Elliptic curves: number theory and cryptography
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
Chapman & Hall/CRC
2008
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Discrete mathematics and its applications
50 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 513 S. graph. Darst. |
ISBN: | 1420071467 9781420071467 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV023057625 | ||
003 | DE-604 | ||
005 | 20111108 | ||
007 | t | ||
008 | 071219s2008 xxud||| |||| 00||| eng d | ||
020 | |a 1420071467 |9 1-4200-7146-7 | ||
020 | |a 9781420071467 |9 978-1-4200-7146-7 | ||
035 | |a (OCoLC)192045762 | ||
035 | |a (DE-599)BSZ27862586X | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-91G |a DE-20 |a DE-19 |a DE-706 | ||
050 | 0 | |a QA567.2.E44 | |
082 | 0 | |a 516.3/52 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a ST 276 |0 (DE-625)143642: |2 rvk | ||
084 | |a MAT 145f |2 stub | ||
084 | |a DAT 465f |2 stub | ||
100 | 1 | |a Washington, Lawrence C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elliptic curves |b number theory and cryptography |c Lawrence C. Washington |
250 | |a 2. ed. | ||
264 | 1 | |a Boca Raton [u.a.] |b Chapman & Hall/CRC |c 2008 | |
300 | |a XVIII, 513 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Discrete mathematics and its applications |v 50 | |
650 | 4 | |a Cryptography | |
650 | 4 | |a Curves, Elliptic | |
650 | 4 | |a Number theory | |
650 | 0 | 7 | |a Elliptische Kurve |0 (DE-588)4014487-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kryptologie |0 (DE-588)4033329-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptische Kurve |0 (DE-588)4014487-2 |D s |
689 | 0 | 1 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 2 | |a Kryptologie |0 (DE-588)4033329-2 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Discrete mathematics and its applications |v 50 |w (DE-604)BV023551867 |9 50 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016260894&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805066807625646080 |
---|---|
adam_text |
Contents
1
Introduction
1
Exercises
. 8
2
The Basic
Theory
9
2.1
Weierstrass
Equations
. 9
2.2
The Group Law
. 12
2.3
Projective
Space and the Point at Infinity
. 18
2.4
Proof of Associativity
. 20
2.4.1
The Theorems of Pappus and Pascal
. 33
2.5
Other Equations for Elliptic Curves
. 35
2.5.1
Legendre Equation
. 35
2.5.2
Cubic Equations
. 36
2.5.3
Quartic Equations
. 37
2.5.4
Intersection of Two Quadratic Surfaces
. 39
2.6
Other Coordinate Systems
. 42
2.6.1
Projective
Coordinates
. 42
2.6.2
Jacobian Coordinates
. 43
2.6.3
Edwards Coordinates
. 44
2.7
The j-invariant
. 45
2.8
Elliptic Curves in Characteristic
2 . 47
2.9
Endomorphisms
. 50
2.10
Singular Curves
. 59
2.11
Elliptic Curves mod
η
. 64
Exercises
. 71
3
Torsion Points
77
3.1
Torsion Points
. 77
3.2
Division Polynomials
. 80
3.3
The Weil Pairing
. 86
3.4
The Tate-Lichtenbaum Pairing
. 90
Exercises
. 92
4
Elliptic Curves over Finite Fields
95
4.1
Examples
. 95
4.2
The Frobenius Endomorphism
. 98
4.3
Determining the Group Order
. 102
4.3.1
Subfield Curves
. 102
XVJ
4.3.2
Legendre
Symbols.
Ю4
4.3.3 Orders
of
Points.
Ю6
4.3.4 Baby
Step, Giant Step
. 112
4.4
A
Family
of Curves .
115
4.5 Schoofs
Algorithm .
123
4.6 Supersingular
Curves .
