Lectures on counterexamples in several complex variables:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
AMS Chelsea Publishing
2007
|
Ausgabe: | Reprint. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 247 Seiten graph. Darst. |
ISBN: | 9780821844229 0821844229 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023075326 | ||
003 | DE-604 | ||
005 | 20210514 | ||
007 | t | ||
008 | 080111s2007 d||| |||| 00||| eng d | ||
020 | |a 9780821844229 |9 978-0-8218-4422-9 | ||
020 | |a 0821844229 |9 0-8218-4422-9 | ||
035 | |a (OCoLC)145431817 | ||
035 | |a (DE-599)BSZ278033423 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-634 |a DE-188 |a DE-523 |a DE-824 | ||
050 | 0 | |a QA331 | |
082 | 0 | |a 515/.94 |2 22 | |
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
100 | 1 | |a Fornaess, John Erik |d 1946- |e Verfasser |0 (DE-588)138683395 |4 aut | |
245 | 1 | 0 | |a Lectures on counterexamples in several complex variables |c John Erik Fornæss, Berit Stensønes |
250 | |a Reprint. | ||
264 | 1 | |a Providence, RI |b AMS Chelsea Publishing |c 2007 | |
300 | |a 247 Seiten |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Functions of several complex variables | |
650 | 0 | 7 | |a Gegenbeispiel |0 (DE-588)4214218-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | 2 | |a Gegenbeispiel |0 (DE-588)4214218-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |D s |
689 | 1 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 1 | 2 | |a Gegenbeispiel |0 (DE-588)4214218-0 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 2 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
700 | 1 | |a Stensønes, Berit |d 1956- |e Verfasser |0 (DE-588)138683492 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-3120-4 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016278433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016278433 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137320516943872 |
---|---|
adam_text | TABLE
OF
CONTENTS
Introduction
Lecture
1:
Some
Notations
and Definitions
.............. 2
2:
Holomorphic
Functions
................... 6
3:
Holomorphic
Convexity and
Domains
of Holomorphy
...... 11
U:
Stein Manifolds
......................
IŢ
5:
Subharmonic
Functions
................... 21
6:
Subharmonic Functions
(cont.)
............... 26
7:
Subharmonic Functions
(cont.)
............... 31
Plurisubharmonic Functions
................
3I+
Θ:
Plurisubharmonic Functions
(cont.)
............ 37
9:
Pseudoconvex Domains
...................
k2
10:
Pseudoconvex Domains
(cont.)
...............
U6
11:
Pseudoconvex Domains
(cont.)
..... .......... 50
12;
Invariant Metrics
..................... 55
13:
Biholomorphic Maps
....................
60
Ik: Counterexamples to Smoothing of Plurisubharmonic
Functions
......................... 66
15:
Counterexamples to Smoothing of Plurisubharmonic
Functions
(cont.)
..................... 69
16:
Counterexamples to Smoothing of Plurisubharmonic
Functions
(cont.)
..................... 73
IT: Counterexamples to Smoothing of Plurisubharmonic
Functions
(cont.)
..................... 79
18:
Complex
Monge
Ampere Equation
...............
8З
19:
H^-Convexity
.......................· 87
20:
CB-Manifolds
....................... 91
21:
CB-Manifolds
(cont.)
................... 95
22:
CE-Manifolds
(cont.)
...................100
Lecture
23;
Pseudoconvex
Domains
without Pseudoconvex
Exhaustion
. . . 102
Zk:
Stein Neighborhood Basis
................. 105
25:
Stein Neighborhood Basis
(cont.)
..... ........ 109
2б:
Stein Neighborhood Basis
(cont.)
............. 113
2Ţ
:
Riemann Domains over
Œ
................. 115
28:
The Kohn-Nirenberg Example
................ 119
29:
Peak Points
....................... 123
30:
Bloom s Example
..................... 126
31;
D Angelo s Example
.................... 129
32:
Integral Manifolds
.................... 133
33:
Peak Sets for A(D)
.................... 138
3U: Peak Sets. Step
1....................
lUl
35:
Peak Sets. Step
2.................... 1^5
36:
Peak Sets. Step
3....................
lU8
37:
Peak Sets. Step
Ił
.................... 159
38:
Sup-Norm Estimates for the
ІГ
-Equation
..........
1Ő5
39:
Sibony s
Т
-Example....................
168
UO: Hypoellipticity for
І
.................. 17^
Ul:
Inner Functions
..................... 178
U2: Inner Functions
(cont.)
