Pressure-driven microfluidics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Artech House
2007
|
Schriftenreihe: | Integrated microsystems series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XII, 410 S. Ill., graph. Darst. |
ISBN: | 1596931345 9781596931343 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023075125 | ||
003 | DE-604 | ||
005 | 20090504 | ||
007 | t | ||
008 | 080111s2007 xxuad|| |||| 00||| eng d | ||
010 | |a 2007299203 | ||
015 | |a GBA762982 |2 dnb | ||
020 | |a 1596931345 |9 1-596-93134-5 | ||
020 | |a 9781596931343 |9 978-1-596-93134-3 | ||
035 | |a (OCoLC)141383067 | ||
035 | |a (DE-599)BVBBV023075125 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-29T |a DE-703 | ||
050 | 0 | |a TJ853 | |
082 | 0 | |a 629.8042 | |
084 | |a UF 4500 |0 (DE-625)145585: |2 rvk | ||
100 | 1 | |a Tesař, Václav |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pressure-driven microfluidics |c Václav Tesař |
264 | 1 | |a Boston [u.a.] |b Artech House |c 2007 | |
300 | |a XII, 410 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Integrated microsystems series | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Dispositifs fluidiques | |
650 | 4 | |a Fluides, Dynamique des | |
650 | 4 | |a Microfluidique | |
650 | 4 | |a Microfluidique - Applications industrielles | |
650 | 4 | |a Microfluidics | |
650 | 0 | 7 | |a Druck |0 (DE-588)4013083-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrofluidik |0 (DE-588)4803438-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mikrofluidik |0 (DE-588)4803438-1 |D s |
689 | 0 | 1 | |a Druck |0 (DE-588)4013083-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016278235&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016278235 |
Datensatz im Suchindex
_version_ | 1804137320239071232 |
---|---|
adam_text | Contents
Preface
..............................................................................................xi
Chapter
1
Introduction and Basic Concepts
....................................................1
1.1
Meaning and use of microfluidics
....................................................................... 2
1.1.1
Why fluids?
....................................................................................4
1.1.2
Why devices without moving parts?
........................................................7
1.1.3
Why the small size?
........................................................................ 10
1.2
Basic properties of devices
............................................................................ 12
1.2.1
Terminals
................................................................................... 12
1.2.2
Providing the driving pressure difference
.............................................. 16
1.3
Flow characterization parameters
................................................................. 20
1.3.1
Character of the flow and the Reynolds number Re
................................ 20
1.3.2
Scaling down and Re
.................................................................. 22
1.3.3
Compressibility and the
Mach
number Ma
........................................... 23
1.3.4
Relation to molecular scale: Knudsen number Kn
................................. 26
1.3.5
Periodic unsteady flows: Stokes and
Strouhal
numbers
............................. 27
1.4
Regions of operating parameters in microfluidics
................................................ 28
References
................................................................................................. 31
Chapter! Basics of Driving Fluid by Pressure
........................................... 33
2.1
Pressure and velocity
.................................................................................. 33
2.2
Flow rate and channel cross-sections
................................................................ 36
2.2.1
Integral state parameter
................................................................... 36
2.2.2
Implications of manufacturing technology
........................................... 37
2.3
State parameters
.................................................................................... 41
2.4
Dissipation of fluid energy
........................................................................... 45
2.4.1
Conversion e^-^ej
.................................................................................. 45
2.4.2
Steady-state characteristic and the characterization parameter
Q
................... 46
2.4.3
Total dissipation of jet energy
........................................................... 48
Pressure-Driven Microfluidics
2.4.4
Dissipation in separated regions
........................................................ 49
2.4.5
Friction loss mechanism
................................................................ 50
