Molecular symmetry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2009
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XII, 426 S. Ill., graph. Darst |
ISBN: | 9780470853481 9780470853474 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023069469 | ||
003 | DE-604 | ||
005 | 20090326 | ||
007 | t | ||
008 | 080108s2009 ad|| |||| 00||| eng d | ||
020 | |a 9780470853481 |9 978-0-470-85348-1 | ||
020 | |a 9780470853474 |9 978-0-470-85347-4 | ||
035 | |a (OCoLC)298325666 | ||
035 | |a (DE-599)BVBBV023069469 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-19 |a DE-11 |a DE-355 |a DE-29T |a DE-703 |a DE-20 | ||
050 | 0 | |a QD461 | |
082 | 0 | |a 541/.22 |2 22 | |
084 | |a VE 5700 |0 (DE-625)147119:253 |2 rvk | ||
084 | |a CHE 160f |2 stub | ||
084 | |a CHE 158f |2 stub | ||
084 | |a CHE 150f |2 stub | ||
100 | 1 | |a Willock, David J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Molecular symmetry |c David J. Willock |
250 | |a 1. publ. | ||
264 | 1 | |a Chichester |b Wiley |c 2009 | |
300 | |a XII, 426 S. |b Ill., graph. Darst | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Group theory | |
650 | 4 | |a Molecular spectroscopy | |
650 | 4 | |a Molecular structure | |
650 | 4 | |a Molecular theory | |
650 | 4 | |a Symmetry (Physics) | |
650 | 0 | 7 | |a Molekülsymmetrie |0 (DE-588)4170385-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemische Bindung |0 (DE-588)4009843-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemie |0 (DE-588)4009816-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stereochemie |0 (DE-588)4129569-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwingungsspektroskopie |0 (DE-588)4128960-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stereochemie |0 (DE-588)4129569-9 |D s |
689 | 0 | 1 | |a Chemische Bindung |0 (DE-588)4009843-6 |D s |
689 | 0 | 2 | |a Molekülsymmetrie |0 (DE-588)4170385-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Molekülsymmetrie |0 (DE-588)4170385-6 |D s |
689 | 1 | 1 | |a Schwingungsspektroskopie |0 (DE-588)4128960-2 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 2 | 1 | |a Chemie |0 (DE-588)4009816-3 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016272631&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016272631&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016272631 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137311978389504 |
---|---|
adam_text | Contents
Preface
xi
1
Symmetry Elements and Operations
1
1.1
Introduction
1
1.2
Symmetry Elements and Operations
6
1.2.1
Proper Rotations:
C„
6
1.2.2
The Plane of Symmetry:
σ
9
1.2.3
The Inversion Centre:
і
13
1.3
Examples of the Impact of Geometric Symmetry on Chemistry
17
1.3.
1 Oxygen Transfer via Metal Porphyrins
17
1.3.2
Nuclear Magnetic Resonance: Chemical Equivalence
18
1.4
Summary
22
1.5
Self-Test Questions
23
Further Reading
24
2
More Symmetry Operations and Products of Operations
25
2.1
Introduction
25
2.2
Background to Point Groups
25
2.3
Closed Groups and New Operations
26
2.3.1
Products of Operations
26
2.3.2
Fixed Symmetry Elements
29
2.3.3
The Final Missing Operation, Improper Rotations:
S„
31
2.3.4
Equivalences for Improper Rotation Operations
34
2.4
Properties of Symmetry Operations
