Stability and wave motion in porous media:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
Springer
[2008]
|
Schriftenreihe: | Applied mathematical sciences
Volume 165 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xiv, 437 Seiten Illustrationen |
ISBN: | 9780387765419 9780387765433 0387765417 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023089891 | ||
003 | DE-604 | ||
005 | 20230123 | ||
007 | t | ||
008 | 080121s2008 a||| |||| 00||| eng d | ||
015 | |a 07,N44,0813 |2 dnb | ||
016 | 7 | |a 985962941 |2 DE-101 | |
020 | |a 9780387765419 |c Print |9 978-0-387-76541-9 | ||
020 | |a 9780387765433 |c Online |9 978-0-387-76543-3 | ||
020 | |a 0387765417 |9 0-387-76541-7 | ||
024 | 3 | |a 9780387765419 | |
028 | 5 | 2 | |a 12019199 |
035 | |a (OCoLC)180470551 | ||
035 | |a (DE-599)DNB985962941 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91G |a DE-20 |a DE-83 |a DE-11 |a DE-29T |a DE-188 | ||
050 | 0 | |a QA1 | |
050 | 0 | |a QC173.4.P67 | |
082 | 0 | |a 620.11692 |2 22 | |
084 | |a UG 2300 |0 (DE-625)145617: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UF 5200 |0 (DE-625)145597: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a 76S05 |2 msc | ||
084 | |a PHY 231f |2 stub | ||
084 | |a 76E06 |2 msc | ||
084 | |a 76Exx |2 msc | ||
084 | |a MTA 510f |2 stub | ||
100 | 1 | |a Straughan, Brian |d 1947- |0 (DE-588)115774688 |4 aut | |
245 | 1 | 0 | |a Stability and wave motion in porous media |c Brian Straughan |
264 | 1 | |a New York |b Springer |c [2008] | |
264 | 4 | |c © 2008 | |
300 | |a xiv, 437 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Applied mathematical sciences |v Volume 165 | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Porous materials |x Stability |x Mathematical models | |
650 | 4 | |a Transport theory |x Mathematical models | |
650 | 4 | |a Wave-motion, Theory of | |
650 | 0 | 7 | |a Poröser Stoff |0 (DE-588)4046811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stabilität |0 (DE-588)4056693-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellenbewegung |0 (DE-588)4467376-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Poröser Stoff |0 (DE-588)4046811-2 |D s |
689 | 0 | 1 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 0 | 2 | |a Wellenbewegung |0 (DE-588)4467376-0 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-387-76543-3 |
830 | 0 | |a Applied mathematical sciences |v Volume 165 |w (DE-604)BV000005274 |9 165 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016292773&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016292773 |
Datensatz im Suchindex
_version_ | 1804137342220369920 |
---|---|
adam_text | Contents
Preface vii
1 Introduction 1
1.1 Porous media........................ 1
1.1.1 Applications, examples............... 1
1.1.2 Notation, definitions................ 6
1.1.3 Overview....................... 9
1.2 The Darcy model...................... 10
1.2.1 The Porous Medium Equation........... 11
1.3 The Forchheimer model................... 12
1.4 The Brinkman model.................... 12
1.5 Anisotropie Darcy model.................. 13
1.6 Equations for other fields.................. 14
1.6.1 Temperature..................... 14
1.6.2 Salt field....................... 15
1.7 Boundary conditions.................... 15
1.8 Elastic materials with voids ................ 16
1.8.1 Nunziato-Cowin theory............... 16
1.8.2 Microstretch theory................. 17
1.9 Mixture theories....................... 18
1.9.1 Eringen s theory................... 18
1.9.2 Bowen s theory................... 22
x Contents
2 Structural Stability 27
2.1 Structural stability, Darcy model ............. 27
2.1.1 Newton s law of cooling .............. 28
2.1.2 A priori bound for T................ 30