2.4.6
Asymptotic subdynamic regime
.................................................... 55
2.5
State parameters for compressible flows
........................................................ 56
2.6
Laws of flow branching
............................................................................. 60
2.6.1
Branching factors
......................................................................... 62
2.6.2
Comparison with data for biological branchings
................................... 64
2.6.3
Optimality criteria dictated by manufacturing technology
....................... 67
2.7
Unsteady flow effects: inertance
.................................................................. 71
2.8
Fluid accumulation: capacitance
................................................................... 74
2.8.1
Accumulation mechanisms
............................................................. 74
2.8.2
Gravitational capacitance
............................................................. 78
2.8.3
Fluid compression capacitance
........................................................ 80
2.8.4
Capacitance
dueto
wall elasticity
.................................................... 84
2.8.5
Capillary capacitance
.................................................................. 86
References
................................................................................................ 91
Chapter
3
Simple Components and Devices
............................................. 93
3.1
Connecting channels
................................................................................. 94
3.2
Area contractions and nozzles
..................................................................... 97
3.2.1
Characterization: search for a nozzle invariant
...................................... 98
3.2.2
Generation of free jets and droplets
.................................................. 104
3.2.3
Generating submerged jets
............................................................. 105
3.3
Diffusers
and collectors
............................................................................ 112
3.4
Restrictors: obstacles to the flow
.................................................................. 115
3.5
Diodes
................................................................................................. 118
3.5.1
Labyrinth diodes
........................................................................ 119
3.5.2
Vortex diodes
.............................................................................................. 122
3.5.3
Reverse flow diverters
................................................................... 124
3.6
Reactors, and heat exchangers
.................................................................... 125
3.7
Mixers
................................................................................................. 127
3.8
Three-terminal jet pump transformers
............................................................ 134
3.8.1
Venturi
transformers: a nozzle and
a
diffuser ...................................... 134
3.8.2
Essential facts about jet pump transformers: two nozzles and
a
diffuser ...... 136
3.8.3
Common terminal and different connections into the circuit
.................... 139
3.9
Toward the subdynamic limit
...................................................................... 142
References
.................................................................................................. 147
Chapter
4
Valves and Sophisticated Devices
.......................................... 149
4.1
Loading characteristics
............................................................................. 150
4.1.1
Loading a simple jet-type device
.................................................... 150
4.1.2
Passive flow control valves
.................................................................... 158
4.1.3
Load switching in a passive Coanda-effect valve
.................................. 159
4.1.4
Passive jet-type pressure regulators
.................................................. 161
4.2
Fluidic control action: active valves
............................................................... 163
4.2.1
Jet deflection
........................................................................... 165
4.2.2
Colliding jets
........................................................................... 166
4.2.3
Centrifugal action: vortex valves
..................................................... 167
Contents
vii
4.2.4 Separation
and supercirculation
..................................................... 171
4.2.5
Displacement
........................................................................... 172
4.2.6
Fluid plug
............................................................................. 173
