184
5.9.1
Comparing Deciles
........................................ 185
5.9.2
R
and S-PLUS Function shif tdhd
.......................... 186
5.9.3
Comparing Trimmed Means
............................... 188
5.9.4
R
and S-PLUS Function yuend
............................. 190
5.9.5
A Bootstrap-t Method for Marginal Trimmed Means
....... 191
5.9.6
R
and S-PLUS Function ydbt
.............................. 192
5.9.7
Percennie
Bootstrap: Comparing M-Estimators and Other
Measures of Location and Scale
............................ 192
5.9.8
R
and S-PLUS Function bootdpci
.......................... 194
5.9.9
Comparing Variances
...................................... 195
viii Contents
5.9.10
The Sign Test and Inferences About the
Binomial Distribution
...................................... 196
5.9.11
R
and S-PLUS Function binomci
........................... 198
5.10
Exercises
........................................................... 199
Chapter
6
Some Multivariate Methods
.............................. 203
6.1
Generalized Variance
............................................... 203
6.2
Depth
.............................................................. 204
6.2.1
Mahalanobis Depth
........................................ 204
6.2.2 Halfspace
Depth
........................................... 205
6.2.3
Computing
Halfspace
Depth
.............................. 207
6.2.4
R
and S-PLUS Functions depth2, depth,
f
depth,
f
depthv2,
unidepth, depth2
.
for,depth3
.
for,
f
depth
.
for,
f
depthv2
.
f
or, and ufdepth.for
........................... 210
6.2.5
Projection Depth
........................................... 211
6.2.6
R
and S-PLUS Functions pdis and pdis.
f
or
............... 212
6.2.7
Other Measures of Depth
.................................. 213
6.2.8
R
and S-PLUS Function zdepth
............................ 214
6.3
Some Affine-Equivariant Estimators
................................ 214
6.3.1
Minimum-Volume Ellipsoid Estimator
..................... 215
6.3.2
The Minimum-Covariance Determinant Estimator
......... 216
6.3.3
S-Estimators and Constrained M-Estimators
............... 216
6.3.4
Donoho-Gasko Generalization of a Trimmed Mean
........ 218
6.3.5
R
and S-PLUS Functions dmean and dmean .for
............. 219
6.3.6
The Stahel-Donoho W-Estimator
.......................... 220
6.4
Multivariate Outlier Detection Methods
............................. 221
6.4.1
A Relplot
.................................................. 222
6.4.2
R
and S-PLUS Function relplot
........................... 223
6.4.3
TheMVEMethod
......................................... 226
6.4.4
TheMCDMethod
......................................... 226
6.4.5
R
and S-PLUS Functions cov
.
mve and cov
.
mcd
............. 226
6.4.6
R
and S-PLUS Functions outmve and out
................... 227
6.4.7
TheMGVMethod
......................................... 228
6.4.8
R
and S-PLUS Function outmgv
............................ 231
Contents
/χ
6.4.9
A Projection Method
....................................... 231
6.4.10
R
and S-PLUS Functions outpro and outpro
.
for
.......... 233
6.4.11
Comments on Choosing a Method
......................... 234
6.5
A Skipped Estimator of Location and Scatter
........................ 236
6.5.1
R
and S-PLUS Functions smean, smean
.
for, wmcd, wmve,
mgvmean, and spat
......................................... 238
6.6
Confidence Region and Inference Based on the OP Estimator of
Location
............................................................ 240
6.6.1
R
and S-PLUS Functions smeancr and smeancr
.
for
........ 241
6.6.2
Inferences Based on the MGV Estimator
................... 243
6.6.3
R
and S-PLUS Function smgvcr
............................ 244
6.7
Two-Sample Case
.................................................. 244
6.7.1
R
and S-PLUS Functions smean2 and smean2 .for
.......... 245
6.8
Multivariate Density Estimators
.................................... 245
6.9
A Two-Sample, Projection-Type Extension of the
Wilcoxon-Mann-Whimey Test
..................................... 247
6.9.1
R
and S-PLUS Functions mulwmw and mulwmw .for
.......... 249
6.10
A Relative Depth Analog of the Wilcoxon-Mann-Whitney Test
..... 250
6.10.1
R
and S-PLUS Functions mwmw and mwnw .for
............... 252
6.11
Comparisons Based on Depth
....................................... 253
6.11.1
R
and S-PLUS Functions Isqs3, Isqs3.for, and depthg2
... 256
6.12
Comparing Dependent Groups Based on All Pairwise Differences
... 259
6.12.1
R
and S-PLUS Function df
ried
............................ 261
6.13
Exercises
........................................................... 262
Chapter
7
One-Way and Higher Designs for
Independent Groups
...................................... 265
7.1
Trimmed Means and a One-Way Design
............................ 266
7.1.1
A Welch-Type Adjusted Degrees of Freedom Procedure
... 266
7.1.2
R
and S-PLUS Function
t
iway
............................. 268
7.1.3
A Generalization of Box s Method
......................... 270
7.1.4
R
and S-PLUS Function boxlway
........................... 270
7.1.5
Comparing Medians
....................................... 271
Contents
7.1.6
R
and S-PLUS Function medlway
........................... 272
7.1.7
A Bootstrap-t Method
..................................... 272
7.1.8
R
and S-PLUS Function tlwaybt
........................... 273
7.1.9
Percentile Bootstrap Methods
.............................. 275
7.2
Two-Way Designs and Trimmed Means
............................ 275
7.2.1
R
and S-PLUS Function t2way
............................. 277
7.2.2
Comparing Medians
....................................... 282
7.2.3
R
and S-PLUS Function med2way
........................... 283
7.3
Three-Way Designs and Trimmed Means
........................... 284
7.3.1
R
and S-PLUS Function t3way
............................. 286
7.4
Multiple Comparisons Based on Trimmed Means
................... 289
7.4.1
R
and S-PLUS Function lincon
............................ 291
7.4.2
Multiple Comparisons and Two-Way Designs
............. 295
7.4.3
R
and S-PLUS Functions mcp2atm and mcp^ed
............. 295
7.4.4
A Bootstrap-t Procedure
................................... 296
7.4.5
R
and S-PLUS Function linconb
........................... 297
7.4.6
Judging Sample Sizes
...................................... 299
7.4.7
R
and S-PLUS Function hochberg
.......................... 301
7.4.8
A Percentile Bootstrap Method for Comparing
20%
Trimmed Means
........................................... 301
7.4.9
R
and S-PLUS Function mcppb20
........................... 302
7.5
A Random Effects Model for Trimmed Means
....................... 302
7.5.1
A Winsorized Intraclass Correlation
....................... 303