2.2 Structural stability, Forchheimer model.......... 31
2.2.1 Continuous dependence on b............ 32
2.2.2 Continuous dependence on c............ 34
2.2.3 Energy bounds ................... 35
2.2.4 Brinkman-Forchheimer model........... 37
2.3 Forchheimer model, non-zero boundary
conditions.......................... 37
2.3.1 A maximum principle for c............. 39
2.3.2 Continuous dependence on the viscosity ..... 39
2.4 Brinkman model, non-zero boundary conditions..... 42
2.5 Convergence, non-zero boundary conditions ....... 43
2.6 Continuous dependence, Vadasz coefficient........ 44
2.6.1 A maximum principle for T............ 45
2.6.2 Continuous dependence on a............ 46
2.7 Continuous dependence, Krishnamurti coefficient .... 48
2.7.1 An a priori bound for T.............. 49
2.7.2 Continuous dependence............... 53
2.8 Continuous dependence, Dufour coefficient........ 55
2.8.1 Continuous dependence on 7............ 57
2.9 Initial - final value problems................ 69
2.10 The interface problem.................... 72
2.11 Lower bounds on the blow-up time............ 76
2.12 Uniqueness in compressible porous flows......... 82
3 Spatial Decay 95
3.1 Spatial decay for the Darcy equations........... 95
3.1.1 Nonlinear temperature dependent density. .... 96
3.1.2 An appropriate energy function......... 98
3.1.3 A data bound for E(0, t)............... 104
3.2 Spatial decay for the Brinkman equations......... Ill
3.2.1 An estimate for gradT................ 112
3.2.2 An estimate for grad u................ 114
3.3 Spatial decay for the Forchheimer equations....... 120
3.3.1 An estimate for grad T............... 125
3.3.2 An estimate for E(0, t)............... 127
3.3.3 An estimate for u¿u¿ ................ 129
3.3.4 Bounding ¿ ¿..................... 131
3.4 Spatial decay for a Krishnamurti model.......... 132
3.4.1 Estimates for TtiT¿ and CtiCti........... 134
3.4.2 An estimate for the it¿w¿ term........... 136
3.4.3 Integration of the H inequality.......... 138
Contents xi
3.4.4 A bound for H(0).................. 138
3.4.5 Bound for UjUj at z = 0 .............. 141
3.5 Spatial decay for a fluid-porous model .......... 142
4 Convection in Porous Media 147
4.1 Equations for thermal convection in a porous medium . . 148
4.1.1 The Darcy equations................ 148
4.1.2 The Forchheimer equations............. 148
4.1.3 Darcy equations with anisotropic permeability . . 149
4.1.4 The Brinkman equations.............. 150
4.2 Stability of thermal convection............... 150
4.2.1 The Bénard problem for the Darcy equations . . 151
4.2.2 Linear instability.................. 152
4.2.3 Nonlinear stability ................. 154
4.2.4 Variational solution to (4.28) ........... 155
4.2.5 Bénard problem for the Forchheimer equations . . 158
4.2.6 Darcy equations with anisotropic permeability . . 159
4.2.7 Bénard problem for the Brinkman equations . . . 163
4.3 Stability and symmetry................... 166
4.3.1 Symmetric operators................ 166
4.3.2 Heated and salted below.............. 168
4.3.3 Symmetrization................... 170
4.3.4 Pointwise constraint ................ 171
4.4 Thermal non-equilibrium.................. 172
4.4.1 Thermal non-equilibrium model.......... 172
4.4.2 Stability analysis.................. 174
4.5 Resonant penetrative convection.............. 177
4.5.1 Nonlinear density, heat source model....... 177
4.5.2 Basic equations................... 178
4.5.3 Linear instability analysis ............. 180
4.5.4 Nonlinear stability analysis............. 181
4.5.5 Behaviour observed................. 182
4.6 Throughflow......................... 183
4.6.1 Penetrative convection with throughflow..... 183
4.6.2 Forchheimer model with throughflow....... 184