4.3
Jet deflection
........................................................................................ 174
4.3.1
The deflection mechanism
............................................................. 175
4.3.2
Simplest example of the jet-deflection valve
....................................... 177
4.3.3
Symmetric proportional control valves
............................................ 181
4.3.4
Laminar proportional amplifiers
..................................................... 184
4.4
Switching valves based on the Coanda effect
................................................... 185
4.4.1
Bistable
diverter
.......................................................................... 186
4.4.2
Internal stabilizing feedback
........................................................... 189
4.4.3
Monostable
diverters
.................................................................. 190
4.4.4
Pressure recovery
..................................................................... 193
4.4.5
Matching and importance of the no-spillover state
............................... 194
4.5
Multielement valves and modules
............................................................... 199
4.5.1
Amplified logical operations
......................................................... 199
4.5.2
Bistable vortex valves
................................................................. 200
4.5.3
Valves with guard flows
......................................................... 202
4.6
Capillary valves
.................................................................................. 203
4.7
Oscillators
.......................................................................................... 206
4.7.1
The twin valve flip-flop
............................................................... 207
4.7.2
Jet-type valve with feedback loops
................................................... 208
4.7.3
Feedback loop mechanisms
......................................................... 211
4.7.4
The internal feedback
................................................................ 213
4.7.5
Frequency dividers
.................................................................... 216
4.8
Fluidic rectifiers
................................................................................... 217
4.8.1
The
Grätz
bridge circuit
............................................................... 217
4.8.2
Jet-type rectifiers
....................................................................... 220
4.8.3
Traveling wave pump
................................................................. 222
References
................................................................................................ 224
Chapter
5
Conversion Devices
................................................................ 225
5.1
Classification and basic concepts
................................................................. 226
5.1.1
Signals
.................................................................................. 226
5.1.2
Conversion chains
.................................................................... 228
5.1.3
Incomplete fluidic systems
........................................................ 229
5.2
M/F: conversion to and from mechanical motion
.............................................. 230
5.2.1
Mechanical pumps and valves
...................................................... 231
5.2.2
Sensing position and motion by fluidics
............................................. 234
5.2.3
F/M actuators
......................................................................... 242
5.2.4
F/M sensors and transducers
....................................................... 244
5.3
E/F: conversion to and from electric effects
..................................................... 246
5.3.1
Electric pumps and valves
............................................................. 246
5.3.2
E/F transducing
...................................................................... 264
5.3.3
F/E power conversion
................................................................. 266
5.3.4
F/E signal transducers
............................................................... 267
5.4
A/F: collaboration with acoustics
............................................................. 274
5.4.1
Acoustically driven pumps and separators
.......................................... 275
Pressure-Driven Microfluidics
5.4.2
A/F
signal conversion
............................................................. 278
5.4.3
F/A fluidically driven acoustic power generation
................................. 280
5.4.4
Fluidic and acoustic signal processing
............................................ 281
5.5
O/F: collaboration with optical devices
........................................................ 282