7.5.2
R
and S-PLUS Function rananova
.......................... 306
7.6
Bootstrap Methods and M-Measures of Location
.................... 307
7.6.1
R
and S-PLUS Functions blway and pbadepth
.............. 310
7.6.2
M-Estimators and Multiple Comparisons
.................. 311
7.6.3
R
and S-PLUS Functions linconm and pbmcp
............... 315
7.6.4
M-Estimators and the Random Effects Model
.............. 315
7.6.5
Other Methods for One-Way Designs
...................... 316
7.7
M-Measures of Location and a Two-Way Design
.................... 316
7.7.1
R
and S-PLUS Functions pbad2way and mcp2a
.............. 318
7.8
Ranked-Based Methods for a One-Way Design
...................... 319
7.8.1
The Rust-Fligner Method
.................................. 319
Contents xi
7.8.2
R
and S-PLUS
Function
rf
anova........................... 320
7.8.3
A Heteroscedastic Rank-Based Method That Allows
Tied Values
................................................ 320
7.8.4
R
and S-PLUS Function bdm
................................ 323
7.9
A Rank-Based Method for a Two-Way Design
...................... 324
7.9.1
R
and S-PLUS Function bdm2way
........................... 325
7.9.2
The Patel-Hoel Approach to Interactions
.................. 325
7.9.3
R
and S-PLUS Function rimul
............................. 328
7.10
Exercises
........................................................... 328
Chapter
8
Comparing Multiple Dependent Groups
.................. 333
8.1
Comparing Trimmed Means
........................................ 333
8.1.1
Omnibus Test Based on the Trimmed Means
oř
the Marginal Distributions
................................. 334
8.1.2
R
and S-PLUS Function rmanova
........................... 334
8.1.3
Pairwise Comparisons and Linear Contrasts with
Trimmed Means
........................................... 337
8.1.4
Linear Contrasts Based on Difference Scores
............... 339
8.1.5
R
and S-PLUS Function rmmcp
............................. 340
8.1.6
Judging the Sample Size
................................... 340
8.1.7
RandS-PLUSFunctionssteinl.trandstein2.tr
........ 341
8.2
Bootstrap Methods Based on Marginal Distributions
................ 342
8.2.1
Comparing Trimmed Means
............................... 342
8.2.2
R
and S-PLUS Function rmanovab
.......................... 343
8.2.3
Multiple Comparisons Based on Trimmed Means
.......... 343
8.2.4
R
and S-PLUS Functions pairdepb and bptd
............... 345
8.2.5
Percentile Bootstrap Methods
.............................. 347
8.2.6
R
and S-PLUS Functions bdlway and ddep
................. 348
8.2.7
Multiple Comparisons Using M-Estimators
................ 350
8.2.8
R
and S-PLUS Function lindm
............................. 352
8.3
Percentile Bootstrap Methods Based on Difference Scores
........... 353
8.3.1
R
and S-PLUS Function rmdzero
........................... 355
8.3.2
Multiple Comparisons
..................................... 355
8.3.3
R
and S-PLUS Function rmmcppb
........................... 357
xli
Contents
8.4
Comments on Which Method to Use
................................ 358
8.5
Some Rank-Based Methods
......................................... 359
8.5.1
R
and S-PLUS Function apanova
........................... 359
8.6
A Split-Plot Design
................................................. 360
8.6.1
A Method Based on Trimmed Means
...................... 361
8.6.2
R
and S-PLUS Function tsplit
............................ 362
8.6.3
Bootstrap-t Method
........................................ 365
8.6.4
S-PLUS Function tsplitbt
................................ 366
8.6.5
Using MOMs, Medians, and M-Estimators
................. 366
8.6.6
R
and S-PLUS Functions sppba, sppbb, and sppbi
.......... 368
8.6.7
A Rank-Based Approach
................................... 369
8.6.8
R
and S-PLUS Function bwrank
............................ 372
8.6.9
Rank-Based Multiple Comparisons
........................ 375
8.6.10
R
and S-PLUS Function bwrmcp
............................ 375
8.6.11
Multiple Comparisons When Using a Patel-Hoel
Approach to Interactions
.................................. 375
8.6.12
R
and S-PLUS Function sisplit
........................... 377
8.7
Some Rank-Based Multivariate Methods
............................ 377
8.7.1
The Munzel-Brunner Method
............................. 377
8.7.2
R
and S-PLUS Function mulrank
........................... 378
8.7.3
The Choi-Marden Multivariate Rank Test
................. 380
8.7.4
S-PLUS Function cmanova
................................. 381
8.8
Exercises
........................................................... 382
Chapter
9
Correlation and Tests of Independence
.................. 383
9.1
Problems with the Product Moment Correlation
.................... 384
9.1.1
Features of Data That Affect
r
and
Γ
....................... 387
9.1.2
A Heteroscedastic Test of Independence Based on
ρ
....... 388
9.2
Two Types of Robust Correlations
.................................. 389
9.3
Some Type
M
Measures of Correlation
.............................. 389
9.3.1
The Percentage Bend Correlation
.......................... 389
9.3.2
A Test of Independence Based on
ррь
...................... 392
9.3.3
R
and S-PLUS Function pbcor
............................. 392
Contents xiii
9.3.4
A Test of Zero Correlation Among
ρ
Random Variables
— 393
9.3.5
R
and S-PLUS Function pball
............................. 395
9.3.6
The Winsorized Correlation
............................... 396
9.3.7
R
and S-PLUS Functions wincor and winall
............... 397
9.3.8
The Biweight Midcovariance
............................... 399
9.3.9
R
and S-PLUS Functions bicov and bicovm
................ 400
9.3.10
Kendall s
Tau.............................................. 400
9.3.11
Spearman s Rho
........................................... 401
9.3.12
R
and S-PLUS Functions
tau,
spear, and taureg
........... 402
9.3.13
Heteroscedastic Tests of Zero Correlation
.................. 402
9.3.14
R
and S-PLUS Functions
corb
and pcorb
................... 403
9.4
Some Type
О
Correlations
.......................................... 404
9.4.1
MVE and MCD Correlations
............................... 404
9.4.2
Skipped Measures of Correlation
.......................... 404
9.4.3
The OP Correlation
........................................ 405
9.4.4
Inferences Based on Multiple Skipped Correlations
........ 405
9.4.5
R
and S-PLUS Functions
scor
and mscor
................... 407
9.5
A Test of Independence Sensitive to Curvature or a
Linear Association
.................................................. 408
9.5.1
R
and S-PLUS Functions indt and indtall
................ 410
9.6
Exercises
........................................................... 411