37
2.4.1
Equivalent Operations and Equivalent Atoms
У1
2.4.2
The Inverse of an Operation
38
2.4.3
The Order of the Product; Operations that Commute
39
2.5
Chirality and Symmetry
41
2.6
Summary
42
2.7
Completed Multiplication Tables
43
2.8
Self-Test Questions
44
3
The Point Groups Used with Molecules
45
3.1
Introduction
45
3.2
Molecular Classification Using Symmetry Operations
45
3.3
Constructing Reference Models with Idealized Symmetry
47
vi
Contents
3.4
The
Nonaxial
Groups:
C„
Q, C,
48
3.4.1
Examples of Molecules for the Nonaxial Groups: Cs,
С,, С,
49
3.5
The Cyclic Groups: Cn, Sn
50
3.5.1
Examples of Molecules for the Cyclic Groups: Cn,Sn
52
3.6
Axial Groups Containing Mirror Planes: Cnh and Cm
55
3.6.1
Examples of Molecules for Axial Groups Containing Mirror
Planes:
Сл
and Cny
58
3.7
Axial Groups with Multiple Rotation Axes: Dn, Dni and Dnh
59
3.7.1
Examples of Axial Groups with Multiple Rotation Axes: Dn,
D^andD^
61
3.8
Special Groups for Linear Molecules: C^ and
Ą^
64
3.9
The Cubic Groups:
Tă
and
Оъ
65
3.10
Assigning Point Groups to Molecules
69
3.11
Example Point Group Assignments
69
3.11.1
Example
1 :
Conformations of Cyclohexane
69
3.11.2
Example
2:
Six-Coordinate Metal Complexes
72
3.12
Self-Test Questions
73
4
Point Group Representations, Matrices and Basis Sets
75
4.1
Introduction
75
4.2
Symmetry Representations and Characters
75
4.2.1
Water, H2O, C2v 75
4.2.2
Direct Products 79
4.3
Multiplication Tables for Character Representations
81
4.4
Matrices and Symmetry Operations
82
4.5
Diagonal and Off-Diagonal Matrix Elements
85
4.5.1
Ammonia, NH3, C3v
85
4.6
The Trace of a Matrix as the Character for an Operation
87
4.7 Noninteger
Characters
88
4.7.1
Boron Trifluoride, BF3, D3h 88
4.8
Reducible Representations
91
4.8.1
Water, H2O, C2v 91
4.9
Classes of Operations 93
4.9.1
[NKCNUf-, D4h 93
4.10
Degenerate Irreducible Representations 9
4.10.1
Ammonia, NHb
С
3v
98
4.11
The Labelling of Irreducible Representations ^
4.12
Summary 102
4.13
Completed Tables 102
4.14
Self-Test Questions 102
Further Reading
ЮЗ
Reducible and Irreducible Representations 105
5.1
Introduction 105
5.2
Irreducible Representations and Molecular Vibrations
*
Contents
vii
5.3
Finding Reducible
Representations
110
5.4
Properties of Point Groups and Irreducible Representations
112
5.5
The Reduction Formula
118
5.5.1
Applying the Reduction Formula
120
5.6
A Complete Set of Vibrational Modes for H2O
122
5.7
Choosing the Basis Set
126
5.7.1
Carbonyl Stretching Modes of
ÍFe(CO)s],D3h
126
5.8
The d-Orbitals in Common Transition Metal Complex Geometries
128
5.8.1
Square Planar, D4h
132
5.8.2
Tetrahedral,
Tá
137
5.8.3
Octahedral, Oh
142
5.8.4
Trigonal
Bipyramidal, D3h 147
5.9
Linear Molecules: Groups of Infinite Order
154
5.10
Summary
161
5.11
Self-Test Questions
162
Applications in Vibrational Spectroscopy
163
6.1
Introduction
163
6.2
Selection Rules
165
6.2.1
Infrared Spectroscopy
165
6.2.2
Infrared Absorption and the Greenhouse Gases
173
6.2.3
Interstellar H2
177
6.2.4
Raman Spectroscopy
177
6.2.5
Comparison of Infrared and Raman Selection Rules
184
6.3
General Approach to Analysing Vibrational Spectroscopy
186
6.3.1
Example: the
С—И
Stretch Bands of
1
,4-Difluorobenzene
187
6.4
