Mathematical modeling for the life sciences:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English French |
Veröffentlicht: |
Berlin [u. a.]
Springer
2005
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Auch als Internetausgabe |
Beschreibung: | VI, 164 S. Ill. |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV023080678 | ||
003 | DE-604 | ||
005 | 20080123 | ||
007 | cr|uuu---uuuuu | ||
008 | 080115s2005 gw |||| o||u| ||||||eng d | ||
035 | |a (OCoLC)209869456 | ||
035 | |a (DE-599)BVBBV023080678 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 1 | |a eng |h fre | |
044 | |a gw |c DE | ||
049 | |a DE-384 |a DE-634 |a DE-11 | ||
050 | 0 | |a QH323.5 | |
082 | 0 | |a 570.1/5118 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a WC 7000 |0 (DE-625)148142: |2 rvk | ||
084 | |a WD 9200 |0 (DE-625)148253: |2 rvk | ||
130 | 0 | |a Introduction aux modélisations mathématiques pour les sciences du vivant | |
245 | 1 | 0 | |a Mathematical modeling for the life sciences |c Jacques Istas |
264 | 1 | |a Berlin [u. a.] |b Springer |c 2005 | |
300 | |a VI, 164 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext | |
500 | |a Auch als Internetausgabe | ||
650 | 4 | |a Biologie - Modèles mathématiques | |
650 | 4 | |a Biomathématiques | |
650 | 7 | |a Biometrie |2 gtt | |
650 | 4 | |a Biométrie | |
650 | 7 | |a Stochastische modellen |2 gtt | |
650 | 7 | |a Wiskundige modellen |2 gtt | |
650 | 4 | |a Biowissenschaften | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Biometry | |
650 | 4 | |a Life sciences |x Mathematical models | |
650 | 0 | 7 | |a Biomathematik |0 (DE-588)4139408-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biologie |0 (DE-588)4006851-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |D s |
689 | 0 | 1 | |a Biomathematik |0 (DE-588)4139408-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Biologie |0 (DE-588)4006851-1 |D s |
689 | 1 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Istas, Jacques |d 1966- |e Sonstige |0 (DE-588)122197356 |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016283706&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016283706 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137328127508480 |
---|---|
adam_text | Contents
1 General
introduction
...................................... 1
1.1
Preface
................................................. 1
1.2
Structure
of the book
.................................... 2
1.3
Acknowledgments
....................................... 5
2
Continuous-time dynamical systems
....................... 7
2.1
Introduction
............................................ 7
2.2
Historical demographical models
........................... 9
2.3
Pest control: the spruce budworm
......................... 15
2.4
Interactions in biological systems
.......................... 18
2.5
Reaction-diffusion equations
.............................. 26
2.6
Bibliography
............................................ 35
2.7
Exercises
............................................... 36
3
Discrete-time dynamical systems
.......................... 45
3.1
Introduction
............................................ 45
3.2
Delay models
........................................... 46
3.3
Discrete logistic model
................................... 49
3.4
Tribolium dynamics
...................................... 53
3.5
Bibliography
............................................ 56
3.6
Exercises
............................................... 56
4
Game theory and evolution
................................ 59
4.1
Introduction
............................................ 59
4.2
Games, strategies and equilibria
........................... 60
4.3
Hawks and doves
........................................ 62
4.4
Bibliography
............................................ 65
4.5
Exercises
............................................... 65
VI Contents
5
Markov chains and diffusions
.............................. 67
5.1
Introduction
............................................ 67
5.2
Definitions and first properties
............................ 68
5.3
Subset classification
...................................... 72
5.4
Genetica!
drift
.......................................... 73
5.5
Invariant measure
....................................... 75
5.6
Continuous-time
......................................... 78
5.7
The domestication of pearl millet
.......................... 83
5.8
Bibliography
........................................___ 88
5.9
Exercises
............................................... 88
6
Random arborescent models
............................... 93
6.1
Introduction
............................................ 93
6.2
Temporal branching processes
............................. 94
6.3
Polymerase Chain Reaction
...............................104
6.4
Percolation
.............................................105
6.5
Spatial branching processes
...............................107
6.6
The colonization of Europe by oaks
........................110
6.7
Bibliography
............................................112
6.8
Exercises
...............................................113
7
Statistics
..................................................119
7.1
Introduction
............................................119
7.2
Maximum Likelihood Estimate
............................120
7.3
Localization of QTL
.....................................122
7.4
Asymptotical study of the likelihood
.......................124
7.5
The weevil life
..........................................128
7.6
Bibliography
............................................133
7.7
Exercises
...............................................134
A Appendices
................................................141
A.I Ordinary differential equations
............................141
A.