Chapter 1
0
Robust Regression
........................................ 413
10.1
Problems with Ordinary Least Squares
.............................. 415
10.1.1
Computing Confidence Intervals
Under Heteroscedasticity
.................................. 418
10.1.2
An Omnibus Test
.......................................... 420
10.1.3
R
and S-PLUS Functions lsfitNci and lsfitci
........... 421
10.2
Theil-Sen Estimator
................................................ 423
10.2.1
R
and S-PLUS Functions tsreg and correg
................ 426
10.3
Least Median of Squares
............................................ 427
10.3.1
R
and S-PLUS Function lmsreg
............................ 427
10.4
Least Trimmed Squares Estimator
.................................. 428
10.4.1
R
and S-PLUS Functions ltsreg and ltsgreg
.............. 428
xiv Contents
10.5
Least Trimmed Absolute Value Estimator
........................... 428
10.5.1
R
and S-PLUS Function ltareg
............................ 429
10.6
M-Estimators
....................................................... 429
10.7
The Hat Matrix
..................................................... 431
10.8
Generalized M-Estimators
.......................................... 434
10.8.1
R
and S-PLUS Function bmreg
............................. 437
10.9
The Coakley-Hettmansperger Estimator
............................ 438
10.9.1
R
and S-PLUS Function chreg
............................. 440
10.10
Skipped Estimators
................................................. 441
10.10.1
R
and S-PLUS Functions mgvreg, mgvreg
.
for, opreg,
and opreg.
f
or
............................................ 441
10.11
Deepest Regression Line
............................................ 442
10.11.1
R
and S-PLUS Functions depreg and depreg
.
for
.......... 443
10.12
A Criticism of Methods with a High Breakdown Point
.............. 443
10.13
Some Additional Estimators
........................................ 443
10.13.1
S-Estimators and
τ
-Estimators
.............................
444
10.13.2
R
and S-PLUS Functions snmreg and stsreg
............... 445
10.13.3
E
-Туре
Skipped Estimators
................................ 445
10.13.4
R
and S-PLUS Functions mbmreg, tstsreg, and gyreg
...... 447
10.13.5
Correlation Methods
....................................... 448
10.13.6
R
and S-PLUS Functions bireg and winreg
................ 450
10.13.7
L-Estimators
............................................... 451
10.13.8
L Regression and Quantile Estimation
.................... 451
10.13.9
R
and S-PLUS Function qreg
.............................. 452
10.13.10
Methods Based on Estimates of the Optimal
Weights
................................................... 452
10.13.11
Projection Estimators
...................................... 453
10.13.12
Methods Based on Ranks
.................................. 454
10.14
Comments About Various Estimators
............................... 455
10.14.1
Contamination Bias
........................................ 457
10.15
Detecting Regression Outliers
....................................... 462
10.15.1
R
and S-PLUS Function reglev
............................ 462
10.16
Exercises
........................................................... 464
Contents xv
Chapter 11 More Regression Methods
................................ 467
11.1
Inferential Methods Based on Robust Estimators
.................... 467
11.1.1
Omnibus Tests for Regression Parameters
................. 467
11.1.2
R
and S-PLUS Function
regtest........................... 472
11.1.3
Inferences About Individual Parameters
................... 474
11.1.4
R
and S-PLUS Function regci
............................. 475
11.1.5
Inferences Based on the OP Estimator
...................... 477
11.1.6
R
and S-PLUS Functions opr eg and opregpb.
f
or
.......... 480
11.2
Comparing the Parameters of Two Independent Groups
............ 480
11.2.1
R
and S-PLUS Function reg2ci
............................ 483
11.3
Curvature and Half-Slope Ratios
.................................... 484
11.3.1
R
and S-PLUS Function hratio
............................ 486
11.4
Curvature and Nonparametric Regression
.......................... 488
11.4.1
Smoothers.
................................................ 488
11.4.2
The Single-Predictor Case
................................. 489
11.4.3
R
and S-PLUS Functions lplot, kerreg, and logrsm
....... 491
11.4.4
The Running-Interval Smoother
........................... 492
11.4.5
R
and S-PLUS Functions runmean, rungen, runmbo,
and runhat
................................................ 497
11.4.6
Skipped Smoothers
........................................ 500
11.4.7
Smoothing with More Than One Predictor
................. 500
11.4.8
R
and S-PLUS Functions runm3d, run3hat, rung3d, run3bo,
rung3hat, rplot, and rplotsm
............................. 501
11.4.9
LOESS
..................................................... 505
11.4.10
Generalized Additive Models
.............................. 509
11.4.11
R
and S-PLUS Functions adrun, adrunl, and gamplot
...... 510
11.5
Checking the Specification of a Regression Model
................... 511
11.5.1
Testing the Hypothesis of a Linear Association
............. 512
11.5.2
R
and S-PLUS Function lintest
........................... 513
11.5.3
Testing the Hypothesis of a Generalized Additive Model
... 514
11.5.4
R
and S-PLUS Function adtest
............................ 515
11.5.5
Inferences About the Components of a Generalized
Additive Model
........................................... 515
11.5.6
R
and S-PLUS Function adcom
............................. 516
xvi Contents
11.6
Detecting Interactions
.............................................. 517
11.6.1
R
and S-PLUS Functions kercon,
riplot,
and runsm2g
............................................... 519
11.7
Comparing Parametric, Additive, and Nonparametric Fits
.......... 520
11.7.1
R
and S-PLUS Functions adpchk and pmodchk
.............. 520
11.8
ANCOVA
.......................................................... 522
11.8.1
R
and S-PLUS Functions ancova, ancpb, runmean2g,
and ancboot
............................................... 526
11.8.2
Multiple Covariates
....................................... 530
11.8.3
An Alternative Approach
.................................. 531
11.8.4
R
and S-PLUS Functions ancdes, ancovamp, ancmppb,
and ancom
................................................. 532
11.9
Exercises
........................................................... 534
References
............................................................. 537
Index
................................................................... 575
|
adam_txt |
Contents
Preface
. xvii
Chapter I Introduction
.