Symmetry-Adapted Linear Combinations
190
6.5
Normalization
193
6.6
The Projection Operator Method
195
6.6.1
Projection Operator Applied to the
С
—
Η
Stretches of
1
,4-Difluorobenzene
196
6.6.2
The Projection Operator and Degenerate Representations
198
6.7
Linking Results for Symmetry-Inequivalent Sets of Atoms
202
6.7.1
Sets of Atoms Differing in Mass or Chemical Bond Strength
203
6.8
Additional Examples
206
6.8.1
Benzene, D^
206
6.8.2
The
fac
and rasr homers of Transition Metal Complexes
212
6.9
Summary
215
6.10
Self-Test Questions
216
Further Reading
217
Symmetry in Chemical Bonding
219
7.1
Introduction
219
7.1.1
Wave Phenomena and Interference
220
7.1.2
The Born Interpretation of the Wavefunction
222
viii Contents
7.2
Bond Energies
225
7.2.1
The Symmetry-Adapted Linear Combinations for the
Molecular
Orbitals
of H2 + and H2
228
7.2.2
The Chemical Bond Energy from Molecular
Orbitals 232
7.2.3
The Molecular Orbital Energy
236
7.2.4
Bond Order
238
7.3
The Relative Energies of Hydrogen-Like Atomic
Orbitals 239
7.3.1
Radial Behaviour of Atomic
Orbitals 239
7.3.2
The Relative Energies of Atomic
Orbitals in
Different Elements
242
7.3.3
The Relative Energies of Atomic
Orbitals
from
Electronegativity
244
7.4
The Molecules Formed by Other Second-Row Elements
with Hydrogen
252
7.4.1
BeH2, Beryllium Hydride
252
7.4.2
ВНЪ,
Boron Hydride
253
7.4.3
CHA, Methane
258
7.4.4
NH3, Ammonia
264
7.4.5
H2O, Water
269
7.5
The Second-Row Diatomic Molecules
270
7.5.1
Homonuclear Diatomics
270
7.5.2
Heteronuclear Diatomics of Second-Row Elements
276
7.6
More Complex Polyatomic Molecules
278
7.6.1
Ethene
278
7.7
Metal Complexes
284
7.7.1
Complexes Containing
σ
-Donor Ligands
284
7.7.2
The John-Teller Effect
287
7.7.3
Complexes Containing Ligand
Orbitals
of
π
-Symmetry
291
7.8
Summary
295
7.9
Self-Test Questions
296
Further Reading
297
Appendices
Appendix
1
H2O Models for Identifying the Results of Symmetry
Operation Products
299
Appendix
2
Assignment of Chiral Centre Handedness using
Cahn-Ingold-Prelog Rules
303
Appendix
3
Model of a Tetrahedron and the Related Cube
307
Appendix
4
Model of an Octahedron
313
Contents ix
Appendix 5
Matrices
and Determinants
317
A5
.1
Matrices as Representations of Symmetry Operators
317
A5.1.1 Products of Matrices
318
A5.1.2 Products of Matrices, Expressed as
Summations
319
A5.2 Matrices for Solving Sets of Linear Equations
321
Further Reading
324
Appendix
6
The Mathematical Background to Infrared
Selection Rules
A6.1 Model Based on Classical Mechanics
A6.2 Model Based on Quantum Mechanics
A6.3 Excited Vibrational States
A6.4 Vibrational Modes for Polyatomic Molecules
A6.5 Generalization to Arbitrary Transitions
A6.6 Summary of Selection Rules
Further Reading
Appendix
7
The Franck-Condon Principle
Appendix
8
Classical Treatment of Stokes/Anti-Stokes Absorption
Appendix
9
The Atomic
Orbitals
of Hydrogen
A9.
1
Choice of Coordinate System
A9.2 Separation of Variables
A9.3 The Angular Equation
A9.4 Physical Interpretation of the Angular Equation
Solutions
A9.5 Angular Momentum
A9.6 The Radial Equation
A9.7 The Complete Atomic
Orbitals
A9.8 Expectation Values
A9.9 Real Combinations to Form the Familiar Atomic
Orbitals
A9.
10
Cartesian Forms of the Real Angular Functions
A9.