..................
l8U
U3: Large Maximum Modulus Sets
................ 189
kk: Zero Sets
........................
I9U
U5: Hontangential Boundary Limits of Functions in H°°(Bn)
. . . 202
U6: Wermer s Example
..................... 212
U7: The Union Problem
....................
2lU
U8: Riemann Domains
..................... 218
U9:
Runge
Exhaustion
..................... 222
Lecture
SO: Runge
Exhaustion
(cont.)
................. 227
Şl;
Peak Sets in Weakly Pseudoconvex Boundaries
....... 229
52;
Peak Sets in Weakly Pseudoconvex Boundaries
(cont.)
. . . 23^
53;
The Kobayashi Metric
................... 236
Bibliography
............................. 2^2
|
adam_txt |
TABLE
OF
CONTENTS
Introduction
Lecture
1:
Some
Notations
and Definitions
. 2
2:
Holomorphic
Functions
. 6
3:
Holomorphic
Convexity and
Domains
of Holomorphy
. 11
U:
Stein Manifolds
.
IŢ
5:
Subharmonic
Functions
. 21
6:
Subharmonic Functions
(cont.)
. 26
7:
Subharmonic Functions
(cont.)
. 31
Plurisubharmonic Functions
.
3I+
Θ:
Plurisubharmonic Functions
(cont.)
. 37
9:
Pseudoconvex Domains
.
k2
10:
Pseudoconvex Domains
(cont.)
.
U6
11:
Pseudoconvex Domains
(cont.)
. . 50
12;
Invariant Metrics
. 55
13:
Biholomorphic Maps
.
60
Ik: Counterexamples to Smoothing of Plurisubharmonic
Functions
. 66
15:
Counterexamples to Smoothing of Plurisubharmonic
Functions
(cont.)
. 69
16:
Counterexamples to Smoothing of Plurisubharmonic
Functions
(cont.)
. 73
IT: Counterexamples to Smoothing of Plurisubharmonic
Functions
(cont.)
. 79
18:
Complex
Monge
Ampere Equation
.
8З
19:
H^-Convexity
.· 87
20:
CB-Manifolds
. 91
21:
CB-Manifolds
(cont.)
. 95
22:
CE-Manifolds
(cont.)
.100
Lecture
23;
Pseudoconvex
Domains
without Pseudoconvex
Exhaustion
. . . 102
Zk:
Stein Neighborhood Basis
. 105
25:
Stein Neighborhood Basis
(cont.)
. . 109
2б:
Stein Neighborhood Basis
(cont.)
. 113
2Ţ
:
Riemann Domains over
Œ
. 115
28:
The Kohn-Nirenberg Example
. 119
29:
Peak Points
. 123
30:
Bloom's Example
. 126
31;
D'Angelo's Example
. 129
32:
Integral Manifolds
. 133
33:
Peak Sets for A(D)
. 138
3U: Peak Sets. Step
1.
lUl
35:
Peak Sets. Step
2. 1^5
36:
Peak Sets. Step
3.
lU8
37:
Peak Sets. Step
Ił
. 159
38:
Sup-Norm Estimates for the
"ІГ
-Equation
.
1Ő5
39:
Sibony's
Т
-Example.
168
UO: Hypoellipticity for
І"
. 17^
Ul:
Inner Functions
. 178
U2: Inner Functions
(cont.)
.
l8U
U3: Large Maximum Modulus Sets
. 189
kk: Zero Sets
.
I9U
U5: Hontangential Boundary Limits of Functions in H°°(Bn)
. . . 202
U6: Wermer's Example
. 212
U7: The Union Problem
.
2lU
U8: Riemann Domains
. 218
U9:
Runge
Exhaustion
. 222
Lecture
SO: Runge
Exhaustion
(cont.)
. 227
Şl;
Peak Sets in Weakly Pseudoconvex Boundaries
. 229
52;
Peak Sets in Weakly Pseudoconvex Boundaries
(cont.)
