Modern reduction methods:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XIX, 501 S. graph. Darst. |
ISBN: | 9783527318629 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023057657 | ||
003 | DE-604 | ||
005 | 20080528 | ||
007 | t | ||
008 | 071219s2008 gw d||| |||| 00||| eng d | ||
015 | |a 07,N38,0818 |2 dnb | ||
016 | 7 | |a 985483466 |2 DE-101 | |
020 | |a 9783527318629 |c Gb. : ca. EUR 149.00 (freier Pr.), ca. sfr 235.00 (freier Pr.) |9 978-3-527-31862-9 | ||
024 | 3 | |a 9783527318629 | |
028 | 5 | 2 | |a 1131862 000 |
035 | |a (OCoLC)174131482 | ||
035 | |a (DE-599)DNB985483466 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-91G |a DE-19 |a DE-29T | ||
050 | 0 | |a QD281.R4 | |
082 | 0 | |a 541.393078 |2 22 | |
084 | |a VK 5500 |0 (DE-625)147401:253 |2 rvk | ||
084 | |a VK 6000 |0 (DE-625)147413:253 |2 rvk | ||
084 | |a CHE 621f |2 stub | ||
084 | |a 540 |2 sdnb | ||
245 | 1 | 0 | |a Modern reduction methods |c ed. by Pher G. Andersson ... |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2008 | |
300 | |a XIX, 501 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Organic compounds |x Synthesis | |
650 | 4 | |a Reduction (Chemistry) | |
650 | 0 | 7 | |a Reduktion |g Chemie |0 (DE-588)4277879-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reduktion |g Chemie |0 (DE-588)4277879-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Andersson, Pher |d 1963- |e Sonstige |0 (DE-588)131923455 |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2998669&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016260925&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016260925 |
Datensatz im Suchindex
_version_ | 1805089763783344128 |
---|---|
adam_text |
Contents
Preface XV
List of Contributors XVII
Part One Alkene Reductions
1 Reduction of Functionalized Alkenes 3
Jean Pierre Geriet
1.1 Introduction 3
1.2 Asymmetrie Hydrogenation of Dehydroamino Acids 4
1.2.1 Rh Catalyzed Reactions 4
1.2.1.1 Hydrogenation with Chiral Bisphosphine Ligands 4
1.2.1.2 Mechanism of the Asymmetrie Hydrogenation with
Rhodium Catalysts 8
1.2.1.3 Rh Catalyzed Hydrogenation with Monophosphorus Ligands 9
1.2.2 Ruthenium and Iridium Catalyzed Reactions 10
1.2.2.1 Ruthenium 10
1.2.2.2 Mechanism of the Ruthenium Catalyzed Asymmetrie
Hydrogenation 12
1.2.2.3 Iridium 13
1.3 Simple Enamides 13
1.4 Hydrogenation of ß (Acylamino) Acrylates 16
1.5 Hydrogenation of Unsaturated Carboxylic Acids and Esters 18
1.5.1 Mechanistic Aspects of the Ru (BINAP) Catalyzed Hydrogenation of
Carboxylic Acids 21
1.6 Hydrogenation of Unsaturated Esters, Lactones, Amides
and Ketones 22
1.7 Hydrogenation of Unsaturated Alcohols 25
1.7.1 Diastereoselective Hydrogenation with Rh and Ir Catalysts 25
1.7.2 Enantioselective Hydrogenation with Chiral Ru and Ir Catalysts 26
1.8 Synthesis of Pharmaceutical Intermediates 28
1.9 Conclusion 32
VI Contents
2 Hydrogenation of Unfunctionalized Alkenes 39
Jarle S. Diesen and Pher C. Andersson
2.1 Introduction 39
2.2 Iridium Catalysis 39
2.2.1 Catalysts 41
2.2.1.1 Ligands 41
2.2.1.2 Anion 41
2.2.2 Substrates 44
2.2.3 Mechanism 52
2.3 Ruthenium and Rhodium Catalysis 53
2.4 Chiral Metallocene Catalysts 57
2.4.1 Titanium and Zirconium Systems 57
2.4.2 Lanthanide Systems 60
2.5 Conclusion 62
3 The Development and Application of Rhodium Catalyzed Hydroboration
of Alkenes 65
Anthony C. Coyne and Patrick J. Guiry
3.1 Introduction 65
3.2 Mechanism 66
3.3 Selectivity of Metal Catalyzed Hydroboration 67
3.3.1 Regioselectivity 67
3.3.2 Stereoselectivity 69
3.3.2.1 Chiral P,P Ligands 69
3.3.2.2 Chiral P,N Ligands 74
3.4 Recent Applications in Synthesis 82
3.5 Conclusion 84
4 Alkene Reduction: Hydrosilylation 87
Penelope A. Mayes and Patrick Perlmutter
4.1 Introduction 87