I
1.1
Problems with Assuming Normality
. 2
1.2
Transformations
. 6
1.3
The Influence Curve
. 7
1.4
The Central Limit Theorem
. 8
1.5
Is the ANOVA
F
Robust?
. 9
1.6
Regression
. 10
1.7
More Remarks
. 10
1.8
Using the Computer:
R
and S-PLUS
. 11
1.9
Some Data-Managment Issues
. 13
1.9.1
Eliminating Missing Values
. 17
Chapter
2
A Foundation for Robust Methods
. 19
2.1
Basic Tools for Judging Robustness
. 20
2.1.1
Qualitative Robustness
. 21
2.1.2
Infinitesimal Robustness
. 23
2.1.3
Quantitative Robustness
. 25
2.2
Some Measures of Location and Their Influence Function
. 26
2.2.1
Quantiles
. 26
2.2.2
The Winsorized Mean
. 27
iii
/v
Contents
2.2.3
The Trimmed Mean
. 29
2.2.4
M-Measures of Location
. 30
2.2.5
R-Measures of Location
. 33
2.3
Measures of Scale
. 33
2.3.1
Mean Deviation from the Mean
. 34
2.3.2
Mean Deviation from the Median
. 35
2.3.3
Median Absolute Deviation
. 35
2.3.4
The (j-Quantile Range
. 35
2.3.5
The Winsorized Variance
. 36
2.4
Scale-Equivariant M-Measures of Location
. 36
2.5
Winsorized Expected Values
. 38
Chapter
3
Estimating Measures of Location and Scale
. 43
3.1
A Bootstrap Estimate of a Standard Error
. 44
3.1.1
R
and S-PLUS Function bootse
. 46
3.2
Density Estimators
. 47
3.2.1
Normal Kernel
. 47
3.2.2
Rosenblatt's Shifted Histogram
. 48
3.2.3
The Expected Frequency Curve
. 48
3.2.4
An Adaptive Kernel Estimator
. 49
3.2.5
R
and S-PLUS Functions skerd, kerden, kdplot, rdplot,
akerd, and
splot
. 50
3.3
The Sample Trimmed Mean
. 56
3.3.1
R
and S-PLUS Function tmean
. 59
3.3.2
Estimating the Standard Error of the Trimmed Mean
. 59
3.3.3
R
and S-PLUS Functions win, winvar, and trimse
. 64
3.3.4
Estimating the Standard Error of the Sample Median,
M
. 64
3.3.5
R
and S-PLUS Function msmedse
. 65
3.4
The Finite-Sample Breakdown Point
. 65
3.5
Estimating Quantiles
. 66
3.5.1
Estimating the Standard Error of the Sample Quantile
. 67
3.5.2
R
and S-PLUS Function qse
. 69
3.5.3
The Maritz-Jarrett Estimate of the Standard Error of x,
. 69
Contents
3.5.4
R
and S-PLUS
Function
m j
se
. 70
3.5.5
The Harrell-Davis Estimator
. 71
3.5.6
R
and S-PLUS Function hd
. 72
3.5.7
A Bootstrap Estimate of the Standard Error of
êq
. 72
3.5.8
R
and S-PLUS Function hdseb
. 72
3.6
An M-Estimator of Location
. 73
3.6.1
Computing an M-Estimator of Location
. 79
3.6.2
R
and S-PLUS Function
mest
. 81
3.6.3
Estimating the Standard Error of the M-Estimator
. 81
3.6.4
R
and S-PLUS Function mestse
. 84
3.6.5
A Bootstrap Estimate of the Standard Error of
џт
. 84
3.6.6
R
and S-PLUS Function mestseb
. 85
3.7
One-Step M-Estimator
. 85
3.7.1
R
and S-PLUS Function onestep
. 86
3.8
W-Estimators
. 87
3.9
The Hodges-Lehmann Estimator
. 88
3.10
Skipped Estimators
. 88
3.10.1
R
and S-PLUS Functions mom and bmean
. 89
3.11
Some Comparisons of the Location Estimators
. 90
3.12
More Measures of Scale
. 92
3.12.1
The Biweight Midvariance
. 93
3.12.2
R
and S-PLUS Function bivar
. 96
3.12.3
The Percentage Bend Midvariance
. 96
3.12.4
R
and S-PLUS Function pbvar
. 98
3.12.5
The Interquartile Range
. 98
3.12.6
R
and S-PLUS Function
ideali
. 99
3.13
Some Outlier Detection Methods
. 99
3.13.1
Rules Based on Means and Variances
. 99
3.13.2
A Method Based on the Interquartile Range
. 100
3.13.3
Carling's Modification
. 100
3.13.4
A MAD-Median Rule
. 101
3.13.5
R
and S-PLUS Functions outbox and out
. 101
3.14
Exercises
. 102
W
Contents
Chapter
4
Confidence Intervals in the One-Sample Case
.