4.6.3 Global nonlinear stability analysis......... 186
5 Stability of Other Porous Flows 193
5.1 Convection and flow with micro effects.......... 193
5.1.1 Biological processes................. 193
5.1.2 Glia aggregation in the brain ........... 194
5.1.3 Micropolar thermal convection........... 196
5.2 Porous flows with viscoelastic effects ........... 198
5.2.1 Viscoelastic porous convection........... 198
5.2.2 Second grade fluids................. 200
xii Contents
5.2.3 Generalized second grade fluids.......... 201
5.3 Storage of gases....................... 202
5.3.1 Carbon dioxide storage............... 202
5.3.2 Hydrogen storage.................. 204
5.4 Energy growth........................ 205
5.4.1 Soil salinization................... 205
5.4.2 Other salinization theories............. 208
5.4.3 Time growth of parallel flows ........... 210
5.4.4 Stability analysis for salinization ......... 218
5.4.5 Transient growth in salinization.......... 220
5.5 Turbulent convection.................... 222
5.5.1 Turbulence in porous media............ 222
5.5.2 The background method.............. 223
5.5.3 Selecting r...................... 225
5.6 Multiphase flow....................... 227
5.6.1 Water-steam motion................ 227
5.6.2 Foodstuffs, emulsions................ 230
5.7 Unsaturated porous medium................ 231
5.7.1 Model equations................... 231
5.7.2 Stability of flow................... 232
5.7.3 Transient growth.................. 233
5.8 Parallel flows......................... 234
5.8.1 Poiseuille flow.................... 234
5.8.2 Flow in a permeable conduit............ 236
6 Fluid - Porous Interface Problems 239
6.1 Models for thermal convection............... 239
6.1.1 Extended Navier-Stokes model........... 240
6.1.2 Nield (Darcy) model................ 241
6.1.3 Forchheimer model................. 243
6.1.4 Brinkman model .................. 244
6.1.5 Nonlinear equation of state............. 244
6.1.6 Reacting layers................... 246
6.2 Surface tension ....................... 246
6.2.1 Basic solution.................... 246
6.2.2 Perturbation equations............... 248
6.2.3 Perturbation boundary conditions......... 249
6.2.4 Numerical results.................. 251
6.3 Porosity effects ....................... 253
6.3.1 Porosity variation.................. 253
6.3.2 Numerical results.................. 255
6.4 Melting ice, global warming................ 258
6.4.1 Three layer model.................. 258
6.4.2 Under ice melt ponds................ 260
6.5 Crystal growth........................ 262
Contents xiii
6.6 Heat pipes.......................... 265
6.7 Poiseuille flow........................ 267
6.7.1 Darcy model..................... 267
6.7.2 Linearized perturbation equations......... 269
6.7.3 (Chang et al., 2006) results ............ 271
6.7.4 Brinkman - Darcy model.............. 272
6.7.5 Steady solution................... 273
6.7.6 Linearized perturbation equations......... 274
6.7.7 Numerical results.................. 276
6.7.8 Forchheimer - Darcy model ............ 276
6.7.9 Brinkman - Forchheimer / Darcy model..... 284
6.8 Acoustic waves, ocean bed................. 289
6.8.1 Basic equations................... 290
6.8.2 Linear waves in the Bowen theory......... 291
6.8.3 Boundary conditions................ 293
6.8.4 Amplitude behaviour................ 294
Elastic Materials with Voids 297
7.1 Acceleration waves in elastic materials.......... 297
7.1.1 Bodies and their configurations.......... 297
7.1.2 The deformation gradient tensor.......... 298
7.1.3 Conservation of mass................ 298
7.1.4 The equations of nonlinear elasticity....... 298
7.1.5 Acceleration waves in one-dimension....... 300