11 Endnote
on Imaginary Numbers
Further Reading
Appendix
10
The Origin of Chemical Bonding in Hj
A10.1
A
10.2
A10.3
A10.4
Chemical Bond Formation
H
Atom and H+ Cation
The
Vinal
Theorem
H2+ Molecule
A10.5 Choice of Coordinate System for
HÇ:
Cylindrical Polar
Coordinates
325
325
328
333
335
336
337
338
339
343
345
347
348
349
354
356
359
361
364
367
369
370
373
375
376
376
379
381
383
χ
Contents
Α10.6 Η/:
the Electron Kinetic Energy
386
A10.7 H2+: the Electronic Potential Energy
387
A10.8 The Chemical Bond Formation Energy Based on Rigid
Atomic
Orbitals 393
A
10.9
Optimal Radial Decay of Molecular
Orbitals 396
Further Reading
399
Appendix
11
H2O Molecular Orbital Calculation in C2v Symmetry
401
Further Reading
406
Appendix
12
Character Tables
407
A12.1 Non-Axial Groups
407
A12.2 Axial Groups
407
A12.2J
C„
Groups
407
A12.2.2
S„
Groups
408
A12.2.3 Cm Groups
408
A12.2.4
С„ћ
Groups
409
A12.2.5
D„
Groups
410
A12.2.6
Вы
Groups
411
A12.2.7 Dnh Groups
412
A12.3 Cubic Groups
413
A12.3.1 Tetrahedral, Td
413
A12.3.2 Rotational Subgroup of Td,T
413
A12.3.3 Octahedral, Oh
414
A12.3.4 Rotational Subgroup of
О
h,
О
414
A12.4 Groups for Linear Molecules
414
Index
415
Molecular
Symmetry
David
J.
Willock
School of Chemistry, Cardiff University, Cardiff, UK
Symmetry and group theory provide us with a rigorous method for the description of the
geometry of objects by describing the patterns in their structure. In chemistry it is a
powerful concept that underlies many apparently disparate phenomena. Symmetry allows
us to accurately describe the types of bonding that can occur between atoms or groups
of atoms in molecules. It also governs the transitions that may occur between energy
levels in molecular systems, leading to a predictive understanding of the absorption
properties of molecules and hence their spectra.
Molecular Symmetry lays out the formal language used in the area, with illustrative
examples of particular molecules throughout. It then applies the ideas of symmetry and
group theory to describe molecular structure, bonding in molecules and to consider the
implications in spectroscopy.
Topics covered include:
Symmetry elements
Symmetry operations and products of operations
Point groups used with molecules
Point group representations, matrices and basis sets
Reducible and irreducible representations
Applications in vibrational spectroscopy
Molecular orbital theory of chemical bonding
Molecular Symmetry is designed to introduce the subject by combining symmetry with
spectroscopy and bonding in a clear and accessible manner. Each chapter ends with a
summary of learning points, a selection of self-test questions, and suggestions for further
reading. A set of appendices includes templates for paper models which will help students
understand symmetry operations and cover key aspects of the material in depth.
Molecular Symmetry is a must-have introduction to this fundamental topic for students of
chemistry, and will also find a place on the bookshelves of postgraduates and researchers
looking for a broad and modern introduction to the subject.
|
adam_txt |
Contents
Preface
xi
1
Symmetry Elements and Operations
1
1.1
Introduction
1
1.2
Symmetry Elements and Operations
6
1.2.1
Proper Rotations:
C„
6
1.2.2
The Plane of Symmetry:
σ
9
1.2.3
The Inversion Centre:
і
13
1.3
Examples of the Impact of Geometric Symmetry on Chemistry
17
1.3.