5.5.1
O/F: driving a fluid flow by light
................................................... 283
5.5.2
F/O: optical power controlled by a fluid
........................................... 283
5.5.3
O/F: optically generated change in a fluid at the signal level
................... 284
5.5.4
F/O: optical signal generated in response to fluid flow or properties
......... 285
5.6
T/F:
thermal effects
................................................................................. 288
5.6.1
F/T
-
thermal power produced by fluid flow
..................................... 288
5.6.2
T/F
-
driving a fluid flow by heat
.................................................. 289
5.6.3
Generating and using a temperature-dependent signal in a fluid
................ 290
5.7
F/F: fluidic input as well as output
.............................................................. 293
5.7.1
Pressure signal derived from measured flow
.................................... 293
5.7.2
Regenerative circuits
................................................................. 294
5.7.3
Generating a signal carrying information about fluid composition
............... 298
5.7.4
Fluidic power amplifiers
............................................................. 299
5.8
Special cases
....................................................................................... 301
5.8.1
Sensing based on nuclear magnetic resonance
...................................... 301
5.8.2
Micropyrotechnics
..................................................................... 301
5.8.3
Motility of micro-organisms
......................................................... 302
5.8.4
Devices based on properties of special membranes
.............................. 302
5.8.5
Fluidic pumps employing captive bacteria
......................................... 304
References
............................................................................................... 304
Chapter
6
Applications
........................................................................ 307
6.1
Simple solutions
..................................................................................... 308
6.1.1
Controlled injection of liquid droplets
............................................... 308
6.1.2
Cooling garment and the problem of portable power units
....................... 311
6.1.3
Filling a vessel or keeping a constant liquid level
................................ 320
6.1.4
Chromatographs
......................................................................... 321
6.1.5
Keeping a (nearly) constant flowrate
................................................. 325
6.1.6
Simple pressure regulator
.............................................................. 327
6.2
Taking part in revolutionary changes in cars
..................................................... 329
6.2.1
Sensors for the intelligent cars
........................................................ 329
6.2.2
Replacing the combustion engine
.................................................... 331
6.3
Discovering new materials and drugs
............................................................ 339
6.3.1
Combinatorial tests
...................................................................... 339
6.3.2
Sampling
................................................................................... 341
6.3.3
Guard flows
.......................................................................... 345
6.3.4
Low Reynolds numbers: jet pumping by control flow
............................. 346
6.3.5
Biological tests
........................................................................ 347
6.4
Artificial nose and tongue
.......................................................................... 348
6.5
Food
—
and waste
..................................................................................... 355
6.5.1
Quality monitoring
.................................................................... 355
6.5.2
Food processing and meals preparation
............................................ 357
6.5.3
Waste liquidation
........................................................................ 368
6.6
Identification of persons
.......................................................................... 373
Contents ix
6.6.1 Identification
based on hand silhouette geometry
...................................373
6.6.2
Fluidic devices for
DNA
analysis
................................................... 374
6.7
Medical applications
............................................................................... 378
6.7.1
Monitoring of the health state
........................................................ 379
6.7.2
Diagnosis and choice of therapy
.................................................... 382
6.7.3