7.1.6 Given strain energy and deformation....... 303
7.1.7 Acceleration waves in three dimensions...... 305
7.2 Acceleration waves, inclusion of voids........... 307
7.2.1 Porous media, voids, applications......... 307
7.2.2 Basic theory of elastic materials with voids .... 308
7.2.3 Thermodynamic restrictions............ 310
7.2.4 Acceleration waves in the isothermal case..... 312
7.3 Temperature rate effects.................. 314
7.3.1 Voids and second sound .............. 314
7.3.2 Thermodynamics and voids............ 316
7.3.3 Void-temperature acceleration waves....... 318
7.3.4 Amplitude behaviour................ 320
7.4 Temperature displacement effects............. 325
7.4.1 Voids and thermodynamics............. 325
7.4.2 De Cicco - Diaco theory.............. 325
7.4.3 Acceleration waves................. 327
7.5 Voids and type III thermoelasticity............ 329
7.5.1 Thermodynamic theory............... 329
7.5.2 Linear theory.................... 331
7.6 Acceleration waves, microstretch theory.......... 332
xiv Contents
8 Poroacoustic Waves 337
8.1 Poroacoustic acceleration waves.............. 337
8.1.1 Equivalent fluid theory............... 337
8.1.2 Jordan - Darcy theory............... 339
8.1.3 Acceleration waves................. 340
8.1.4 Amplitude equation derivation........... 341
8.2 Temperature effects.................... . 344
8.2.1 Jordan-Darcy temperature model......... 344
8.2.2 Wavespeeds..................... 345
8.2.3 Amplitude equation................. 346
8.3 Heat flux delay ....................... 349
8.3.1 Cattaneo poroacoustic theory........... 349
8.3.2 Thermodynamic justification............ 351
8.3.3 Acceleration waves................. 353
8.3.4 Amplitude derivation................ 356
8.3.5 Dual phase lag theory ............... 358
8.4 Temperature rate effects.................. 360
8.4.1 Green-Laws theory................. 360
8.4.2 Wavespeeds..................... 362
8.4.3 Amplitude behaviour................ 364
8.5 Temperature displacement effects............. 366
8.5.1 Green-Naghdi thermodynamics.......... 366
8.5.2 Acceleration waves................. 369
8.5.3 Wave amplitudes.................. 371
8.6 Magnetic field effects.................... 373
9 Numerical Solution of Eigenvalue Problems 375
9.1 The compound matrix method............... 375
9.1.1 The shooting method................ 375
9.1.2 A fourth order equation .............. 376
9.1.3 The compound matrix method........... 377
9.1.4 Penetrative convection in a porous medium . . . 379
9.2 The Chebyshev tau method................ 381
9.2.1 The D2 Chebyshev tau method.......... 381
9.2.2 Penetrative convection............... 384
9.2.3 Fluid overlying a porous layer........... 385
9.2.4 The D Chebyshev tau method........... 389
9.2.5 Natural variables.................. 390
9.3 Legendre-Galerkin method................. 391
9.3.1 Fourth order system ................ 391
9.3.2 Penetrative convection............... 395
9.3.3 Extension of the method.............. 397
References 399
Index 433
|
adam_txt |
Contents
Preface vii
1 Introduction 1
1.1 Porous media. 1
1.1.1 Applications, examples. 1
1.1.2 Notation, definitions. 6
1.1.3 Overview. 9
1.2 The Darcy model. 10
1.2.1 The Porous Medium Equation. 11
1.3 The Forchheimer model. 12
1.4 The Brinkman model. 12
1.5 Anisotropie Darcy model. 13
1.6 Equations for other fields. 14
1.6.1 Temperature. 14
1.6.2 Salt field. 15
1.7 Boundary conditions. 15
1.8 Elastic materials with voids . 16
1.8.1 Nunziato-Cowin theory. 16
1.8.2 Microstretch theory. 17
1.9 Mixture theories. 18
1.9.1 Eringen's theory. 18
1.9.2 Bowen's theory. 22
x Contents
2 Structural Stability 27
2.1 Structural stability, Darcy model . 27
2.1.1 Newton's law of cooling . 28