1 Oxygen Transfer via Metal Porphyrins
17
1.3.2
Nuclear Magnetic Resonance: Chemical Equivalence
18
1.4
Summary
22
1.5
Self-Test Questions
23
Further Reading
24
2
More Symmetry Operations and Products of Operations
25
2.1
Introduction
25
2.2
Background to Point Groups
25
2.3
Closed Groups and New Operations
26
2.3.1
Products of Operations
26
2.3.2
Fixed Symmetry Elements
29
2.3.3
The Final Missing Operation, Improper Rotations:
S„
31
2.3.4
Equivalences for Improper Rotation Operations
34
2.4
Properties of Symmetry Operations
37
2.4.1
Equivalent Operations and Equivalent Atoms
У1
2.4.2
The Inverse of an Operation
38
2.4.3
The Order of the Product; Operations that Commute
39
2.5
Chirality and Symmetry
41
2.6
Summary
42
2.7
Completed Multiplication Tables
43
2.8
Self-Test Questions
44
3
The Point Groups Used with Molecules
45
3.1
Introduction
45
3.2
Molecular Classification Using Symmetry Operations
45
3.3
Constructing Reference Models with Idealized Symmetry
47
vi
Contents
3.4
The
Nonaxial
Groups:
C„
Q, C,
48
3.4.1
Examples of Molecules for the Nonaxial Groups: Cs,
С,, С,
49
3.5
The Cyclic Groups: Cn, Sn
50
3.5.1
Examples of Molecules for the Cyclic Groups: Cn,Sn
52
3.6
Axial Groups Containing Mirror Planes: Cnh and Cm
55
3.6.1
Examples of Molecules for Axial Groups Containing Mirror
Planes:
Сл
and Cny
58
3.7
Axial Groups with Multiple Rotation Axes: Dn, Dni and Dnh
59
3.7.1
Examples of Axial Groups with Multiple Rotation Axes: Dn,
D^andD^
61
3.8
Special Groups for Linear Molecules: C^ and
Ą^
64
3.9
The Cubic Groups:
Tă
and
Оъ
65
3.10
Assigning Point Groups to Molecules
69
3.11
Example Point Group Assignments
69
3.11.1
Example
1 :
Conformations of Cyclohexane
69
3.11.2
Example
2:
Six-Coordinate Metal Complexes
72
3.12
Self-Test Questions
73
4
Point Group Representations, Matrices and Basis Sets
75
4.1
Introduction
75
4.2
Symmetry Representations and Characters
75
4.2.1
Water, H2O, C2v 75
4.2.2
Direct Products 79
4.3
Multiplication Tables for Character Representations
81
4.4
Matrices and Symmetry Operations
82
4.5
Diagonal and Off-Diagonal Matrix Elements
85
4.5.1
Ammonia, NH3, C3v
85
4.6
The Trace of a Matrix as the Character for an Operation
87
4.7 Noninteger
Characters
88
4.7.1
Boron Trifluoride, BF3, D3h 88
4.8
Reducible Representations
91
4.8.1
Water, H2O, C2v 91
4.9
Classes of Operations 93
4.9.1
[NKCNUf-, D4h 93
4.10
Degenerate Irreducible Representations 9"
4.10.1
Ammonia, NHb
С
3v
98
4.11
The Labelling of Irreducible Representations ^
4.12
Summary 102
4.13
Completed Tables 102
4.14
Self-Test Questions 102
Further Reading
ЮЗ
Reducible and Irreducible Representations 105
5.1
Introduction 105
5.2
Irreducible Representations and Molecular Vibrations
*"'
Contents
vii
5.3
Finding Reducible
Representations
110
5.4
Properties of Point Groups and Irreducible Representations
112
5.5
The Reduction Formula
118
5.5.1
Applying the Reduction Formula
120
5.6
A Complete Set of Vibrational Modes for H2O
122
5.7
Choosing the Basis Set
126
5.7.1
Carbonyl Stretching Modes of
ÍFe(CO)s],D3h
126
5.8
The d-Orbitals in Common Transition Metal Complex Geometries
128
5.8.1
Square Planar, D4h
132
5.8.2
Tetrahedral,
Tá
137
5.8.3
Octahedral, Oh
142
5.8.4
Trigonal
Bipyramidal, D3h 147
5.9
Linear Molecules: Groups of Infinite Order
154
5.10
Summary
161
5.11
Self-Test Questions
162
Applications in Vibrational Spectroscopy
163
6.1
Introduction
163
6.2
Selection Rules
165
6.2.1
Infrared Spectroscopy
165
6.2.2
Infrared Absorption and the Greenhouse Gases