Drug delivery
.......................................................................... 383
6.7.4
Implanted devices
..................................................................... 385
6.7.5
Tissue engineering
.................................................................... 387
6.8
Against terrorism and crime
....................................................................... 389
6.8.1
Portal detector and its sample collectors
........................................... 392
6.8.2
Fluidic decontamination
.............................................................. 393
6.9
Interfacing the central nervous system
.......................................................... 394
6.9.1
Therapeutic uses
....................................................................... 395
6.9.2
Cyber-animals
.......................................................................... 396
References
................................................................................................. 398
Concluding Remarks
.......................................................................................401
About the Author
........................................................................................ 403
Index
.........................................................................................................405
|
adam_txt |
Contents
Preface
.xi
Chapter
1
Introduction and Basic Concepts
.1
1.1
Meaning and use of microfluidics
. 2
1.1.1
Why fluids?
.4
1.1.2
Why devices without moving parts?
.7
1.1.3
Why the small size?
. 10
1.2
Basic properties of devices
. 12
1.2.1
Terminals
. 12
1.2.2
Providing the driving pressure difference
. 16
1.3
Flow characterization parameters
. 20
1.3.1
Character of the flow and the Reynolds number Re
. 20
1.3.2
Scaling down and Re
. 22
1.3.3
Compressibility and the
Mach
number Ma
. 23
1.3.4
Relation to molecular scale: Knudsen number Kn
. 26
1.3.5
Periodic unsteady flows: Stokes and
Strouhal
numbers
. 27
1.4
Regions of operating parameters in microfluidics
. 28
References
. 31
Chapter! Basics of Driving Fluid by Pressure
. 33
2.1
Pressure and velocity
. 33
2.2
Flow rate and channel cross-sections
. 36
2.2.1
Integral state parameter
. 36
2.2.2
Implications of manufacturing technology
. 37
2.3
State parameters
. 41
2.4
Dissipation of fluid energy
. 45
2.4.1
Conversion e^-^ej
. 45
2.4.2
Steady-state characteristic and the characterization parameter
Q
. 46
2.4.3
Total dissipation of jet energy
. 48
Pressure-Driven Microfluidics
2.4.4
Dissipation in separated regions
. 49
2.4.5
Friction loss mechanism
. 50
2.4.6
Asymptotic subdynamic regime
. 55
2.5
State parameters for compressible flows
. 56
2.6
Laws of flow branching
. 60
2.6.1
Branching factors
. 62
2.6.2
Comparison with data for biological branchings
. 64
2.6.3
Optimality criteria dictated by manufacturing technology
. 67
2.7
Unsteady flow effects: inertance
. 71
2.8
Fluid accumulation: capacitance
. 74
2.8.1
Accumulation mechanisms
. 74
2.8.2
Gravitational capacitance
. 78
2.8.3
Fluid compression capacitance
. 80
2.8.4
Capacitance
dueto
wall elasticity
. 84
2.8.5
Capillary capacitance
. 86
References
. 91
Chapter
3
Simple Components and Devices
. 93
3.1
Connecting channels
. 94
3.2
Area contractions and nozzles
. 97
3.2.1
Characterization: search for a nozzle invariant
. 98
3.2.2
Generation of free jets and droplets
. 104
3.2.3
Generating submerged jets
. 105
3.3
Diffusers
and collectors
. 112
3.4
Restrictors: obstacles to the flow
. 115
3.5
Diodes
. 118
3.5.1
Labyrinth diodes
. 119
3.5.2
Vortex diodes
. 122
3.5.3
Reverse flow diverters
. 124
3.6
Reactors, and heat exchangers
. 125
3.7
Mixers
. 127
3.8
Three-terminal jet pump transformers
. 134
3.8.1
Venturi
transformers: a nozzle and
a
diffuser . 134
3.8.2
Essential facts about jet pump transformers: two nozzles and
a
diffuser . 136
3.8.3
Common terminal and different connections into the circuit
. 139
3.9
Toward the subdynamic limit
. 142
References
. 147
Chapter
4
Valves and Sophisticated Devices
. 149
4.1
Loading characteristics
. 150
4.1.1
Loading a simple jet-type device
. 150
4.1.2
Passive flow control valves
. 158
4.1.3
Load switching in a passive Coanda-effect valve
. 159
4.1.4
Passive jet-type pressure regulators
. 161
4.2
Fluidic control action: active valves
. 163
4.2.1
Jet deflection
. 165
4.2.2
Colliding jets
. 166
4.2.3
Centrifugal action: vortex valves
. 167
Contents
vii
4.2.4 Separation
and supercirculation
. 171
4.2.5
Displacement
. 172
4.2.6
Fluid "plug"
. 173
4.3
Jet deflection
. 174
4.3.1
The deflection mechanism
. 175
4.3.2
Simplest example of the jet-deflection valve
. 177
4.3.3
Symmetric proportional control valves
. 181
4.3.4
Laminar proportional amplifiers
. 184
4.4
Switching valves based on the Coanda effect
. 185
4.4.1
Bistable