2.1.2 A priori bound for T. 30
2.2 Structural stability, Forchheimer model. 31
2.2.1 Continuous dependence on b. 32
2.2.2 Continuous dependence on c. 34
2.2.3 Energy bounds . 35
2.2.4 Brinkman-Forchheimer model. 37
2.3 Forchheimer model, non-zero boundary
conditions. 37
2.3.1 A maximum principle for c. 39
2.3.2 Continuous dependence on the viscosity . 39
2.4 Brinkman model, non-zero boundary conditions. 42
2.5 Convergence, non-zero boundary conditions . 43
2.6 Continuous dependence, Vadasz coefficient. 44
2.6.1 A maximum principle for T. 45
2.6.2 Continuous dependence on a. 46
2.7 Continuous dependence, Krishnamurti coefficient . 48
2.7.1 An a priori bound for T. 49
2.7.2 Continuous dependence. 53
2.8 Continuous dependence, Dufour coefficient. 55
2.8.1 Continuous dependence on 7. 57
2.9 Initial - final value problems. 69
2.10 The interface problem. 72
2.11 Lower bounds on the blow-up time. 76
2.12 Uniqueness in compressible porous flows. 82
3 Spatial Decay 95
3.1 Spatial decay for the Darcy equations. 95
3.1.1 Nonlinear temperature dependent density. . 96
3.1.2 An appropriate "energy" function. 98
3.1.3 A data bound for E(0, t). 104
3.2 Spatial decay for the Brinkman equations. Ill
3.2.1 An estimate for gradT. 112
3.2.2 An estimate for grad u. 114
3.3 Spatial decay for the Forchheimer equations. 120
3.3.1 An estimate for grad T. 125
3.3.2 An estimate for E(0, t). 127
3.3.3 An estimate for u¿u¿ . 129
3.3.4 Bounding ¿ ¿. 131
3.4 Spatial decay for a Krishnamurti model. 132
3.4.1 Estimates for TtiT¿ and CtiCti. 134
3.4.2 An estimate for the it¿w¿ term. 136
3.4.3 Integration of the H inequality. 138
Contents xi
3.4.4 A bound for H(0). 138
3.4.5 Bound for UjUj at z = 0 . 141
3.5 Spatial decay for a fluid-porous model . 142
4 Convection in Porous Media 147
4.1 Equations for thermal convection in a porous medium . . 148
4.1.1 The Darcy equations. 148
4.1.2 The Forchheimer equations. 148
4.1.3 Darcy equations with anisotropic permeability . . 149
4.1.4 The Brinkman equations. 150
4.2 Stability of thermal convection. 150
4.2.1 The Bénard problem for the Darcy equations . . 151
4.2.2 Linear instability. 152
4.2.3 Nonlinear stability . 154
4.2.4 Variational solution to (4.28) . 155
4.2.5 Bénard problem for the Forchheimer equations . . 158
4.2.6 Darcy equations with anisotropic permeability . . 159
4.2.7 Bénard problem for the Brinkman equations . . . 163
4.3 Stability and symmetry. 166
4.3.1 Symmetric operators. 166
4.3.2 Heated and salted below. 168
4.3.3 Symmetrization. 170
4.3.4 Pointwise constraint . 171
4.4 Thermal non-equilibrium. 172
4.4.1 Thermal non-equilibrium model. 172
4.4.2 Stability analysis. 174
4.5 Resonant penetrative convection. 177
4.5.1 Nonlinear density, heat source model. 177
4.5.2 Basic equations. 178
4.5.3 Linear instability analysis . 180
4.5.4 Nonlinear stability analysis. 181
4.5.5 Behaviour observed. 182
4.6 Throughflow. 183
4.6.1 Penetrative convection with throughflow. 183
4.6.2 Forchheimer model with throughflow. 184
4.6.3 Global nonlinear stability analysis. 186
5 Stability of Other Porous Flows 193
5.1 Convection and flow with micro effects. 193
5.1.1 Biological processes. 193
5.1.2 Glia aggregation in the brain . 194
5.1.3 Micropolar thermal convection. 196
5.2 Porous flows with viscoelastic effects . 198
5.2.1 Viscoelastic porous convection. 198
5.2.2 Second grade fluids. 200
xii Contents
5.2.3 Generalized second grade fluids. 201
5.3 Storage of gases. 202
5.3.1 Carbon dioxide storage. 202
5.3.2 Hydrogen storage. 204
5.4 Energy growth. 205
5.4.1 Soil salinization. 205
5.4.2 Other salinization theories. 208
5.4.3 Time growth of parallel flows . 210
5.4.4 Stability analysis for salinization . 218
5.4.5 Transient growth in salinization. 220
5.5 Turbulent convection. 222