173
6.2.3
Interstellar H2
177
6.2.4
Raman Spectroscopy
177
6.2.5
Comparison of Infrared and Raman Selection Rules
184
6.3
General Approach to Analysing Vibrational Spectroscopy
186
6.3.1
Example: the
С—И
Stretch Bands of
1
,4-Difluorobenzene
187
6.4
Symmetry-Adapted Linear Combinations
190
6.5
Normalization
193
6.6
The Projection Operator Method
195
6.6.1
Projection Operator Applied to the
С
—
Η
Stretches of
1
,4-Difluorobenzene
196
6.6.2
The Projection Operator and Degenerate Representations
198
6.7
Linking Results for Symmetry-Inequivalent Sets of Atoms
202
6.7.1
Sets of Atoms Differing in Mass or Chemical Bond Strength
203
6.8
Additional Examples
206
6.8.1
Benzene, D^
206
6.8.2
The
fac
and rasr homers of Transition Metal Complexes
212
6.9
Summary
215
6.10
Self-Test Questions
216
Further Reading
217
Symmetry in Chemical Bonding
219
7.1
Introduction
219
7.1.1
Wave Phenomena and Interference
220
7.1.2
The Born Interpretation of the Wavefunction
222
viii Contents
7.2
Bond Energies
225
7.2.1
The Symmetry-Adapted Linear Combinations for the
Molecular
Orbitals
of H2 + and H2
228
7.2.2
The Chemical Bond Energy from Molecular
Orbitals 232
7.2.3
The Molecular Orbital Energy
236
7.2.4
Bond Order
238
7.3
The Relative Energies of Hydrogen-Like Atomic
Orbitals 239
7.3.1
Radial Behaviour of Atomic
Orbitals 239
7.3.2
The Relative Energies of Atomic
Orbitals in
Different Elements
242
7.3.3
The Relative Energies of Atomic
Orbitals
from
Electronegativity
244
7.4
The Molecules Formed by Other Second-Row Elements
with Hydrogen
252
7.4.1
BeH2, Beryllium Hydride
252
7.4.2
ВНЪ,
Boron Hydride
253
7.4.3
CHA, Methane
258
7.4.4
NH3, Ammonia
264
7.4.5
H2O, Water
269
7.5
The Second-Row Diatomic Molecules
270
7.5.1
Homonuclear Diatomics
270
7.5.2
Heteronuclear Diatomics of Second-Row Elements
276
7.6
More Complex Polyatomic Molecules
278
7.6.1
Ethene
278
7.7
Metal Complexes
284
7.7.1
Complexes Containing
σ
-Donor Ligands
284
7.7.2
The John-Teller Effect
287
7.7.3
Complexes Containing Ligand
Orbitals
of
π
-Symmetry
291
7.8
Summary
295
7.9
Self-Test Questions
296
Further Reading
297
Appendices
Appendix
1
H2O Models for Identifying the Results of Symmetry
Operation Products
299
Appendix
2
Assignment of Chiral Centre Handedness using
Cahn-Ingold-Prelog Rules
303
Appendix
3
Model of a Tetrahedron and the Related Cube
307
Appendix
4
Model of an Octahedron
313
Contents ix
Appendix 5
Matrices
and Determinants
317
A5
.1
Matrices as Representations of Symmetry Operators
317
A5.1.1 Products of Matrices
318
A5.1.2 Products of Matrices, Expressed as
Summations
319
A5.2 Matrices for Solving Sets of Linear Equations
321
Further Reading
324
Appendix
6
The Mathematical Background to Infrared
Selection Rules
A6.1 Model Based on Classical Mechanics
A6.2 Model Based on Quantum Mechanics
A6.3 Excited Vibrational States
A6.4 Vibrational Modes for Polyatomic Molecules
A6.5 Generalization to Arbitrary Transitions
A6.6 Summary of Selection Rules
Further Reading
Appendix
7
The Franck-Condon Principle
Appendix
8
Classical Treatment of Stokes/Anti-Stokes Absorption
Appendix
9
The Atomic
Orbitals
of Hydrogen
A9.
1
Choice of Coordinate System
A9.2 Separation of Variables
A9.3 The Angular Equation
A9.4 Physical Interpretation of the Angular Equation
Solutions
A9.5 Angular Momentum
A9.6 The Radial Equation
A9.7 The Complete Atomic
Orbitals
A9.8 Expectation Values
A9.9 Real Combinations to Form the Familiar Atomic
Orbitals
A9.
10
Cartesian Forms of the Real Angular Functions
A9.