4.2 Isolated Alkenes 87
4.2.1 Palladium 87
4.2.1.1 Aromatic Alkenes 87
4.2.1.2 Nonaromatic Alkenes 93
4.2.2 Metals Other Than Palladium 94
4.3 Conjugated Alkenes 95
4.3.1 Acyclic 1,3 Dienes 95
4.3.2 Cyclic 1,3 Dienes 98
4.3.3 Enynes 98
4.4 a,ß Unsaturated Systems 99
4.4.1 Copper 99
4.4.2 Tandem Processes 102
4.5 Conclusions 103
Contents VII
Part Two Carbonyl Reactions
5 Carbonyl Hydrogenation 109
Christian Hedberg
5.1 Introduction 109
5.2 Asymmetrie Hydrogenation of Activated Ketones and
ß Keto Esters 109
5.2.1 a Keto Ester Hydrogenation 112
5.2.2 1,3 Diketones 112
5.2.3 Hydrogenation of ß Keto Ester Analogues 114
5.2.4 Mechanism 715
5.2.5 Catalyst Preparation 117
5.2.6 Dynamic Kinetic Resolution (DKR) of ß Keto Esters 118
5.3 Ketone Hydrogenation 120
5.3.1 Mechanism 121
5.3.2 Aryl Alkyl Ketones 124
5.3.3 Dialkyl Ketones 127
5.3.4 Diaryl and Aryl Heteroaryl Ketones 127
5.3.5 Phosphine free Hydrogenation of Alkyl Aryl Ketones 128
5.3.6 oc,ß Unsaturated Ketones 132
6 Reduction of Carbonyl Compounds by Hydrogen Transfer 135
Serafino Cladiali and Rossana Taras
6.1 Introduction 135
6.2 Historical Overview 135
6.3 General Background 136
6.4 Hydrogen Donors 137
6.5 Catalysts 138
6.6 Mechanisms 139
6.7 Ligands 143
6.8 Substrates 148
6.8.1 Ketones 148
6.8.2 Functionalized Carbonyl Compounds 150
6.8.3 Aldehydes 151
6.8.4 Conjugated Carbonyl Compounds 152
7 Carbonyl Hydroboration 159
Noriyoshi Arai and Takeshi Ohkuma
7.1 Introduction 159
7.2 Recent Topics in Diastereoselective Reduction 159
7.3 Enantioselective Reduction 163
7.3.1 Reagents (Introduction) 163
7.3.2 Simple Ketones 167
7.3.2.1 Aromatic Ketones 267
VIII Contents
7.3.2.2 Aliphatic Ketones 168
7.3.3 a,ß Unsaturated Ketones 169
7.3.4 a Hetero Substituted Ketones 171
7.3.5 Keto Esters 171
7.3.6 Diketones 173
7.4 Synthetic Applications 173
7.4.1 Reduction of Chiral Ketones with Chiral Reducing Agents 173
7.4.2 Application to Natural Product Synthesis 175
8 Diverse Modes of Silane Activation for the Hydrosilylation of
Carbonyl Compounds 183
Sebastian Rendler and Martin Oestreich
8.1 Introduction 183
8.2 Metal Catalyzed Hydrosilylations 185
8.2.1 Silane Activation by Oxidative Addition 185
8.2.2 Silane Activation by o Bond Metathesis 188
8.2.3 Silane Activation by High valent Oxo Complexes 193
8.3 Transition metal free Hydrosilylations 197
8.3.1 Bransted Acid promoted Hydrosilylations 197
8.3.2 Lewis Acid catalyzed Hydrosilylations 198
8.3.3 Lewis Base catalyzed Hydrosilylations 200
8.4 Closing Remarks 202
9 Enzyme catalyzed Reduction of Carbonyl Compounds 209
Kaoru Nakamura and Tomoko Matsuda
9.1 Introduction 209
9.1.1 Differences between Chemical and Biological Reductions 209
9.1.1.1 Selectivity 209
9.1.1.2 SafetyoftheReaction 210
9.1.1.3 Natural Catalysts 210
9.1.1.4 Catalyst Preparation 210
9.1.1.5 Large scale Synthesis and Space Time Yield 210
9.1.2 Reaction Mechanism 211
9.2 Hydrogen Sources 211
9.2.1 Alcohol as a Hydrogen Source for Reduction 212
9.2.2 Sugars as Hydrogen Sources for Reduction 212
9.2.3 Formate as a Hydrogen Source for Reduction 213
9.2.4 Molecular Hydrogen as a Hydrogen Source for Reduction 213
9.2.5 Light Energy as a Hydrogen Source for Reduction 214
9.2.6 Electric Power as a Hydrogen Source for Reduction 214
9.3 Methodology for Stereochemical Control 215
9.3.1 Screening of Biocatalysts 215
9.3.2 Modifikation of Biocatalysts by Genetic Methods 216
9.3.2.1 Engineered Yeast 216
9.3.2.2 Overexpression 217
Contents IX
9.3.2.3 Modification of Biocatalysts: Directed Evolution 218
9.3.3 Modification of Substrates 218
9.3.4 Modification of Reaction Conditions 219
9.3.4.1 Acetone Treatment of the Cell 219
9.3.4.2 Selective Inhibitors 220
9.4 Medium Engineering 221
9.4.1 Organic Solvent 221