5.5.1 Turbulence in porous media. 222
5.5.2 The background method. 223
5.5.3 Selecting r. 225
5.6 Multiphase flow. 227
5.6.1 Water-steam motion. 227
5.6.2 Foodstuffs, emulsions. 230
5.7 Unsaturated porous medium. 231
5.7.1 Model equations. 231
5.7.2 Stability of flow. 232
5.7.3 Transient growth. 233
5.8 Parallel flows. 234
5.8.1 Poiseuille flow. 234
5.8.2 Flow in a permeable conduit. 236
6 Fluid - Porous Interface Problems 239
6.1 Models for thermal convection. 239
6.1.1 Extended Navier-Stokes model. 240
6.1.2 Nield (Darcy) model. 241
6.1.3 Forchheimer model. 243
6.1.4 Brinkman model . 244
6.1.5 Nonlinear equation of state. 244
6.1.6 Reacting layers. 246
6.2 Surface tension . 246
6.2.1 Basic solution. 246
6.2.2 Perturbation equations. 248
6.2.3 Perturbation boundary conditions. 249
6.2.4 Numerical results. 251
6.3 Porosity effects . 253
6.3.1 Porosity variation. 253
6.3.2 Numerical results. 255
6.4 Melting ice, global warming. 258
6.4.1 Three layer model. 258
6.4.2 Under ice melt ponds. 260
6.5 Crystal growth. 262
Contents xiii
6.6 Heat pipes. 265
6.7 Poiseuille flow. 267
6.7.1 Darcy model. 267
6.7.2 Linearized perturbation equations. 269
6.7.3 (Chang et al., 2006) results . 271
6.7.4 Brinkman - Darcy model. 272
6.7.5 Steady solution. 273
6.7.6 Linearized perturbation equations. 274
6.7.7 Numerical results. 276
6.7.8 Forchheimer - Darcy model . 276
6.7.9 Brinkman - Forchheimer / Darcy model. 284
6.8 Acoustic waves, ocean bed. 289
6.8.1 Basic equations. 290
6.8.2 Linear waves in the Bowen theory. 291
6.8.3 Boundary conditions. 293
6.8.4 Amplitude behaviour. 294
Elastic Materials with Voids 297
7.1 Acceleration waves in elastic materials. 297
7.1.1 Bodies and their configurations. 297
7.1.2 The deformation gradient tensor. 298
7.1.3 Conservation of mass. 298
7.1.4 The equations of nonlinear elasticity. 298
7.1.5 Acceleration waves in one-dimension. 300
7.1.6 Given strain energy and deformation. 303
7.1.7 Acceleration waves in three dimensions. 305
7.2 Acceleration waves, inclusion of voids. 307
7.2.1 Porous media, voids, applications. 307
7.2.2 Basic theory of elastic materials with voids . 308
7.2.3 Thermodynamic restrictions. 310
7.2.4 Acceleration waves in the isothermal case. 312
7.3 Temperature rate effects. 314
7.3.1 Voids and second sound . 314
7.3.2 Thermodynamics and voids. 316
7.3.3 Void-temperature acceleration waves. 318
7.3.4 Amplitude behaviour. 320
7.4 Temperature displacement effects. 325
7.4.1 Voids and thermodynamics. 325
7.4.2 De Cicco - Diaco theory. 325
7.4.3 Acceleration waves. 327
7.5 Voids and type III thermoelasticity. 329
7.5.1 Thermodynamic theory. 329
7.5.2 Linear theory. 331
7.6 Acceleration waves, microstretch theory. 332
xiv Contents
8 Poroacoustic Waves 337
8.1 Poroacoustic acceleration waves. 337
8.1.1 Equivalent fluid theory. 337
8.1.2 Jordan - Darcy theory. 339
8.1.3 Acceleration waves. 340
8.1.4 Amplitude equation derivation. 341
8.2 Temperature effects. . 344
8.2.1 Jordan-Darcy temperature model. 344
8.2.2 Wavespeeds. 345
8.2.3 Amplitude equation. 346
8.3 Heat flux delay . 349
8.3.1 Cattaneo poroacoustic theory. 349
8.3.2 Thermodynamic justification. 351
8.3.3 Acceleration waves. 353
8.3.4 Amplitude derivation. 356
8.3.5 Dual phase lag theory . 358
8.4 Temperature rate effects. 360
8.4.1 Green-Laws theory. 360
8.4.2 Wavespeeds. 362
8.4.3 Amplitude behaviour. 364
8.5 Temperature displacement effects. 366
8.5.1 Green-Naghdi thermodynamics. 366
8.5.2 Acceleration waves. 369
8.5.3 Wave amplitudes. 371
8.6 Magnetic field effects. 373
9 Numerical Solution of Eigenvalue Problems 375
9.1 The compound matrix method. 375
9.1.1 The shooting method. 375
9.1.2 A fourth order equation . 376
9.1.3 The compound matrix method. 377