1
05
4.1
Problems When Working with Means
. 105
4.2
The g-and-h Distribution
. 110
4.3
Inferences About the Trimmed Mean
. 113
4.3.1
R
and S-PLUS Function trimci
. 117
4.4
Basic Bootstrap Methods
. 117
4.4.1
The Percentile Bootstrap Method
. 118
4.4.2
R
and S-PLUS Function onesampb
. 119
4.4.3
Bootstrap-t Method
. 119
4.4.4
Bootstrap Methods When Using a Trimmed Mean
. 121
4.4.5
Singh's Modification
. 125
4.4.6
R
and S-PLUS Functions trimpb and trimcibt
. 126
4.5
Inferences About M-Estimators
. 127
4.5.1
R
and S-PLUS Functions
městci
and
momci
. 129
4.6
Confidence Intervals for Quantiles
. 130
4.6.1 ·
Alteranative Method for the Median
. 132
4.6.2
R
and S-PLUS Functions qmj
ci, hdci,
sint,
qci, and qint
. 133
4.7
Concluding Remarks
. 134
4.8
Exercises
. 135
Chapter
5
Comparing Two Groups
. 137
5.1
The Shift Function
. 139
5.1.1
The Kolmogorov-Smirnov Test
. 142
5.1.2
R
and S-PLUS Functions ks, kssig, kswsig,
and kstiesig
. 145
5.1.3
The
S
Band and
W
Band for the Shift Function
. 147
5.1.4
R
and S-PLUS Functions sband and wband
. 148
5.1.5
Confidence Band for the Deciles Only
. 151
5.1.6
R
and S-PLUS Function shifthd
. 153
5.1.7
R
and S-PLUS Functions g2plot and splotg2
. 155
5.2
Student's
t
Test
. 155
Contents
vii
5.3
The Yuen-Welch Test
. 159
5.3.1
R
and S-PLUS Function yuen
. 161
5.3.2
A Bootstrap-t Method for Comparing Trimmed Means
. 162
5.3.3
S-PLUS Function yuenbt
. 165
5.4
Inferences Based on a Percentile Bootstrap Method
. 167
5.4.1
Comparing M-Estimators
. 168
5.4.2
Comparing Trimmed Means
. 169
5.4.3
R
and S-PLUS Functions trimpb2, pb2gen, and m2ci
. 169
5.5
Comparing Measures of Scale
. 170
5.5.1
Comparing Variances
. 170
5.5.2
R
and S-PLUS Function comvar2
. 171
5.5.3
Comparing Biweight Mid variances
. 171
5.5.4
R
and S-PLUS Function b2ci
. 171
5.6
Permutation Tests
. 172
5.6.1
R
and S-PLUS Function permg
. 173
5.7
Some Heteroscedastic, Rank-Based Methods
. 173
5.7.1
R
and S-PLUS Function
mee
. 174
5.7.2
Handling Tied Values
. 176
5.7.3
R
and S-PLUS Functions
cid
and bmp
. 180
5.8
Comparing Two Independent Binomials
. 181
5.8.1
Storer-Kim Method
. 182
5.8.2
Beal's Method
. 183
5.8.3
R
and S-PLUS Functions twobinom and twobici
. 184
5.9
Comparing Dependent Groups
. 184
5.9.1
Comparing Deciles
. 185
5.9.2
R
and S-PLUS Function shif tdhd
. 186
5.9.3
Comparing Trimmed Means
. 188
5.9.4
R
and S-PLUS Function yuend
. 190
5.9.5
A Bootstrap-t Method for Marginal Trimmed Means
. 191
5.9.6
R
and S-PLUS Function ydbt
. 192
5.9.7
Percennie
Bootstrap: Comparing M-Estimators and Other
Measures of Location and Scale
. 192
5.9.8
R
and S-PLUS Function bootdpci
. 194
5.9.9
Comparing Variances
. 195
viii Contents
5.9.10
The Sign Test and Inferences About the
Binomial Distribution
. 196
5.9.11
R
and S-PLUS Function binomci
. 198
5.10
Exercises
. 199
Chapter
6
Some Multivariate Methods
. 203
6.1
Generalized Variance
. 203
6.2
Depth
. 204
6.2.1
Mahalanobis Depth
. 204
6.2.2 Halfspace
Depth
. 205
6.2.3
Computing
Halfspace
Depth
. 207
6.2.4
R
and S-PLUS Functions depth2, depth,
f
depth,
f
depthv2,
unidepth, depth2
.
for,depth3
.
for,
f
depth
.
for,
f
depthv2
.
f
or, and ufdepth.for
. 210
6.2.5
Projection Depth
. 211
6.2.6
R
and S-PLUS Functions pdis and pdis.
f
or
. 212
6.2.7
Other Measures of Depth
. 213
6.2.8
R
and S-PLUS Function zdepth
. 214
6.3
Some Affine-Equivariant Estimators
. 214
6.3.1
Minimum-Volume Ellipsoid Estimator
. 215
6.3.2
The Minimum-Covariance Determinant Estimator
. 216
6.3.3
S-Estimators and Constrained M-Estimators
. 216
6.3.4
Donoho-Gasko Generalization of a Trimmed Mean
. 218
6.3.5
R
and S-PLUS Functions dmean and dmean .for
. 219
6.3.6
The Stahel-Donoho W-Estimator
. 220
6.4
Multivariate Outlier Detection Methods
. 221
6.4.1
A Relplot
. 222
6.4.2
R
and S-PLUS Function relplot
. 223
6.4.3
TheMVEMethod
. 226
6.4.4
TheMCDMethod
. 226
6.4.5
R
and S-PLUS Functions cov
.
mve and cov
.
mcd
. 226
6.4.6
R
and S-PLUS Functions outmve and out
. 227
6.4.7
TheMGVMethod
. 228
6.4.8
R
and S-PLUS Function outmgv
. 231
Contents
/χ
6.4.9
A Projection Method
. 231
6.4.10
R
and S-PLUS Functions outpro and outpro
.
for
. 233
6.4.11
Comments on Choosing a Method
. 234
6.5
A Skipped Estimator of Location and Scatter
. 236
6.5.1
R
and S-PLUS Functions smean, smean
.
for, wmcd, wmve,
mgvmean, and spat
. 238
6.6
Confidence Region and Inference Based on the OP Estimator of
Location
. 240
6.6.1
R
and S-PLUS Functions smeancr and smeancr
.