9.4.1.1 Water soluble Organic Solvent 221
9.4.1.2 Aqueous Organic Two Phase Reaction 221
9.4.2 Use of Hydrophobie Resin 222
9.4.3 Supercritical Carbon Dioxide 223
9.4.4 Ionic Liquid 224
9.5 Synthetic Applications 225
9.5.1 Reduction of Aldehydes 225
9.5.2 Reduction of Ketones 225
9.5.3 Dynamic Kinetic Resolution and Deracemization 227
9.5.3.1 Dynamic Kinetic Resolution 227
9.5.3.2 Deracemization through Oxidation and Reduction 230
9.6 Conclusions 231
Part Three Imino Reductions
10 Imine Hydrogenation 237
Carmen Claver and Elena Fernöndez
10.1 Recent Advances in the Asymmetrie Hydrogenation of Iniines 237
10.1.1 Iridium Catalysts 238
10.1.1.1 Iridium / P P Ligands 238
10.1.1.2 Iridium / Phosphine Phosphite Ligands 241
10.1.1.3 Iridium / Diphoshite, Diphosphinite and Phosphinite Phosphite
Ligands 241
10.1.1.4 Iridium / P,N Ligands 243
10.1.1.5 Iridium / N Ligands 245
10.1.1.6 Other Iridium / Phosphorous Systems 246
10.1.2 Rhodium and Palladium Catalysts 247
10.1.3 Ruthenium Catalysts 248
10.1.4 Titanium and Zirconium Catalysts 248
10.1.5 Gold Catalysts 249
10.2 Green Approaches 249
10.2.1 Aqueous Organic Two Phase Solvent Systems 249
10.2.2 Catalyst Immobilization on Insoluble Materials 252
10.2.3 Carbon Dioxide / Ionic Liquid Media 255
10.3 Mechanistic Insights 257
10.3.1 Homolytic and Heterolytic H2 Metal Activation 258
10.3.2 H"/H+ Transfer to the Imine in the Inner or Outer
Coordination Sphere 259
X Contents
10.3.3 Neutral or Ionic Mechanisms 261
10.3.4 Ligand assisted Mechanisms 264
10.3.5 Enantiodifferentiation Steps 264
11 Imino Reductions by Transfer Hydrogenation 271
Martin Witts
11.1 History and Background 271
11.2 Mechanisms of C=N Bond Reduction by Transfer Hydrogenation 271
11.3 Asymmetrie Reduction of C—N Bonds: Catalysts, Mechanisms
and Results 273
11.3.1 Organometallic Catalysts Based on Ru, Rh, and Ir 273
11.3.1.1 Mechanistic Discussion 278
11.3.2 Asymmetrie Reductive Aminations Using Ammonium
Formate to Give the Primary Amine Directly
(the Leuchart Wallach Reaction) 279
11.3.3 MPV Type Reductions 280
11.3.4 Carbene based Catalysts 281
11.3.5 Organocatalytic Methods 281
11.4 Specific Synthetic Applications 283
11.4.1 Sultams 283
11.4.2 Tetrahydroisoquinolines and Tetrahydro ß carbolines 285
11.5 Conclusion 291
12 Hydroboration and Diboration of Imines 297
Stephen A. Westcott and R. Thomas Baker
12.1 Introduction 297
12.2 Uncatalyzed Reactions 298
12.2.1 Imines 298
12.2.2 Diimines 303
12.2.3 Tosylhydrazones 304
12.2.4 Nitriles 305
12.3 Catalyzed Reactions 307
12.3.1 Transition Metals 310
12.4 Conclusions 312
13 Hydrosilylation of imines 321
Olivier Riant
13.1 Introduction 321
13.2 Rh, Ir, Ru Based Catalysts 322
13.3 Titanium based Catalysts 324
13.4 Zinc , Copper , and Rhenium based Catalysts 328
13.5 Lanthanide based Catalysts 330
13.6 Tin based Catalysts 331
Contents XI
13.7 Chiral Lewis Bases as Catalysts 333
13.8 Miscellaneous Methods 334
13.9 Conclusion 335
Part Four Miscellaneous Reductions
14 Alkene and Imino Reductions by Organocatalysis 341
Hans Adolfison
14.1 Introduction 341
14.2 Reducing Agents 342
14.2.1 N Heterocyclic Hydrogen Donors 342
14.2.2 Silanes 343
14.3 Alkene Reduction 343
14.3.1 Alkene Reduction by Transfer Hydrogenation of a,ß Unsaturated
Aldehydes and Ketones 344
14.3.2 Alkene Reduction in Organocatalytic Tandem Processes 348
14.4 Imine Reductions 351
14.4.1 Enantioselective Reductions of Ketimines Using Trichlorosilane as
Reducing Agent 351
14.4.2 Enantioselective Reductions of Ketimines Using Hantzsch Esters as
Reducing Agents 354
14.4.3 Organocatalytic Reductive Amination of Aldehydes
and Ketones 357
14.5 Concluding Remarks 358
15 Alkyne Reductions 363
IctnJ. Munslow
15.1 Introduction 363
15.2 Hydrogenation 363
15.2.1 Semi hydrogenation 364