130
Exercises
. 139
5
The Discrete Logarithm Problem
143
5.1
The Index Calculus
. 144
5.2
General Attacks on Discrete Logs
. 146
5.2.1
Baby Step. Giant Step
. 146
5.2.2
Pollard's
ρ
and
λ
Methods
. 147
5.2.3
The Pohlig-Hellman Method
. 151
5.3
Attacks with Pairings
. 154
5.3.1
The MOV Attack
. 154
5.3.2
The Frey-Riick Attack
. 157
5.4
Anomalous Curves
. 159
5.5
Other Attacks
. 165
Exercises
. 166
6
Elliptic Curve Cryptography
169
6.1
The Basic Setup
. 169
6.2
Diffie-Hellman Key Exchange
. 170
6.3
Massey-Omura Encryption
. 173
6.4
ElGamal Public Key Encryption
. 174
6.5
ElGamal Digital Signatures
. 175
6.6
The Digital Signature Algorithm
. 179
6.7
ECIES
. 180
6.8
A Public Key Scheme Based on Factoring
. 181
6.9
A Cryptosystem Based on the Weil Pairing
. 184
Exercises
. 187
7
Other Applications
189
7.1
Factoring Using Elliptic Curves
. 189
7.2
Primality Testing
. 194
Exercises
. 197
8
Elliptic Curves over
Q
199
8.1
The Torsion Subgroup. The Lutz-Nagell Theorem
. 199
8.2
Descent and the Weak Mordell-Weil Theorem
. 208
8.3
Heights and the Mordell-Weil Theorem
. 215
8.4
Examples
. 223
8.5
The Height Pairing
. 230
8.6
Fermat's Infinite Descent
. 231
xvu
8.7
2-Selmer
Groups; Shafarevich-Tate Groups .
236
8.8
A Noritrivial Shafarevich-Tate Group
. 239
8.9
Galois Cohomology
. 244
Exercises
. 253
9
Elliptic Curves over
С
257
9.1
Doubly Periodic Functions
. 257
9.2
Tori are Elliptic Curves
. 267
9.3
Elliptic Curves over
С
. 272
9.4
Computing Periods
. 286
9.4.1
The Arithmetic-Geometric Mean
. 288
9.5
Division Polynomials
. 294
9.6
The Torsion Subgroup: Doud's Method
. 302
Exercises
. 307
10
Complex Multiplication
311
10.1
Elliptic Curves over
С
. 311
10.2
Elliptic Curves over Finite Fields
. 318
10.3
Integrality of j-invariants
. 322
10.4
Numerical Examples
. 330
10.5
Kronecker's
Jugendtraum. 336
Exercises
. 337
11
Divisors
339
11.1
Definitions and Examples
. 339
11.2
The Weil Pairing
. 349
11.3
The Tate-Lichtenbaum Pairing
. 354
11.4
Computation of the Pairings
. 358
11.5
Genus One Curves and Elliptic Curves
. 364
11.6
Equivalence of the Definitions of the Pairings
. 370
11.6.1
The Weil Pairing
. 371
11.6.2
The Tate-Lichtenbaum Pairing
. 374
11.7
Nondegeneracy of the Tate-Lichtenbaum Pairing
. 375
Exercises
. 379
12 Isogenies 381
12.1
The Complex Theory
. 381
12.2
The Algebraic Theory
. 386
12.3
Vélu's
Formulas
. 392
12.4
Point Counting
. 396
12.5
Complements
. 401
Exercises
. 402
XVIII
13
Hyperelliptłc
Curves
407
13.1
Basic
Definitions.
407
13.2
Divisors
. 409
13.3
Cantor's Algorithm
. 417
13.4
The Discrete Logarithm Problem
. 420
Exercises
. 426
14
Zeta
Functions
429
14.1
Elliptic Curves over Finite Fields
. 429
14.2
Elliptic Curves over
Q
. 433
Exercises
. 442
15
Fermat's Last Theorem
445
15.1
Overview
. 445
15.2
Galois Representations
. 448
15.3
Sketch of
Ribeťs
Proof
. 454
15.4
Sketch of Wiles's Proof
. 461
A Number Theory
471
В
Groups
477
С
Fields
481
D
Computer Packages
489
D.I
Pari
. 489
D.