for
. 241
6.6.2
Inferences Based on the MGV Estimator
. 243
6.6.3
R
and S-PLUS Function smgvcr
. 244
6.7
Two-Sample Case
. 244
6.7.1
R
and S-PLUS Functions smean2 and smean2 .for
. 245
6.8
Multivariate Density Estimators
. 245
6.9
A Two-Sample, Projection-Type Extension of the
Wilcoxon-Mann-Whimey Test
. 247
6.9.1
R
and S-PLUS Functions mulwmw and mulwmw .for
. 249
6.10
A Relative Depth Analog of the Wilcoxon-Mann-Whitney Test
. 250
6.10.1
R
and S-PLUS Functions mwmw and mwnw .for
. 252
6.11
Comparisons Based on Depth
. 253
6.11.1
R
and S-PLUS Functions Isqs3, Isqs3.for, and depthg2
. 256
6.12
Comparing Dependent Groups Based on All Pairwise Differences
. 259
6.12.1
R
and S-PLUS Function df
ried
. 261
6.13
Exercises
. 262
Chapter
7
One-Way and Higher Designs for
Independent Groups
. 265
7.1
Trimmed Means and a One-Way Design
. 266
7.1.1
A Welch-Type Adjusted Degrees of Freedom Procedure
. 266
7.1.2
R
and S-PLUS Function
t
iway
. 268
7.1.3
A Generalization of Box's Method
. 270
7.1.4
R
and S-PLUS Function boxlway
. 270
7.1.5
Comparing Medians
. 271
Contents
7.1.6
R
and S-PLUS Function medlway
. 272
7.1.7
A Bootstrap-t Method
. 272
7.1.8
R
and S-PLUS Function tlwaybt
. 273
7.1.9
Percentile Bootstrap Methods
. 275
7.2
Two-Way Designs and Trimmed Means
. 275
7.2.1
R
and S-PLUS Function t2way
. 277
7.2.2
Comparing Medians
. 282
7.2.3
R
and S-PLUS Function med2way
. 283
7.3
Three-Way Designs and Trimmed Means
. 284
7.3.1
R
and S-PLUS Function t3way
. 286
7.4
Multiple Comparisons Based on Trimmed Means
. 289
7.4.1
R
and S-PLUS Function lincon
. 291
7.4.2
Multiple Comparisons and Two-Way Designs
. 295
7.4.3
R
and S-PLUS Functions mcp2atm and mcp^ed
. 295
7.4.4
A Bootstrap-t Procedure
. 296
7.4.5
R
and S-PLUS Function linconb
. 297
7.4.6
Judging Sample Sizes
. 299
7.4.7
R
and S-PLUS Function hochberg
. 301
7.4.8
A Percentile Bootstrap Method for Comparing
20%
Trimmed Means
. 301
7.4.9
R
and S-PLUS Function mcppb20
. 302
7.5
A Random Effects Model for Trimmed Means
. 302
7.5.1
A Winsorized Intraclass Correlation
. 303
7.5.2
R
and S-PLUS Function rananova
. 306
7.6
Bootstrap Methods and M-Measures of Location
. 307
7.6.1
R
and S-PLUS Functions blway and pbadepth
. 310
7.6.2
M-Estimators and Multiple Comparisons
. 311
7.6.3
R
and S-PLUS Functions linconm and pbmcp
. 315
7.6.4
M-Estimators and the Random Effects Model
. 315
7.6.5
Other Methods for One-Way Designs
. 316
7.7
M-Measures of Location and a Two-Way Design
. 316
7.7.1
R
and S-PLUS Functions pbad2way and mcp2a
. 318
7.8
Ranked-Based Methods for a One-Way Design
. 319
7.8.1
The Rust-Fligner Method
. 319
Contents xi
7.8.2
R
and S-PLUS
Function
rf
anova. 320
7.8.3
A Heteroscedastic Rank-Based Method That Allows
Tied Values
. 320
7.8.4
R
and S-PLUS Function bdm
. 323
7.9
A Rank-Based Method for a Two-Way Design
. 324
7.9.1
R
and S-PLUS Function bdm2way
. 325
7.9.2
The Patel-Hoel Approach to Interactions
. 325
7.9.3
R
and S-PLUS Function rimul
. 328
7.10
Exercises
. 328
Chapter
8
Comparing Multiple Dependent Groups
. 333
8.1
Comparing Trimmed Means
. 333
8.1.1
Omnibus Test Based on the Trimmed Means
oř
the Marginal Distributions
. 334
8.1.2
R
and S-PLUS Function rmanova
. 334
8.1.3
Pairwise Comparisons and Linear Contrasts with
Trimmed Means
. 337
8.1.4
Linear Contrasts Based on Difference Scores
. 339
8.1.5
R
and S-PLUS Function rmmcp
. 340
8.1.6
Judging the Sample Size
. 340
8.1.7
RandS-PLUSFunctionssteinl.trandstein2.tr
. 341
8.2
Bootstrap Methods Based on Marginal Distributions
. 342
8.2.1
Comparing Trimmed Means
. 342
8.2.2
R
and S-PLUS Function rmanovab
. 343
8.2.3
Multiple Comparisons Based on Trimmed Means
. 343
8.2.4
R
and S-PLUS Functions pairdepb and bptd
. 345
8.2.5
Percentile Bootstrap Methods
. 347
8.2.6
R
and S-PLUS Functions bdlway and ddep
. 348
8.2.7
Multiple Comparisons Using M-Estimators
. 350
8.2.8
R
and S-PLUS Function lindm
. 352
8.3
Percentile Bootstrap Methods Based on Difference Scores
. 353
8.3.1
R
and S-PLUS Function rmdzero
. 355
8.3.2
Multiple Comparisons
. 355
8.3.3
R
and S-PLUS Function rmmcppb
. 357
xli
Contents
8.4
Comments on Which Method to Use
. 358
8.5
Some Rank-Based Methods
. 359
8.5.1
R
and S-PLUS Function apanova
. 359
8.6
A Split-Plot Design
. 360
8.6.1
A Method Based on Trimmed Means
. 361
8.6.2
R
and S-PLUS Function tsplit
. 362
8.6.3
Bootstrap-t Method
. 365
8.6.4
S-PLUS Function tsplitbt
. 366
8.6.5
Using MOMs, Medians, and M-Estimators
. 366
8.6.6
R
and S-PLUS Functions sppba, sppbb, and sppbi