15.3 Hydroboration 366
15.3.1 Catalysis 368
15.3.1.1 Palladium 368
15.3.1.2 Rhodium 368
15.3.1.3 Zirconium 370
15.3.1.4 Titanium 371
15.3.2 Mechanism 371
15.4 Hydrosilylation 373
15.4.1 Terminal Alkynes 374
15.4.2 Internal Alkynes 378
15.4.3 Mechanism 381
15.5 Conclusions 382
XII Contents
16 Metal Catalyzed Reductive Aldol Coupling 387
Susan A. Garner and Michael J. Krische
16.1 Introduction Reductive Generation ofEnolates from Enones 387
16.2 The Reductive Aldol Reaction 389
16.2.1 Rhodium 390
16.2.2 Cobalt 398
16.2.3 Iridium 401
16.2.4 Ruthenium 401
16.2.5 Palladium 403
16.2.6 Copper 403
16.2.7 Nickel 406
16.2.8 Indium 407
16.3 Conclusion 408
17 Dissolving Metals 419
Miguel Yus and Francisco Foubelo
17.1 Introduction 419
17.2 Reduction of Compounds with C=X Bonds 420
17.2.1 Reduction of Carbonyl Compounds 420
17.2.2 Reduction of Imines 422
17.3 Reduction of Carboxylic Acids and Their Derivatives 423
17.4 Reduction of functional groups bearing N, O and S 424
17.4.1 Reduction of Sulfoxides 424
17.4.2 Reduction of Nitro Compounds 425
17.4.3 Reduction of Compounds with N X Bonds (X = N, O, S) 425
17.5 Reduction of C=C and C=C Bonds 426
17.5.1 Reduction of C=C Bonds 426
17.5.2 Reduction ofC=C Bonds 430
17.6 Partial Reduction of Aromatic and Heteroaromatic Rings 431
17.6.1 The Birch Reduction of Aromatic Compounds 431
17.6.2 Partial Reduction of Heteroaromatic Rings 433
17.7 Reduction of Compounds with C—X Bonds 434
17.7.1 Reduction of a Functionalized Carbonyl Compounds 434
17.7.2 Reduction ofC HaltoC H Bonds 435
17.7.3 Reduction ofC 0 to C H Bonds 436
17.7.4 Reduction ofC Nto C H Bonds 438
17.7.5 Reduction of C S to C H Bonds 439
17.7.6 Reduction ofC C to C H Bonds 440
18 Hydrometallation ofUnsaturated Compounds 447
Usein M. Dzhemilev and Askhat C. Ibragimov
18.1 Introduction 447
18.2 Thermal Hydroalumination 448
18.2.1 Alkenes 448
18.2.2 Dienes (Unconjugated) 452
Contents XIII
18.2.3 Dienes (Conjugated) 454
18.2.4 Alkynes 456
18.3 Catalytic Hydroalumination 456
18.3.1 Alkenes 456
18.3.2 Dienes 467
18.3.3 Alkynes 467
18.4 Catalytic Hydromagnesiation 472
18.4.1 Alkenes 472
18.4.2 Dienes 475
18.4.3 Alkynes 479
18.5 Summary 482
Index 491 |
adam_txt |
Contents
Preface XV
List of Contributors XVII
Part One Alkene Reductions
1 Reduction of Functionalized Alkenes 3
Jean Pierre Geriet
1.1 Introduction 3
1.2 Asymmetrie Hydrogenation of Dehydroamino Acids 4
1.2.1 Rh Catalyzed Reactions 4
1.2.1.1 Hydrogenation with Chiral Bisphosphine Ligands 4
1.2.1.2 Mechanism of the Asymmetrie Hydrogenation with
Rhodium Catalysts 8
1.2.1.3 Rh Catalyzed Hydrogenation with Monophosphorus Ligands 9
1.2.2 Ruthenium and Iridium Catalyzed Reactions 10
1.2.2.1 Ruthenium 10
1.2.2.2 Mechanism of the Ruthenium Catalyzed Asymmetrie
Hydrogenation 12
1.2.2.3 Iridium 13
1.3 Simple Enamides 13
1.4 Hydrogenation of ß (Acylamino) Acrylates 16
1.5 Hydrogenation of Unsaturated Carboxylic Acids and Esters 18
1.5.1 Mechanistic Aspects of the Ru (BINAP) Catalyzed Hydrogenation of
Carboxylic Acids 21
1.6 Hydrogenation of Unsaturated Esters, Lactones, Amides
and Ketones 22
1.7 Hydrogenation of Unsaturated Alcohols 25
1.7.1 Diastereoselective Hydrogenation with Rh and Ir Catalysts 25
1.7.2 Enantioselective Hydrogenation with Chiral Ru and Ir Catalysts 26
1.8 Synthesis of Pharmaceutical Intermediates 28
1.9 Conclusion 32
VI Contents
2 Hydrogenation of Unfunctionalized Alkenes 39
Jarle S. Diesen and Pher C. Andersson
2.1 Introduction 39
2.2 Iridium Catalysis 39
2.2.1 Catalysts 41
2.2.1.1 Ligands 41
2.2.1.2 Anion 41
2.2.2 Substrates 44
2.2.3 Mechanism 52
2.3 Ruthenium and Rhodium Catalysis 53
2.4 Chiral Metallocene Catalysts 57
2.4.1 Titanium and Zirconium Systems 57
2.4.2 Lanthanide Systems 60
2.5 Conclusion 62