2
Magma
. 492
D.3 SAGE
. 494
References
501
Index
509 |
adam_txt |
Contents
1
Introduction
1
Exercises
. 8
2
The Basic
Theory
9
2.1
Weierstrass
Equations
. 9
2.2
The Group Law
. 12
2.3
Projective
Space and the Point at Infinity
. 18
2.4
Proof of Associativity
. 20
2.4.1
The Theorems of Pappus and Pascal
. 33
2.5
Other Equations for Elliptic Curves
. 35
2.5.1
Legendre Equation
. 35
2.5.2
Cubic Equations
. 36
2.5.3
Quartic Equations
. 37
2.5.4
Intersection of Two Quadratic Surfaces
. 39
2.6
Other Coordinate Systems
. 42
2.6.1
Projective
Coordinates
. 42
2.6.2
Jacobian Coordinates
. 43
2.6.3
Edwards Coordinates
. 44
2.7
The j-invariant
. 45
2.8
Elliptic Curves in Characteristic
2 . 47
2.9
Endomorphisms
. 50
2.10
Singular Curves
. 59
2.11
Elliptic Curves mod
η
. 64
Exercises
. 71
3
Torsion Points
77
3.1
Torsion Points
. 77
3.2
Division Polynomials
. 80
3.3
The Weil Pairing
. 86
3.4
The Tate-Lichtenbaum Pairing
. 90
Exercises
. 92
4
Elliptic Curves over Finite Fields
95
4.1
Examples
. 95
4.2
The Frobenius Endomorphism
. 98
4.3
Determining the Group Order
. 102
4.3.1
Subfield Curves
. 102
XVJ
4.3.2
Legendre
Symbols.
Ю4
4.3.3 Orders
of
Points.
Ю6
4.3.4 Baby
Step, Giant Step
. 112
4.4
A
Family
of Curves .
115
4.5 Schoofs
Algorithm .
123
4.6 Supersingular
Curves .
130
Exercises
. 139
5
The Discrete Logarithm Problem
143
5.1
The Index Calculus
. 144
5.2
General Attacks on Discrete Logs
. 146
5.2.1
Baby Step. Giant Step
. 146
5.2.2
Pollard's
ρ
and
λ
Methods
. 147
5.2.3
The Pohlig-Hellman Method
. 151
5.3
Attacks with Pairings
. 154
5.3.1
The MOV Attack
. 154
5.3.2
The Frey-Riick Attack
. 157
5.4
Anomalous Curves
. 159
5.5
Other Attacks
. 165
Exercises
. 166
6
Elliptic Curve Cryptography
169
6.1
The Basic Setup
. 169
6.2
Diffie-Hellman Key Exchange
. 170
6.3
Massey-Omura Encryption
. 173
6.4
ElGamal Public Key Encryption
. 174
6.5
ElGamal Digital Signatures
. 175
6.6
The Digital Signature Algorithm
. 179
6.7
ECIES
. 180
6.8
A Public Key Scheme Based on Factoring
. 181
6.9
A Cryptosystem Based on the Weil Pairing
. 184
Exercises
. 187
7
Other Applications
189
7.1
Factoring Using Elliptic Curves
. 189
7.2
Primality Testing
. 194
Exercises
. 197
8
Elliptic Curves over
Q
199
8.1
The Torsion Subgroup. The Lutz-Nagell Theorem
. 199
8.2
Descent and the Weak Mordell-Weil Theorem
. 208
8.3
Heights and the Mordell-Weil Theorem
. 215
8.4
Examples
. 223
8.5
The Height Pairing
. 230
8.6
Fermat's Infinite Descent
. 231
xvu
8.7
2-Selmer
Groups; Shafarevich-Tate Groups .