9.1.4 Penetrative convection in a porous medium . . . 379
9.2 The Chebyshev tau method. 381
9.2.1 The D2 Chebyshev tau method. 381
9.2.2 Penetrative convection. 384
9.2.3 Fluid overlying a porous layer. 385
9.2.4 The D Chebyshev tau method. 389
9.2.5 Natural variables. 390
9.3 Legendre-Galerkin method. 391
9.3.1 Fourth order system . 391
9.3.2 Penetrative convection. 395
9.3.3 Extension of the method. 397
References 399
Index 433 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Straughan, Brian 1947- |
author_GND | (DE-588)115774688 |
author_facet | Straughan, Brian 1947- |
author_role | aut |
author_sort | Straughan, Brian 1947- |
author_variant | b s bs |
building | Verbundindex |
bvnumber | BV023089891 |
callnumber-first | Q - Science |
callnumber-label | QA1 |
callnumber-raw | QA1 QC173.4.P67 |
callnumber-search | QA1 QC173.4.P67 |
callnumber-sort | QA 11 |
callnumber-subject | QA - Mathematics |
classification_rvk | UG 2300 SK 540 SK 950 UF 5200 |
classification_tum | PHY 231f MTA 510f |
ctrlnum | (OCoLC)180470551 (DE-599)DNB985962941 |
dewey-full | 620.11692 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.11692 |
dewey-search | 620.11692 |
dewey-sort | 3620.11692 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02484nam a2200673 cb4500</leader><controlfield tag="001">BV023089891</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080121s2008 a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N44,0813</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985962941</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387765419</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-76541-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387765433</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-76543-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387765417</subfield><subfield code="9">0-387-76541-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387765419</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12019199</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180470551</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB985962941</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.4.P67</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.11692</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2300</subfield><subfield code="0">(DE-625)145617:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5200</subfield><subfield code="0">(DE-625)145597:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76S05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 231f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76E06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76Exx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 510f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Straughan, Brian</subfield><subfield code="d">1947-</subfield><subfield code="0">(DE-588)115774688</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability and wave motion in porous media</subfield><subfield code="c">Brian Straughan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">[2008]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 437 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied mathematical sciences</subfield><subfield code="v">Volume 165</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous materials</subfield><subfield code="x">Stability</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transport theory</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave-motion, Theory of</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poröser Stoff</subfield><subfield code="0">(DE-588)4046811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenbewegung</subfield><subfield