3 The Development and Application of Rhodium Catalyzed Hydroboration
of Alkenes 65
Anthony C. Coyne and Patrick J. Guiry
3.1 Introduction 65
3.2 Mechanism 66
3.3 Selectivity of Metal Catalyzed Hydroboration 67
3.3.1 Regioselectivity 67
3.3.2 Stereoselectivity 69
3.3.2.1 Chiral P,P Ligands 69
3.3.2.2 Chiral P,N Ligands 74
3.4 Recent Applications in Synthesis 82
3.5 Conclusion 84
4 Alkene Reduction: Hydrosilylation 87
Penelope A. Mayes and Patrick Perlmutter
4.1 Introduction 87
4.2 Isolated Alkenes 87
4.2.1 Palladium 87
4.2.1.1 Aromatic Alkenes 87
4.2.1.2 Nonaromatic Alkenes 93
4.2.2 Metals Other Than Palladium 94
4.3 Conjugated Alkenes 95
4.3.1 Acyclic 1,3 Dienes 95
4.3.2 Cyclic 1,3 Dienes 98
4.3.3 Enynes 98
4.4 a,ß Unsaturated Systems 99
4.4.1 Copper 99
4.4.2 Tandem Processes 102
4.5 Conclusions 103
Contents VII
Part Two Carbonyl Reactions
5 Carbonyl Hydrogenation 109
Christian Hedberg
5.1 Introduction 109
5.2 Asymmetrie Hydrogenation of Activated Ketones and
ß Keto Esters 109
5.2.1 a Keto Ester Hydrogenation 112
5.2.2 1,3 Diketones 112
5.2.3 Hydrogenation of ß Keto Ester Analogues 114
5.2.4 Mechanism 715
5.2.5 Catalyst Preparation 117
5.2.6 Dynamic Kinetic Resolution (DKR) of ß Keto Esters 118
5.3 Ketone Hydrogenation 120
5.3.1 Mechanism 121
5.3.2 Aryl Alkyl Ketones 124
5.3.3 Dialkyl Ketones 127
5.3.4 Diaryl and Aryl Heteroaryl Ketones 127
5.3.5 Phosphine free Hydrogenation of Alkyl Aryl Ketones 128
5.3.6 oc,ß Unsaturated Ketones 132
6 Reduction of Carbonyl Compounds by Hydrogen Transfer 135
Serafino Cladiali and Rossana Taras
6.1 Introduction 135
6.2 Historical Overview 135
6.3 General Background 136
6.4 Hydrogen Donors 137
6.5 Catalysts 138
6.6 Mechanisms 139
6.7 Ligands 143
6.8 Substrates 148
6.8.1 Ketones 148
6.8.2 Functionalized Carbonyl Compounds 150
6.8.3 Aldehydes 151
6.8.4 Conjugated Carbonyl Compounds 152
7 Carbonyl Hydroboration 159
Noriyoshi Arai and Takeshi Ohkuma
7.1 Introduction 159
7.2 Recent Topics in Diastereoselective Reduction 159
7.3 Enantioselective Reduction 163
7.3.1 Reagents (Introduction) 163
7.3.2 Simple Ketones 167
7.3.2.1 Aromatic Ketones 267
VIII Contents
7.3.2.2 Aliphatic Ketones 168
7.3.3 a,ß Unsaturated Ketones 169
7.3.4 a Hetero Substituted Ketones 171
7.3.5 Keto Esters 171
7.3.6 Diketones 173
7.4 Synthetic Applications 173
7.4.1 Reduction of Chiral Ketones with Chiral Reducing Agents 173
7.4.2 Application to Natural Product Synthesis 175
8 Diverse Modes of Silane Activation for the Hydrosilylation of
Carbonyl Compounds 183
Sebastian Rendler and Martin Oestreich
8.1 Introduction 183
8.2 Metal Catalyzed Hydrosilylations 185
8.2.1 Silane Activation by Oxidative Addition 185
8.2.2 Silane Activation by o Bond Metathesis 188
8.2.3 Silane Activation by High valent Oxo Complexes 193
8.3 Transition metal free Hydrosilylations 197
8.3.1 Bransted Acid promoted Hydrosilylations 197
8.3.2 Lewis Acid catalyzed Hydrosilylations 198
8.3.3 Lewis Base catalyzed Hydrosilylations 200
8.4 Closing Remarks 202
9 Enzyme catalyzed Reduction of Carbonyl Compounds 209
Kaoru Nakamura and Tomoko Matsuda
9.1 Introduction 209
9.1.1 Differences between Chemical and Biological Reductions 209
9.1.1.1 Selectivity 209
9.1.1.2 SafetyoftheReaction 210
9.1.1.3 Natural Catalysts 210
9.1.1.4 Catalyst Preparation 210
9.1.1.5 Large scale Synthesis and Space Time Yield 210
9.1.2 Reaction Mechanism 211
9.2 Hydrogen Sources 211
9.2.1 Alcohol as a Hydrogen Source for Reduction 212
9.2.2 Sugars as Hydrogen Sources for Reduction 212
9.2.3 Formate as a Hydrogen Source for Reduction 213
9.2.4 Molecular Hydrogen as a Hydrogen Source for Reduction 213
9.2.5 Light Energy as a Hydrogen Source for Reduction 214
9.2.6 Electric Power as a Hydrogen Source for Reduction 214
9.3 Methodology for Stereochemical Control 215