11 Endnote
on Imaginary Numbers
Further Reading
Appendix
10
The Origin of Chemical Bonding in Hj
A10.1
A
10.2
A10.3
A10.4
Chemical Bond Formation
H
Atom and H+ Cation
The
Vinal
Theorem
H2+ Molecule
A10.5 Choice of Coordinate System for
HÇ:
Cylindrical Polar
Coordinates
325
325
328
333
335
336
337
338
339
343
345
347
348
349
354
356
359
361
364
367
369
370
373
375
376
376
379
381
383
χ
Contents
Α10.6 Η/:
the Electron Kinetic Energy
386
A10.7 H2+: the Electronic Potential Energy
387
A10.8 The Chemical Bond Formation Energy Based on Rigid
Atomic
Orbitals 393
A
10.9
Optimal Radial Decay of Molecular
Orbitals 396
Further Reading
399
Appendix
11
H2O Molecular Orbital Calculation in C2v Symmetry
401
Further Reading
406
Appendix
12
Character Tables
407
A12.1 Non-Axial Groups
407
A12.2 Axial Groups
407
A12.2J
C„
Groups
407
A12.2.2
S„
Groups
408
A12.2.3 Cm Groups
408
A12.2.4
С„ћ
Groups
409
A12.2.5
D„
Groups
410
A12.2.6
Вы
Groups
411
A12.2.7 Dnh Groups
412
A12.3 Cubic Groups
413
A12.3.1 Tetrahedral, Td
413
A12.3.2 Rotational Subgroup of Td,T
413
A12.3.3 Octahedral, Oh
414
A12.3.4 Rotational Subgroup of
О
h,
О
414
A12.4 Groups for Linear Molecules
414
Index
415
Molecular
Symmetry
David
J.
Willock
School of Chemistry, Cardiff University, Cardiff, UK
Symmetry and group theory provide us with a rigorous method for the description of the
geometry of objects by describing the patterns in their structure. In chemistry it is a
powerful concept that underlies many apparently disparate phenomena. Symmetry allows
us to accurately describe the types of bonding that can occur between atoms or groups
of atoms in molecules. It also governs the transitions that may occur between energy
levels in molecular systems, leading to a predictive understanding of the absorption
properties of molecules and hence their spectra.
Molecular Symmetry lays out the formal language used in the area, with illustrative
examples of particular molecules throughout. It then applies the ideas of symmetry and
group theory to describe molecular structure, bonding in molecules and to consider the
implications in spectroscopy.
Topics covered include:
Symmetry elements
Symmetry operations and products of operations
Point groups used with molecules
Point group representations, matrices and basis sets
Reducible and irreducible representations
Applications in vibrational spectroscopy
Molecular orbital theory of chemical bonding
Molecular Symmetry is designed to introduce the subject by combining symmetry with
spectroscopy and bonding in a clear and accessible manner. Each chapter ends with a
summary of learning points, a selection of self-test questions, and suggestions for further
reading. A set of appendices includes templates for paper models which will help students
understand symmetry operations and cover key aspects of the material in depth.
Molecular Symmetry is a must-have introduction to this fundamental topic for students of
chemistry, and will also find a place on the bookshelves of postgraduates and researchers
looking for a broad and modern introduction to the subject. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Willock, David J. |
author_facet | Willock, David J. |
author_role | aut |
author_sort | Willock, David J. |
author_variant | d j w dj djw |
building | Verbundindex |
bvnumber | BV023069469 |
callnumber-first | Q - Science |
callnumber-label | QD461 |
callnumber-raw | QD461 |
callnumber-search | QD461 |
callnumber-sort | QD 3461 |
callnumber-subject | QD - Chemistry |
classification_rvk | VE 5700 |
classification_tum | CHE 160f CHE 158f CHE 150f |
ctrlnum | (OCoLC)298325666 (DE-599)BVBBV023069469 |
dewey-full | 541/.22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541/.22 |
dewey-search | 541/.22 |
dewey-sort | 3541 222 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Physik Chemie |
discipline_str_mv | Chemie / Pharmazie Physik Chemie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02714nam a2200649 c 4500</leader><controlfield tag="001">BV023069469</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090326 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080108s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470853481</subfield><subfield code="9">978-0-470-85348-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470853474</subfield><subfield code="9">978-0-470-85347-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)298325666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023069469</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD461</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541/.22</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 5700</subfield><subfield code="0">(DE-625)147119:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 160f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 158f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 150f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Willock, David J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular symmetry</subfield><subfield code="c">David J. Willock</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 426 S.