. 368
8.6.7
A Rank-Based Approach
. 369
8.6.8
R
and S-PLUS Function bwrank
. 372
8.6.9
Rank-Based Multiple Comparisons
. 375
8.6.10
R
and S-PLUS Function bwrmcp
. 375
8.6.11
Multiple Comparisons When Using a Patel-Hoel
Approach to Interactions
. 375
8.6.12
R
and S-PLUS Function sisplit
. 377
8.7
Some Rank-Based Multivariate Methods
. 377
8.7.1
The Munzel-Brunner Method
. 377
8.7.2
R
and S-PLUS Function mulrank
. 378
8.7.3
The Choi-Marden Multivariate Rank Test
. 380
8.7.4
S-PLUS Function cmanova
. 381
8.8
Exercises
. 382
Chapter
9
Correlation and Tests of Independence
. 383
9.1
Problems with the Product Moment Correlation
. 384
9.1.1
Features of Data That Affect
r
and
Γ
. 387
9.1.2
A Heteroscedastic Test of Independence Based on
ρ
. 388
9.2
Two Types of Robust Correlations
. 389
9.3
Some Type
M
Measures of Correlation
. 389
9.3.1
The Percentage Bend Correlation
. 389
9.3.2
A Test of Independence Based on
ррь
. 392
9.3.3
R
and S-PLUS Function pbcor
. 392
Contents xiii
9.3.4
A Test of Zero Correlation Among
ρ
Random Variables
— 393
9.3.5
R
and S-PLUS Function pball
. 395
9.3.6
The Winsorized Correlation
. 396
9.3.7
R
and S-PLUS Functions wincor and winall
. 397
9.3.8
The Biweight Midcovariance
. 399
9.3.9
R
and S-PLUS Functions bicov and bicovm
. 400
9.3.10
Kendall's
Tau. 400
9.3.11
Spearman's Rho
. 401
9.3.12
R
and S-PLUS Functions
tau,
spear, and taureg
. 402
9.3.13
Heteroscedastic Tests of Zero Correlation
. 402
9.3.14
R
and S-PLUS Functions
corb
and pcorb
. 403
9.4
Some Type
О
Correlations
. 404
9.4.1
MVE and MCD Correlations
. 404
9.4.2
Skipped Measures of Correlation
. 404
9.4.3
The OP Correlation
. 405
9.4.4
Inferences Based on Multiple Skipped Correlations
. 405
9.4.5
R
and S-PLUS Functions
scor
and mscor
. 407
9.5
A Test of Independence Sensitive to Curvature or a
Linear Association
. 408
9.5.1
R
and S-PLUS Functions indt and indtall
. 410
9.6
Exercises
. 411
Chapter 1
0
Robust Regression
. 413
10.1
Problems with Ordinary Least Squares
. 415
10.1.1
Computing Confidence Intervals
Under Heteroscedasticity
. 418
10.1.2
An Omnibus Test
. 420
10.1.3
R
and S-PLUS Functions lsfitNci and lsfitci
. 421
10.2
Theil-Sen Estimator
. 423
10.2.1
R
and S-PLUS Functions tsreg and correg
. 426
10.3
Least Median of Squares
. 427
10.3.1
R
and S-PLUS Function lmsreg
. 427
10.4
Least Trimmed Squares Estimator
. 428
10.4.1
R
and S-PLUS Functions ltsreg and ltsgreg
. 428
xiv Contents
10.5
Least Trimmed Absolute Value Estimator
. 428
10.5.1
R
and S-PLUS Function ltareg
. 429
10.6
M-Estimators
. 429
10.7
The Hat Matrix
. 431
10.8
Generalized M-Estimators
. 434
10.8.1
R
and S-PLUS Function bmreg
. 437
10.9
The Coakley-Hettmansperger Estimator
. 438
10.9.1
R
and S-PLUS Function chreg
. 440
10.10
Skipped Estimators
. 441
10.10.1
R
and S-PLUS Functions mgvreg, mgvreg
.
for, opreg,
and opreg.
f
or
. 441
10.11
Deepest Regression Line
. 442
10.11.1
R
and S-PLUS Functions depreg and depreg
.
for
. 443
10.12
A Criticism of Methods with a High Breakdown Point
. 443
10.13
Some Additional Estimators
. 443
10.13.1
S-Estimators and
τ
-Estimators
.
444
10.13.2
R
and S-PLUS Functions snmreg and stsreg
. 445
10.13.3
E
-Туре
Skipped Estimators
. 445
10.13.4
R
and S-PLUS Functions mbmreg, tstsreg, and gyreg
. 447
10.13.5
Correlation Methods
. 448
10.13.6
R
and S-PLUS Functions bireg and winreg
. 450
10.13.7
L-Estimators
. 451
10.13.8
L\ Regression and Quantile Estimation
. 451
10.13.9
R
and S-PLUS Function qreg
. 452
10.13.10
Methods Based on Estimates of the Optimal
Weights
. 452
10.13.11
Projection Estimators
. 453
10.13.12
Methods Based on Ranks
. 454
10.14
Comments About Various Estimators
. 455
10.14.1
Contamination Bias
. 457
10.15
Detecting Regression Outliers
. 462
10.15.1
R
and S-PLUS Function reglev
. 462
10.16
Exercises
. 464
Contents xv
Chapter 11 More Regression Methods
. 467
11.1
Inferential Methods Based on Robust Estimators
. 467
11.1.1
Omnibus Tests for Regression Parameters
. 467
11.1.2
R
and S-PLUS Function
regtest. 472
11.1.3
Inferences About Individual Parameters
. 474
11.1.4
R
and S-PLUS Function regci
. 475
11.1.5
Inferences Based on the OP Estimator
. 477
11.1.6
R
and S-PLUS Functions opr eg and opregpb.
f
or
. 480
11.2
Comparing the Parameters of Two Independent Groups
. 480
11.2.1
R
and S-PLUS Function reg2ci
. 483
11.3
Curvature and Half-Slope Ratios
. 484
11.3.1
R
and S-PLUS Function hratio
. 486
11.4
Curvature and Nonparametric Regression
. 488
11.4.1
Smoothers.