9.3.1 Screening of Biocatalysts 215
9.3.2 Modifikation of Biocatalysts by Genetic Methods 216
9.3.2.1 Engineered Yeast 216
9.3.2.2 Overexpression 217
Contents IX
9.3.2.3 Modification of Biocatalysts: Directed Evolution 218
9.3.3 Modification of Substrates 218
9.3.4 Modification of Reaction Conditions 219
9.3.4.1 Acetone Treatment of the Cell 219
9.3.4.2 Selective Inhibitors 220
9.4 Medium Engineering 221
9.4.1 Organic Solvent 221
9.4.1.1 Water soluble Organic Solvent 221
9.4.1.2 Aqueous Organic Two Phase Reaction 221
9.4.2 Use of Hydrophobie Resin 222
9.4.3 Supercritical Carbon Dioxide 223
9.4.4 Ionic Liquid 224
9.5 Synthetic Applications 225
9.5.1 Reduction of Aldehydes 225
9.5.2 Reduction of Ketones 225
9.5.3 Dynamic Kinetic Resolution and Deracemization 227
9.5.3.1 Dynamic Kinetic Resolution 227
9.5.3.2 Deracemization through Oxidation and Reduction 230
9.6 Conclusions 231
Part Three Imino Reductions
10 Imine Hydrogenation 237
Carmen Claver and Elena Fernöndez
10.1 Recent Advances in the Asymmetrie Hydrogenation of Iniines 237
10.1.1 Iridium Catalysts 238
10.1.1.1 Iridium / P P Ligands 238
10.1.1.2 Iridium / Phosphine Phosphite Ligands 241
10.1.1.3 Iridium / Diphoshite, Diphosphinite and Phosphinite Phosphite
Ligands 241
10.1.1.4 Iridium / P,N Ligands 243
10.1.1.5 Iridium / N Ligands 245
10.1.1.6 Other Iridium / Phosphorous Systems 246
10.1.2 Rhodium and Palladium Catalysts 247
10.1.3 Ruthenium Catalysts 248
10.1.4 Titanium and Zirconium Catalysts 248
10.1.5 Gold Catalysts 249
10.2 Green Approaches 249
10.2.1 Aqueous Organic Two Phase Solvent Systems 249
10.2.2 Catalyst Immobilization on Insoluble Materials 252
10.2.3 Carbon Dioxide / Ionic Liquid Media 255
10.3 Mechanistic Insights 257
10.3.1 Homolytic and Heterolytic H2 Metal Activation 258
10.3.2 H"/H+ Transfer to the Imine in the Inner or Outer
Coordination Sphere 259
X Contents
10.3.3 Neutral or Ionic Mechanisms 261
10.3.4 Ligand assisted Mechanisms 264
10.3.5 Enantiodifferentiation Steps 264
11 Imino Reductions by Transfer Hydrogenation 271
Martin Witts
11.1 History and Background 271
11.2 Mechanisms of C=N Bond Reduction by Transfer Hydrogenation 271
11.3 Asymmetrie Reduction of C—N Bonds: Catalysts, Mechanisms
and Results 273
11.3.1 Organometallic Catalysts Based on Ru, Rh, and Ir 273
11.3.1.1 Mechanistic Discussion 278
11.3.2 Asymmetrie Reductive Aminations Using Ammonium
Formate to Give the Primary Amine Directly
(the Leuchart Wallach Reaction) 279
11.3.3 MPV Type Reductions 280
11.3.4 Carbene based Catalysts 281
11.3.5 Organocatalytic Methods 281
11.4 Specific Synthetic Applications 283
11.4.1 Sultams 283
11.4.2 Tetrahydroisoquinolines and Tetrahydro ß carbolines 285
11.5 Conclusion 291
12 Hydroboration and Diboration of Imines 297
Stephen A. Westcott and R. Thomas Baker
12.1 Introduction 297
12.2 Uncatalyzed Reactions 298
12.2.1 Imines 298
12.2.2 Diimines 303
12.2.3 Tosylhydrazones 304
12.2.4 Nitriles 305
12.3 Catalyzed Reactions 307
12.3.1 Transition Metals 310
12.4 Conclusions 312
13 Hydrosilylation of imines 321
Olivier Riant
13.1 Introduction 321
13.2 Rh, Ir, Ru Based Catalysts 322
13.3 Titanium based Catalysts 324
13.4 Zinc , Copper , and Rhenium based Catalysts 328
13.5 Lanthanide based Catalysts 330
13.6 Tin based Catalysts 331
Contents XI
13.7 Chiral Lewis Bases as Catalysts 333
13.8 Miscellaneous Methods 334
13.9 Conclusion 335
Part Four Miscellaneous Reductions
14 Alkene and Imino Reductions by Organocatalysis 341
Hans Adolfison
14.1 Introduction 341
14.2 Reducing Agents 342
14.2.1 N Heterocyclic Hydrogen Donors 342
14.2.2 Silanes 343
14.3 Alkene Reduction 343
14.3.1 Alkene Reduction by Transfer Hydrogenation of a,ß Unsaturated
Aldehydes and Ketones 344