diverter
. 186
4.4.2
Internal stabilizing feedback
. 189
4.4.3
Monostable
diverters
. 190
4.4.4
Pressure recovery
. 193
4.4.5
Matching and importance of the no-spillover state
. 194
4.5
Multielement valves and modules
. 199
4.5.1
Amplified logical operations
. 199
4.5.2
Bistable vortex valves
. 200
4.5.3
Valves with "guard" flows
. 202
4.6
Capillary valves
. 203
4.7
Oscillators
. 206
4.7.1
The twin valve flip-flop
. 207
4.7.2
Jet-type valve with feedback loops
. 208
4.7.3
Feedback loop mechanisms
. 211
4.7.4
The internal feedback
. 213
4.7.5
Frequency dividers
. 216
4.8
Fluidic rectifiers
. 217
4.8.1
The
Grätz
bridge circuit
. 217
4.8.2
Jet-type rectifiers
. 220
4.8.3
Traveling wave pump
. 222
References
. 224
Chapter
5
Conversion Devices
. 225
5.1
Classification and basic concepts
. 226
5.1.1
Signals
. 226
5.1.2
Conversion chains
. 228
5.1.3
"Incomplete" fluidic systems
. 229
5.2
M/F: conversion to and from mechanical motion
. 230
5.2.1
Mechanical pumps and valves
. 231
5.2.2
Sensing position and motion by fluidics
. 234
5.2.3
F/M actuators
. 242
5.2.4
F/M sensors and transducers
. 244
5.3
E/F: conversion to and from electric effects
. 246
5.3.1
Electric pumps and valves
. 246
5.3.2
E/F transducing
. 264
5.3.3
F/E power conversion
. 266
5.3.4
F/E signal transducers
. 267
5.4
A/F: collaboration with acoustics
. 274
5.4.1
Acoustically driven pumps and separators
. 275
Pressure-Driven Microfluidics
5.4.2
A/F
signal conversion
. 278
5.4.3
F/A fluidically driven acoustic power generation
. 280
5.4.4
Fluidic and acoustic signal processing
. 281
5.5
O/F: collaboration with optical devices
. 282
5.5.1
O/F: driving a fluid flow by light
. 283
5.5.2
F/O: optical power controlled by a fluid
. 283
5.5.3
O/F: optically generated change in a fluid at the signal level
. 284
5.5.4
F/O: optical signal generated in response to fluid flow or properties
. 285
5.6
T/F:
thermal effects
. 288
5.6.1
F/T
-
thermal power produced by fluid flow
. 288
5.6.2
T/F
-
driving a fluid flow by heat
. 289
5.6.3
Generating and using a temperature-dependent signal in a fluid
. 290
5.7
F/F: fluidic input as well as output
. 293
5.7.1
Pressure signal derived from measured flow
. 293
5.7.2
Regenerative circuits
. 294
5.7.3
Generating a signal carrying information about fluid composition
. 298
5.7.4
Fluidic power amplifiers
. 299
5.8
Special cases
. 301
5.8.1
Sensing based on nuclear magnetic resonance
. 301
5.8.2
Micropyrotechnics
. 301
5.8.3
Motility of micro-organisms
. 302
5.8.4
Devices based on properties of special membranes
. 302
5.8.5
Fluidic pumps employing captive bacteria
. 304
References
. 304
Chapter
6
Applications
. 307
6.1
Simple solutions
. 308
6.1.1
Controlled injection of liquid droplets
. 308
6.1.2
Cooling garment and the problem of portable power units
. 311
6.1.3
Filling a vessel or keeping a constant liquid level
. 320
6.1.4
Chromatographs
. 321
6.1.5
Keeping a (nearly) constant flowrate
. 325
6.1.6
Simple pressure regulator
. 327
6.2
Taking part in revolutionary changes in cars
. 329
6.2.1
Sensors for the intelligent cars
. 329
6.2.2
Replacing the combustion engine
. 331
6.3
Discovering new materials and drugs
. 339
6.3.1
Combinatorial tests
. 339
6.3.2
Sampling
. 341
6.3.3
"Guard" flows
. 345
6.3.4
Low Reynolds numbers: jet pumping by control flow
. 346
6.3.5
Biological tests
. 347
6.4
Artificial nose and tongue
. 348
6.5
Food
—
and waste
. 355
6.5.1
Quality monitoring
. 355
6.5.2
Food processing and meals preparation
. 357
6.5.3
Waste liquidation
. 368
6.6
Identification of persons
. 373
Contents ix
6.6.1 Identification
based on hand silhouette geometry
.373
6.6.2
Fluidic devices for
DNA
analysis
. 374
6.7
Medical applications
. 378
6.7.1
Monitoring of the health state
. 379
6.7.2
Diagnosis and choice of therapy
. 382
6.7.3
Drug delivery
. 383
6.7.4
Implanted devices
. 385
6.7.5
Tissue engineering
. 387
6.8
Against terrorism and crime
. 389
6.8.1
Portal detector and its sample collectors
. 392
6.8.2
Fluidic decontamination
. 393
6.9
Interfacing the central nervous system
. 394
6.9.1
Therapeutic uses
. 395
6.9.2
Cyber-animals
. 396
References
. 398
Concluding Remarks
.401
About the Author
. 403
Index
.405 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Tesař, Václav |
author_facet | Tesař, Václav |
author_role | aut |
author_sort | Tesař, Václav |
author_variant | v t vt |
building | Verbundindex |
bvnumber | BV023075125 |
callnumber-first | T - Technology |
callnumber-label | TJ853 |
callnumber-raw | TJ853 |
callnumber-search | TJ853 |
callnumber-sort | TJ 3853 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | UF 4500 |
ctrlnum | (OCoLC)141383067 (DE-599)BVBBV023075125 |
dewey-full | 629.8042 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8042 |
dewey-search | 629.8042 |