. 488
11.4.2
The Single-Predictor Case
. 489
11.4.3
R
and S-PLUS Functions lplot, kerreg, and logrsm
. 491
11.4.4
The Running-Interval Smoother
. 492
11.4.5
R
and S-PLUS Functions runmean, rungen, runmbo,
and runhat
. 497
11.4.6
Skipped Smoothers
. 500
11.4.7
Smoothing with More Than One Predictor
. 500
11.4.8
R
and S-PLUS Functions runm3d, run3hat, rung3d, run3bo,
rung3hat, rplot, and rplotsm
. 501
11.4.9
LOESS
. 505
11.4.10
Generalized Additive Models
. 509
11.4.11
R
and S-PLUS Functions adrun, adrunl, and gamplot
. 510
11.5
Checking the Specification of a Regression Model
. 511
11.5.1
Testing the Hypothesis of a Linear Association
. 512
11.5.2
R
and S-PLUS Function lintest
. 513
11.5.3
Testing the Hypothesis of a Generalized Additive Model
. 514
11.5.4
R
and S-PLUS Function adtest
. 515
11.5.5
Inferences About the Components of a Generalized
Additive Model
. 515
11.5.6
R
and S-PLUS Function adcom
. 516
xvi Contents
11.6
Detecting Interactions
. 517
11.6.1
R
and S-PLUS Functions kercon,
riplot,
and runsm2g
. 519
11.7
Comparing Parametric, Additive, and Nonparametric Fits
. 520
11.7.1
R
and S-PLUS Functions adpchk and pmodchk
. 520
11.8
ANCOVA
. 522
11.8.1
R
and S-PLUS Functions ancova, ancpb, runmean2g,
and ancboot
. 526
11.8.2
Multiple Covariates
. 530
11.8.3
An Alternative Approach
. 531
11.8.4
R
and S-PLUS Functions ancdes, ancovamp, ancmppb,
and ancom
. 532
11.9
Exercises
. 534
References
. 537
Index
. 575 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Wilcox, Rand R. |
author_GND | (DE-588)141426241 |
author_facet | Wilcox, Rand R. |
author_role | aut |
author_sort | Wilcox, Rand R. |
author_variant | r r w rr rrw |
building | Verbundindex |
bvnumber | BV023094372 |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.8 |
callnumber-search | QA276.8 |
callnumber-sort | QA 3276.8 |
callnumber-subject | QA - Mathematics |
classification_rvk | CM 4000 QH 233 SK 830 |
classification_tum | MAT 626f |
ctrlnum | (OCoLC)254082984 (DE-599)BVBBV023094372 |
dewey-full | 519.5/44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/44 |
dewey-search | 519.5/44 |
dewey-sort | 3519.5 244 |
dewey-tens | 510 - Mathematics |
discipline | Psychologie Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Psychologie Mathematik Wirtschaftswissenschaften |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01902nam a2200505 c 4500</leader><controlfield tag="001">BV023094372</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110804 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080123s2005 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0127515429</subfield><subfield code="9">0-12-751542-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254082984</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023094372</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-M382</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA276.8</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/44</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4000</subfield><subfield code="0">(DE-625)18951:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 626f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wilcox, Rand R.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141426241</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to robust estimation and hypothesis testing</subfield><subfield code="c">Rand R. Wilcox</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Robust estimation and hypothesis testing</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier Acad. Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 588 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Robuustheid</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Schattingstheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Statistische toetsen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimation theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robust statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical hypothesis testing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Robuste Schätzung</subfield><subfield code="0">(DE-588)4178265-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistischer Test</subfield><subfield code="0">(DE-588)4077852-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistischer Test</subfield><subfield code="0">(DE-588)4077852-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Robuste Schätzung</subfield><subfield code="0">(DE-588)4178265-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016297193&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016297193</subfield></datafield></record></collection> |
id | DE-604.BV023094372 |
illustrated | Illustrated |
index_date | 2024-07-02T19:42:18Z |
indexdate | 2024-07-09T21:10:52Z |
institution | BVB |
isbn | 0127515429 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016297193 |
oclc_num | 254082984 |
open_access_boolean | |
owner | DE-706 DE-N2 DE-384 DE-634 DE-11 DE-M49 DE-BY-TUM DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-M382 |
owner_facet | DE-706 DE-N2 DE-384 DE-634 DE-11 DE-M49 DE-BY-TUM DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-M382 |
physical | XIX, 588 S. graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Elsevier Acad. Press |
record_format | marc |
spelling | Wilcox, Rand R. Verfasser (DE-588)141426241 aut Introduction to robust estimation and hypothesis testing Rand R. Wilcox Robust estimation and hypothesis testing 2. ed. Amsterdam [u.a.] Elsevier Acad. Press 2005 XIX, 588 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Robuustheid gtt Schattingstheorie gtt Statistische toetsen gtt Estimation theory Robust statistics Statistical hypothesis testing Robuste Schätzung (DE-588)4178265-3 gnd rswk-swf Statistischer Test (DE-588)4077852-6 gnd rswk-swf Statistischer Test (DE-588)4077852-6 s DE-604 Robuste Schätzung (DE-588)4178265-3 s Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016297193&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wilcox, Rand R. Introduction to robust estimation and hypothesis testing Robuustheid gtt Schattingstheorie gtt Statistische toetsen gtt Estimation theory Robust statistics Statistical hypothesis testing Robuste Schätzung (DE-588)4178265-3 gnd Statistischer Test (DE-588)4077852-6 gnd |
subject_GND | (DE-588)4178265-3 (DE-588)4077852-6 |
title | Introduction to robust estimation and hypothesis testing |
title_alt | Robust estimation and hypothesis testing |
title_auth | Introduction to robust estimation and hypothesis testing |
title_exact_search | Introduction to robust estimation and hypothesis testing |
title_exact_search_txtP | Introduction to robust estimation and hypothesis testing |
title_full | Introduction to robust estimation and hypothesis testing Rand R. Wilcox |
title_fullStr | Introduction to robust estimation and hypothesis testing Rand R. Wilcox |
title_full_unstemmed | Introduction to robust estimation and hypothesis testing Rand R. Wilcox |
title_short | Introduction to robust estimation and hypothesis testing |
title_sort | introduction to robust estimation and hypothesis testing |
topic | Robuustheid gtt Schattingstheorie gtt Statistische toetsen gtt Estimation theory Robust statistics Statistical hypothesis testing Robuste Schätzung (DE-588)4178265-3 gnd Statistischer Test (DE-588)4077852-6 gnd |
topic_facet | Robuustheid Schattingstheorie Statistische toetsen Estimation theory Robust statistics Statistical hypothesis testing Robuste Schätzung Statistischer Test |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016297193&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wilcoxrandr introductiontorobustestimationandhypothesistesting AT wilcoxrandr robustestimationandhypothesistesting |