2
Evolution equations
......................................148
A.3 Probability
.............................................151
A.
4
Statistics
...............................................153
References
.....................................................157
Index
..........................................................163
|
adam_txt |
Contents
1 General
introduction
. 1
1.1
Preface
. 1
1.2
Structure
of the book
. 2
1.3
Acknowledgments
. 5
2
Continuous-time dynamical systems
. 7
2.1
Introduction
. 7
2.2
Historical demographical models
. 9
2.3
Pest control: the spruce budworm
. 15
2.4
Interactions in biological systems
. 18
2.5
Reaction-diffusion equations
. 26
2.6
Bibliography
. 35
2.7
Exercises
. 36
3
Discrete-time dynamical systems
. 45
3.1
Introduction
. 45
3.2
Delay models
. 46
3.3
Discrete logistic model
. 49
3.4
Tribolium dynamics
. 53
3.5
Bibliography
. 56
3.6
Exercises
. 56
4
Game theory and evolution
. 59
4.1
Introduction
. 59
4.2
Games, strategies and equilibria
. 60
4.3
Hawks and doves
. 62
4.4
Bibliography
. 65
4.5
Exercises
. 65
VI Contents
5
Markov chains and diffusions
. 67
5.1
Introduction
. 67
5.2
Definitions and first properties
. 68
5.3
Subset classification
. 72
5.4
Genetica!
drift
. 73
5.5
Invariant measure
. 75
5.6
Continuous-time
. 78
5.7
The domestication of pearl millet
. 83
5.8
Bibliography
._ 88
5.9
Exercises
. 88
6
Random arborescent models
. 93
6.1
Introduction
. 93
6.2
Temporal branching processes
. 94
6.3
Polymerase Chain Reaction
.104
6.4
Percolation
.105
6.5
Spatial branching processes
.107
6.6
The colonization of Europe by oaks
.110
6.7
Bibliography
.112
6.8
Exercises
.113
7
Statistics
.119
7.1
Introduction
.119
7.2
Maximum Likelihood Estimate
.120
7.3
Localization of QTL
.122
7.4
Asymptotical study of the likelihood
.124
7.5
The weevil life
.128
7.6
Bibliography
.133
7.7
Exercises
.134
A Appendices
.141
A.I Ordinary differential equations
.141
A.
2
Evolution equations
.148
A.3 Probability
.151
A.