. . . 23^
53;
The Kobayashi Metric
. 236
Bibliography
. 2^2 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Fornaess, John Erik 1946- Stensønes, Berit 1956- |
author_GND | (DE-588)138683395 (DE-588)138683492 |
author_facet | Fornaess, John Erik 1946- Stensønes, Berit 1956- |
author_role | aut aut |
author_sort | Fornaess, John Erik 1946- |
author_variant | j e f je jef b s bs |
building | Verbundindex |
bvnumber | BV023075326 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331 |
callnumber-search | QA331 |
callnumber-sort | QA 3331 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 750 SK 780 |
ctrlnum | (OCoLC)145431817 (DE-599)BSZ278033423 |
dewey-full | 515/.94 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.94 |
dewey-search | 515/.94 |
dewey-sort | 3515 294 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Reprint. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02547nam a2200589 c 4500</leader><controlfield tag="001">BV023075326</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210514 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080111s2007 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821844229</subfield><subfield code="9">978-0-8218-4422-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821844229</subfield><subfield code="9">0-8218-4422-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)145431817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ278033423</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.94</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fornaess, John Erik</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138683395</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on counterexamples in several complex variables</subfield><subfield code="c">John Erik Fornæss, Berit Stensønes</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprint.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">AMS Chelsea Publishing</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">247 Seiten</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of several complex variables</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gegenbeispiel</subfield><subfield code="0">(DE-588)4214218-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Gegenbeispiel</subfield><subfield code="0">(DE-588)4214218-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Gegenbeispiel</subfield><subfield code="0">(DE-588)4214218-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stensønes, Berit</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138683492</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-3120-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016278433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016278433</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023075326 |
illustrated | Illustrated |
index_date | 2024-07-02T19:34:51Z |
indexdate | 2024-07-09T21:10:25Z |
institution | BVB |
isbn | 9780821844229 0821844229 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016278433 |
oclc_num | 145431817 |
open_access_boolean | |
owner | DE-703 DE-634 DE-188 DE-523 DE-824 |
owner_facet | DE-703 DE-634 DE-188 DE-523 DE-824 |
physical | 247 Seiten graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | AMS Chelsea Publishing |
record_format | marc |
spelling | Fornaess, John Erik 1946- Verfasser (DE-588)138683395 aut Lectures on counterexamples in several complex variables John Erik Fornæss, Berit Stensønes Reprint. Providence, RI AMS Chelsea Publishing 2007 247 Seiten graph. Darst. txt rdacontent n rdamedia nc rdacarrier Functions of several complex variables Gegenbeispiel (DE-588)4214218-0 gnd rswk-swf Funktion Mathematik (DE-588)4071510-3 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Mehrere komplexe Variable (DE-588)4169285-8 gnd rswk-swf Mehrere Variable (DE-588)4277015-4 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 s Mehrere Variable (DE-588)4277015-4 s Gegenbeispiel (DE-588)4214218-0 s DE-604 Funktion Mathematik (DE-588)4071510-3 s Mehrere komplexe Variable (DE-588)4169285-8 s 1\p DE-604 2\p DE-604 Stensønes, Berit 1956- Verfasser (DE-588)138683492 aut Erscheint auch als Online-Ausgabe 978-1-4704-3120-4 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016278433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fornaess, John Erik 1946- Stensønes, Berit 1956- Lectures on counterexamples in several complex variables Functions of several complex variables Gegenbeispiel (DE-588)4214218-0 gnd Funktion Mathematik (DE-588)4071510-3 gnd Funktionentheorie (DE-588)4018935-1 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd Mehrere Variable (DE-588)4277015-4 gnd |
subject_GND | (DE-588)4214218-0 (DE-588)4071510-3 (DE-588)4018935-1 (DE-588)4169285-8 (DE-588)4277015-4 |
title | Lectures on counterexamples in several complex variables |
title_auth | Lectures on counterexamples in several complex variables |
title_exact_search | Lectures on counterexamples in several complex variables |
title_exact_search_txtP | Lectures on counterexamples in several complex variables |
title_full | Lectures on counterexamples in several complex variables John Erik Fornæss, Berit Stensønes |
title_fullStr | Lectures on counterexamples in several complex variables John Erik Fornæss, Berit Stensønes |
title_full_unstemmed | Lectures on counterexamples in several complex variables John Erik Fornæss, Berit Stensønes |
title_short | Lectures on counterexamples in several complex variables |
title_sort | lectures on counterexamples in several complex variables |
topic | Functions of several complex variables Gegenbeispiel (DE-588)4214218-0 gnd Funktion Mathematik (DE-588)4071510-3 gnd Funktionentheorie (DE-588)4018935-1 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd Mehrere Variable (DE-588)4277015-4 gnd |
topic_facet | Functions of several complex variables Gegenbeispiel Funktion Mathematik Funktionentheorie Mehrere komplexe Variable Mehrere Variable |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016278433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fornaessjohnerik lecturesoncounterexamplesinseveralcomplexvariables AT stensønesberit lecturesoncounterexamplesinseveralcomplexvariables |