14.3.2 Alkene Reduction in Organocatalytic Tandem Processes 348
14.4 Imine Reductions 351
14.4.1 Enantioselective Reductions of Ketimines Using Trichlorosilane as
Reducing Agent 351
14.4.2 Enantioselective Reductions of Ketimines Using Hantzsch Esters as
Reducing Agents 354
14.4.3 Organocatalytic Reductive Amination of Aldehydes
and Ketones 357
14.5 Concluding Remarks 358
15 Alkyne Reductions 363
IctnJ. Munslow
15.1 Introduction 363
15.2 Hydrogenation 363
15.2.1 Semi hydrogenation 364
15.3 Hydroboration 366
15.3.1 Catalysis 368
15.3.1.1 Palladium 368
15.3.1.2 Rhodium 368
15.3.1.3 Zirconium 370
15.3.1.4 Titanium 371
15.3.2 Mechanism 371
15.4 Hydrosilylation 373
15.4.1 Terminal Alkynes 374
15.4.2 Internal Alkynes 378
15.4.3 Mechanism 381
15.5 Conclusions 382
XII Contents
16 Metal Catalyzed Reductive Aldol Coupling 387
Susan A. Garner and Michael J. Krische
16.1 Introduction Reductive Generation ofEnolates from Enones 387
16.2 The Reductive Aldol Reaction 389
16.2.1 Rhodium 390
16.2.2 Cobalt 398
16.2.3 Iridium 401
16.2.4 Ruthenium 401
16.2.5 Palladium 403
16.2.6 Copper 403
16.2.7 Nickel 406
16.2.8 Indium 407
16.3 Conclusion 408
17 Dissolving Metals 419
Miguel Yus and Francisco Foubelo
17.1 Introduction 419
17.2 Reduction of Compounds with C=X Bonds 420
17.2.1 Reduction of Carbonyl Compounds 420
17.2.2 Reduction of Imines 422
17.3 Reduction of Carboxylic Acids and Their Derivatives 423
17.4 Reduction of functional groups bearing N, O and S 424
17.4.1 Reduction of Sulfoxides 424
17.4.2 Reduction of Nitro Compounds 425
17.4.3 Reduction of Compounds with N X Bonds (X = N, O, S) 425
17.5 Reduction of C=C and C=C Bonds 426
17.5.1 Reduction of C=C Bonds 426
17.5.2 Reduction ofC=C Bonds 430
17.6 Partial Reduction of Aromatic and Heteroaromatic Rings 431
17.6.1 The Birch Reduction of Aromatic Compounds 431
17.6.2 Partial Reduction of Heteroaromatic Rings 433
17.7 Reduction of Compounds with C—X Bonds 434
17.7.1 Reduction of a Functionalized Carbonyl Compounds 434
17.7.2 Reduction ofC HaltoC H Bonds 435
17.7.3 Reduction ofC 0 to C H Bonds 436
17.7.4 Reduction ofC Nto C H Bonds 438
17.7.5 Reduction of C S to C H Bonds 439
17.7.6 Reduction ofC C to C H Bonds 440
18 Hydrometallation ofUnsaturated Compounds 447
Usein M. Dzhemilev and Askhat C. Ibragimov
18.1 Introduction 447
18.2 Thermal Hydroalumination 448
18.2.1 Alkenes 448
18.2.2 Dienes (Unconjugated) 452
Contents XIII
18.2.3 Dienes (Conjugated) 454
18.2.4 Alkynes 456
18.3 Catalytic Hydroalumination 456
18.3.1 Alkenes 456
18.3.2 Dienes 467
18.3.3 Alkynes 467
18.4 Catalytic Hydromagnesiation 472
18.4.1 Alkenes 472
18.4.2 Dienes 475
18.4.3 Alkynes 479
18.5 Summary 482
Index 491 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)131923455 |
building | Verbundindex |
bvnumber | BV023057657 |
callnumber-first | Q - Science |
callnumber-label | QD281 |
callnumber-raw | QD281.R4 |
callnumber-search | QD281.R4 |
callnumber-sort | QD 3281 R4 |
callnumber-subject | QD - Chemistry |
classification_rvk | VK 5500 VK 6000 |
classification_tum | CHE 621f |
ctrlnum | (OCoLC)174131482 (DE-599)DNB985483466 |
dewey-full | 541.393078 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.393078 |
dewey-search | 541.393078 |
dewey-sort | 3541.393078 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie |
discipline_str_mv | Chemie / Pharmazie Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023057657</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080528</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071219s2008 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N38,0818</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985483466</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527318629</subfield><subfield code="c">Gb. : ca. EUR 149.00 (freier Pr.), ca. sfr 235.00 (freier Pr.)</subfield><subfield code="9">978-3-527-31862-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527318629</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1131862 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)174131482</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB985483466</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD281.R4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.393078</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 5500</subfield><subfield code="0">(DE-625)147401:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 6000</subfield><subfield code="0">(DE-625)147413:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 621f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">540</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern reduction methods</subfield><subfield code="c">ed. by Pher G. Andersson ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 501 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic compounds</subfield><subfield code="x">Synthesis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reduction (Chemistry)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktion</subfield><subfield code="g">Chemie</subfield><subfield code="0">(DE-588)4277879-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reduktion</subfield><subfield code="g">Chemie</subfield><subfield code="0">(DE-588)4277879-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andersson, Pher</subfield><subfield code="d">1963-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)131923455</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2998669&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016260925&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016260925</subfield></datafield></record></collection> |
id | DE-604.BV023057657 |
illustrated | Illustrated |
index_date | 2024-07-02T19:27:25Z |
indexdate | 2024-07-20T09:29:05Z |
institution | BVB |
isbn | 9783527318629 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016260925 |
oclc_num | 174131482 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T |
physical | XIX, 501 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Modern reduction methods ed. by Pher G. Andersson ... Weinheim Wiley-VCH 2008 XIX, 501 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Organic compounds Synthesis Reduction (Chemistry) Reduktion Chemie (DE-588)4277879-7 gnd rswk-swf Reduktion Chemie (DE-588)4277879-7 s DE-604 Andersson, Pher 1963- Sonstige (DE-588)131923455 oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2998669&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016260925&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Modern reduction methods Organic compounds Synthesis Reduction (Chemistry) Reduktion Chemie (DE-588)4277879-7 gnd |
subject_GND | (DE-588)4277879-7 |
title | Modern reduction methods |
title_auth | Modern reduction methods |
title_exact_search | Modern reduction methods |
title_exact_search_txtP | Modern reduction methods |
title_full | Modern reduction methods ed. by Pher G. Andersson ... |
title_fullStr | Modern reduction methods ed. by Pher G. Andersson ... |
title_full_unstemmed | Modern reduction methods ed. by Pher G. Andersson ... |
title_short | Modern reduction methods |
title_sort | modern reduction methods |
topic | Organic compounds Synthesis Reduction (Chemistry) Reduktion Chemie (DE-588)4277879-7 gnd |
topic_facet | Organic compounds Synthesis Reduction (Chemistry) Reduktion Chemie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2998669&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016260925&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT anderssonpher modernreductionmethods |