code="0">(DE-588)4467376-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Poröser Stoff</subfield><subfield code="0">(DE-588)4046811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wellenbewegung</subfield><subfield code="0">(DE-588)4467376-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-76543-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied mathematical sciences</subfield><subfield code="v">Volume 165</subfield><subfield code="w">(DE-604)BV000005274</subfield><subfield code="9">165</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016292773&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016292773</subfield></datafield></record></collection> |
id | DE-604.BV023089891 |
illustrated | Illustrated |
index_date | 2024-07-02T19:40:33Z |
indexdate | 2024-07-09T21:10:46Z |
institution | BVB |
isbn | 9780387765419 9780387765433 0387765417 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016292773 |
oclc_num | 180470551 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-20 DE-83 DE-11 DE-29T DE-188 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-20 DE-83 DE-11 DE-29T DE-188 |
physical | xiv, 437 Seiten Illustrationen |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Applied mathematical sciences |
series2 | Applied mathematical sciences |
spelling | Straughan, Brian 1947- (DE-588)115774688 aut Stability and wave motion in porous media Brian Straughan New York Springer [2008] © 2008 xiv, 437 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Applied mathematical sciences Volume 165 Mathematisches Modell Porous materials Stability Mathematical models Transport theory Mathematical models Wave-motion, Theory of Poröser Stoff (DE-588)4046811-2 gnd rswk-swf Stabilität (DE-588)4056693-6 gnd rswk-swf Wellenbewegung (DE-588)4467376-0 gnd rswk-swf Poröser Stoff (DE-588)4046811-2 s Stabilität (DE-588)4056693-6 s Wellenbewegung (DE-588)4467376-0 s DE-604 Erscheint auch als Online-Ausgabe 978-0-387-76543-3 Applied mathematical sciences Volume 165 (DE-604)BV000005274 165 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016292773&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Straughan, Brian 1947- Stability and wave motion in porous media Applied mathematical sciences Mathematisches Modell Porous materials Stability Mathematical models Transport theory Mathematical models Wave-motion, Theory of Poröser Stoff (DE-588)4046811-2 gnd Stabilität (DE-588)4056693-6 gnd Wellenbewegung (DE-588)4467376-0 gnd |
subject_GND | (DE-588)4046811-2 (DE-588)4056693-6 (DE-588)4467376-0 |
title | Stability and wave motion in porous media |
title_auth | Stability and wave motion in porous media |
title_exact_search | Stability and wave motion in porous media |
title_exact_search_txtP | Stability and wave motion in porous media |
title_full | Stability and wave motion in porous media Brian Straughan |
title_fullStr | Stability and wave motion in porous media Brian Straughan |
title_full_unstemmed | Stability and wave motion in porous media Brian Straughan |
title_short | Stability and wave motion in porous media |
title_sort | stability and wave motion in porous media |
topic | Mathematisches Modell Porous materials Stability Mathematical models Transport theory Mathematical models Wave-motion, Theory of Poröser Stoff (DE-588)4046811-2 gnd Stabilität (DE-588)4056693-6 gnd Wellenbewegung (DE-588)4467376-0 gnd |
topic_facet | Mathematisches Modell Porous materials Stability Mathematical models Transport theory Mathematical models Wave-motion, Theory of Poröser Stoff Stabilität Wellenbewegung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016292773&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005274 |
work_keys_str_mv | AT straughanbrian stabilityandwavemotioninporousmedia |