</subfield><subfield code="b">Ill., graph. Darst</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetry (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekülsymmetrie</subfield><subfield code="0">(DE-588)4170385-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Bindung</subfield><subfield code="0">(DE-588)4009843-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stereochemie</subfield><subfield code="0">(DE-588)4129569-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwingungsspektroskopie</subfield><subfield code="0">(DE-588)4128960-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stereochemie</subfield><subfield code="0">(DE-588)4129569-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chemische Bindung</subfield><subfield code="0">(DE-588)4009843-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Molekülsymmetrie</subfield><subfield code="0">(DE-588)4170385-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Molekülsymmetrie</subfield><subfield code="0">(DE-588)4170385-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Schwingungsspektroskopie</subfield><subfield code="0">(DE-588)4128960-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016272631&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016272631&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016272631</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023069469 |
illustrated | Illustrated |
index_date | 2024-07-02T19:32:24Z |
indexdate | 2024-07-09T21:10:17Z |
institution | BVB |
isbn | 9780470853481 9780470853474 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016272631 |
oclc_num | 298325666 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-11 DE-355 DE-BY-UBR DE-29T DE-703 DE-20 |
owner_facet | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-11 DE-355 DE-BY-UBR DE-29T DE-703 DE-20 |
physical | XII, 426 S. Ill., graph. Darst |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley |
record_format | marc |
spelling | Willock, David J. Verfasser aut Molecular symmetry David J. Willock 1. publ. Chichester Wiley 2009 XII, 426 S. Ill., graph. Darst txt rdacontent n rdamedia nc rdacarrier Group theory Molecular spectroscopy Molecular structure Molecular theory Symmetry (Physics) Molekülsymmetrie (DE-588)4170385-6 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Chemische Bindung (DE-588)4009843-6 gnd rswk-swf Chemie (DE-588)4009816-3 gnd rswk-swf Stereochemie (DE-588)4129569-9 gnd rswk-swf Schwingungsspektroskopie (DE-588)4128960-2 gnd rswk-swf Stereochemie (DE-588)4129569-9 s Chemische Bindung (DE-588)4009843-6 s Molekülsymmetrie (DE-588)4170385-6 s DE-604 Schwingungsspektroskopie (DE-588)4128960-2 s 1\p DE-604 Gruppentheorie (DE-588)4072157-7 s Chemie (DE-588)4009816-3 s 2\p DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016272631&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016272631&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Willock, David J. Molecular symmetry Group theory Molecular spectroscopy Molecular structure Molecular theory Symmetry (Physics) Molekülsymmetrie (DE-588)4170385-6 gnd Gruppentheorie (DE-588)4072157-7 gnd Chemische Bindung (DE-588)4009843-6 gnd Chemie (DE-588)4009816-3 gnd Stereochemie (DE-588)4129569-9 gnd Schwingungsspektroskopie (DE-588)4128960-2 gnd |
subject_GND | (DE-588)4170385-6 (DE-588)4072157-7 (DE-588)4009843-6 (DE-588)4009816-3 (DE-588)4129569-9 (DE-588)4128960-2 |
title | Molecular symmetry |
title_auth | Molecular symmetry |
title_exact_search | Molecular symmetry |
title_exact_search_txtP | Molecular symmetry |
title_full | Molecular symmetry David J. Willock |
title_fullStr | Molecular symmetry David J. Willock |
title_full_unstemmed | Molecular symmetry David J. Willock |
title_short | Molecular symmetry |
title_sort | molecular symmetry |
topic | Group theory Molecular spectroscopy Molecular structure Molecular theory Symmetry (Physics) Molekülsymmetrie (DE-588)4170385-6 gnd Gruppentheorie (DE-588)4072157-7 gnd Chemische Bindung (DE-588)4009843-6 gnd Chemie (DE-588)4009816-3 gnd Stereochemie (DE-588)4129569-9 gnd Schwingungsspektroskopie (DE-588)4128960-2 gnd |
topic_facet | Group theory Molecular spectroscopy Molecular structure Molecular theory Symmetry (Physics) Molekülsymmetrie Gruppentheorie Chemische Bindung Chemie Stereochemie Schwingungsspektroskopie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016272631&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016272631&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT willockdavidj molecularsymmetry |