4
Statistics
.153
References
.157
Index
.163 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)122197356 |
building | Verbundindex |
bvnumber | BV023080678 |
callnumber-first | Q - Science |
callnumber-label | QH323 |
callnumber-raw | QH323.5 |
callnumber-search | QH323.5 |
callnumber-sort | QH 3323.5 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | SK 950 WC 7000 WD 9200 |
ctrlnum | (OCoLC)209869456 (DE-599)BVBBV023080678 |
dewey-full | 570.1/5118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 570 - Biology |
dewey-raw | 570.1/5118 |
dewey-search | 570.1/5118 |
dewey-sort | 3570.1 45118 |
dewey-tens | 570 - Biology |
discipline | Biologie Mathematik |
discipline_str_mv | Biologie Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02434nmm a2200625zc 4500</leader><controlfield tag="001">BV023080678</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080123 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">080115s2005 gw |||| o||u| ||||||eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)209869456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023080678</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH323.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570.1/5118</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7000</subfield><subfield code="0">(DE-625)148142:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 9200</subfield><subfield code="0">(DE-625)148253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="130" ind1="0" ind2=" "><subfield code="a">Introduction aux modélisations mathématiques pour les sciences du vivant</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical modeling for the life sciences</subfield><subfield code="c">Jacques Istas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u. a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 164 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch als Internetausgabe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biologie - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biometrie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biométrie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wiskundige modellen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biowissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Life sciences</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biomathematik</subfield><subfield code="0">(DE-588)4139408-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biologie</subfield><subfield code="0">(DE-588)4006851-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biomathematik</subfield><subfield code="0">(DE-588)4139408-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Biologie</subfield><subfield code="0">(DE-588)4006851-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Istas, Jacques</subfield><subfield code="d">1966-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)122197356</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016283706&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016283706</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023080678 |
illustrated | Illustrated |
index_date | 2024-07-02T19:36:57Z |
indexdate | 2024-07-09T21:10:33Z |
institution | BVB |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016283706 |
oclc_num | 209869456 |
open_access_boolean | |
owner | DE-384 DE-634 DE-11 |
owner_facet | DE-384 DE-634 DE-11 |
physical | VI, 164 S. Ill. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Introduction aux modélisations mathématiques pour les sciences du vivant Mathematical modeling for the life sciences Jacques Istas Berlin [u. a.] Springer 2005 VI, 164 S. Ill. txt rdacontent c rdamedia cr rdacarrier Universitext Auch als Internetausgabe Biologie - Modèles mathématiques Biomathématiques Biometrie gtt Biométrie Stochastische modellen gtt Wiskundige modellen gtt Biowissenschaften Mathematisches Modell Biometry Life sciences Mathematical models Biomathematik (DE-588)4139408-2 gnd rswk-swf Angewandte Mathematik (DE-588)4142443-8 gnd rswk-swf Biologie (DE-588)4006851-1 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Angewandte Mathematik (DE-588)4142443-8 s Biomathematik (DE-588)4139408-2 s 1\p DE-604 Biologie (DE-588)4006851-1 s Mathematisches Modell (DE-588)4114528-8 s 2\p DE-604 Istas, Jacques 1966- Sonstige (DE-588)122197356 oth Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016283706&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mathematical modeling for the life sciences Biologie - Modèles mathématiques Biomathématiques Biometrie gtt Biométrie Stochastische modellen gtt Wiskundige modellen gtt Biowissenschaften Mathematisches Modell Biometry Life sciences Mathematical models Biomathematik (DE-588)4139408-2 gnd Angewandte Mathematik (DE-588)4142443-8 gnd Biologie (DE-588)4006851-1 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4139408-2 (DE-588)4142443-8 (DE-588)4006851-1 (DE-588)4114528-8 |
title | Mathematical modeling for the life sciences |
title_alt | Introduction aux modélisations mathématiques pour les sciences du vivant |
title_auth | Mathematical modeling for the life sciences |
title_exact_search | Mathematical modeling for the life sciences |
title_exact_search_txtP | Mathematical modeling for the life sciences |
title_full | Mathematical modeling for the life sciences Jacques Istas |
title_fullStr | Mathematical modeling for the life sciences Jacques Istas |
title_full_unstemmed | Mathematical modeling for the life sciences Jacques Istas |
title_short | Mathematical modeling for the life sciences |
title_sort | mathematical modeling for the life sciences |
topic | Biologie - Modèles mathématiques Biomathématiques Biometrie gtt Biométrie Stochastische modellen gtt Wiskundige modellen gtt Biowissenschaften Mathematisches Modell Biometry Life sciences Mathematical models Biomathematik (DE-588)4139408-2 gnd Angewandte Mathematik (DE-588)4142443-8 gnd Biologie (DE-588)4006851-1 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Biologie - Modèles mathématiques Biomathématiques Biometrie Biométrie Stochastische modellen Wiskundige modellen Biowissenschaften Mathematisches Modell Biometry Life sciences Mathematical models Biomathematik Angewandte Mathematik Biologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016283706&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | UT introductionauxmodelisationsmathematiquespourlessciencesduvivant AT istasjacques mathematicalmodelingforthelifesciences |