dewey-sort | 3629.8042 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Physik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01740nam a2200493zc 4500</leader><controlfield tag="001">BV023075125</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090504 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080111s2007 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007299203</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA762982</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1596931345</subfield><subfield code="9">1-596-93134-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781596931343</subfield><subfield code="9">978-1-596-93134-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)141383067</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023075125</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ853</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8042</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4500</subfield><subfield code="0">(DE-625)145585:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tesař, Václav</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pressure-driven microfluidics</subfield><subfield code="c">Václav Tesař</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Artech House</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 410 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Integrated microsystems series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dispositifs fluidiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluides, Dynamique des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfluidique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfluidique - Applications industrielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfluidics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Druck</subfield><subfield code="0">(DE-588)4013083-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrofluidik</subfield><subfield code="0">(DE-588)4803438-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mikrofluidik</subfield><subfield code="0">(DE-588)4803438-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Druck</subfield><subfield code="0">(DE-588)4013083-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016278235&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016278235</subfield></datafield></record></collection> |
id | DE-604.BV023075125 |
illustrated | Illustrated |
index_date | 2024-07-02T19:34:44Z |
indexdate | 2024-07-09T21:10:25Z |
institution | BVB |
isbn | 1596931345 9781596931343 |
language | English |
lccn | 2007299203 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016278235 |
oclc_num | 141383067 |
open_access_boolean | |
owner | DE-29T DE-703 |
owner_facet | DE-29T DE-703 |
physical | XII, 410 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Artech House |
record_format | marc |
series2 | Integrated microsystems series |
spelling | Tesař, Václav Verfasser aut Pressure-driven microfluidics Václav Tesař Boston [u.a.] Artech House 2007 XII, 410 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Integrated microsystems series Includes bibliographical references and index Dispositifs fluidiques Fluides, Dynamique des Microfluidique Microfluidique - Applications industrielles Microfluidics Druck (DE-588)4013083-6 gnd rswk-swf Mikrofluidik (DE-588)4803438-1 gnd rswk-swf Mikrofluidik (DE-588)4803438-1 s Druck (DE-588)4013083-6 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016278235&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tesař, Václav Pressure-driven microfluidics Dispositifs fluidiques Fluides, Dynamique des Microfluidique Microfluidique - Applications industrielles Microfluidics Druck (DE-588)4013083-6 gnd Mikrofluidik (DE-588)4803438-1 gnd |
subject_GND | (DE-588)4013083-6 (DE-588)4803438-1 |
title | Pressure-driven microfluidics |
title_auth | Pressure-driven microfluidics |
title_exact_search | Pressure-driven microfluidics |
title_exact_search_txtP | Pressure-driven microfluidics |
title_full | Pressure-driven microfluidics Václav Tesař |
title_fullStr | Pressure-driven microfluidics Václav Tesař |
title_full_unstemmed | Pressure-driven microfluidics Václav Tesař |
title_short | Pressure-driven microfluidics |
title_sort | pressure driven microfluidics |
topic | Dispositifs fluidiques Fluides, Dynamique des Microfluidique Microfluidique - Applications industrielles Microfluidics Druck (DE-588)4013083-6 gnd Mikrofluidik (DE-588)4803438-1 gnd |
topic_facet | Dispositifs fluidiques Fluides, Dynamique des Microfluidique Microfluidique - Applications industrielles Microfluidics Druck Mikrofluidik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016278235&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tesarvaclav pressuredrivenmicrofluidics |