236
8.8
A Noritrivial Shafarevich-Tate Group
. 239
8.9
Galois Cohomology
. 244
Exercises
. 253
9
Elliptic Curves over
С
257
9.1
Doubly Periodic Functions
. 257
9.2
Tori are Elliptic Curves
. 267
9.3
Elliptic Curves over
С
. 272
9.4
Computing Periods
. 286
9.4.1
The Arithmetic-Geometric Mean
. 288
9.5
Division Polynomials
. 294
9.6
The Torsion Subgroup: Doud's Method
. 302
Exercises
. 307
10
Complex Multiplication
311
10.1
Elliptic Curves over
С
. 311
10.2
Elliptic Curves over Finite Fields
. 318
10.3
Integrality of j-invariants
. 322
10.4
Numerical Examples
. 330
10.5
Kronecker's
Jugendtraum. 336
Exercises
. 337
11
Divisors
339
11.1
Definitions and Examples
. 339
11.2
The Weil Pairing
. 349
11.3
The Tate-Lichtenbaum Pairing
. 354
11.4
Computation of the Pairings
. 358
11.5
Genus One Curves and Elliptic Curves
. 364
11.6
Equivalence of the Definitions of the Pairings
. 370
11.6.1
The Weil Pairing
. 371
11.6.2
The Tate-Lichtenbaum Pairing
. 374
11.7
Nondegeneracy of the Tate-Lichtenbaum Pairing
. 375
Exercises
. 379
12 Isogenies 381
12.1
The Complex Theory
. 381
12.2
The Algebraic Theory
. 386
12.3
Vélu's
Formulas
. 392
12.4
Point Counting
. 396
12.5
Complements
. 401
Exercises
. 402
XVIII
13
Hyperelliptłc
Curves
407
13.1
Basic
Definitions.
407
13.2
Divisors
. 409
13.3
Cantor's Algorithm
. 417
13.4
The Discrete Logarithm Problem
. 420
Exercises
. 426
14
Zeta
Functions
429
14.1
Elliptic Curves over Finite Fields
. 429
14.2
Elliptic Curves over
Q
. 433
Exercises
. 442
15
Fermat's Last Theorem
445
15.1
Overview
. 445
15.2
Galois Representations
. 448
15.3
Sketch of
Ribeťs
Proof
. 454
15.4
Sketch of Wiles's Proof
. 461
A Number Theory
471
В
Groups
477
С
Fields
481
D
Computer Packages
489
D.I
Pari
. 489
D.
2
Magma
. 492
D.3 SAGE
. 494
References
501
Index
509 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Washington, Lawrence C. |
author_facet | Washington, Lawrence C. |
author_role | aut |
author_sort | Washington, Lawrence C. |
author_variant | l c w lc lcw |
building | Verbundindex |
bvnumber | BV023057625 |
callnumber-first | Q - Science |
callnumber-label | QA567 |
callnumber-raw | QA567.2.E44 |
callnumber-search | QA567.2.E44 |
callnumber-sort | QA 3567.2 E44 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 ST 276 |
classification_tum | MAT 145f DAT 465f |
ctrlnum | (OCoLC)192045762 (DE-599)BSZ27862586X |
dewey-full | 516.3/52 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/52 |
dewey-search | 516.3/52 |
dewey-sort | 3516.3 252 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV023057625</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111108</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071219s2008 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1420071467</subfield><subfield code="9">1-4200-7146-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420071467</subfield><subfield code="9">978-1-4200-7146-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)192045762</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ27862586X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA567.2.E44</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/52</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 276</subfield><subfield code="0">(DE-625)143642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 145f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 465f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Washington, Lawrence C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic curves</subfield><subfield code="b">number theory and cryptography</subfield><subfield code="c">Lawrence C. Washington</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 513 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Discrete mathematics and its applications</subfield><subfield code="v">50</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cryptography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves, Elliptic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kryptologie</subfield><subfield code="0">(DE-588)4033329-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptische Kurve</subfield><subfield code="0">(DE-588)4014487-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kryptologie</subfield><subfield code="0">(DE-588)4033329-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Discrete mathematics and its applications</subfield><subfield code="v">50</subfield><subfield code="w">(DE-604)BV023551867</subfield><subfield code="9">50</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016260894&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV023057625 |
illustrated | Illustrated |
index_date | 2024-07-02T19:27:25Z |
indexdate | 2024-07-20T03:24:13Z |
institution | BVB |
isbn | 1420071467 9781420071467 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016260894 |
oclc_num | 192045762 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-20 DE-19 DE-BY-UBM DE-706 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-20 DE-19 DE-BY-UBM DE-706 |
physical | XVIII, 513 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Chapman & Hall/CRC |
record_format | marc |
series | Discrete mathematics and its applications |
series2 | Discrete mathematics and its applications |
spelling | Washington, Lawrence C. Verfasser aut Elliptic curves number theory and cryptography Lawrence C. Washington 2. ed. Boca Raton [u.a.] Chapman & Hall/CRC 2008 XVIII, 513 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Discrete mathematics and its applications 50 Cryptography Curves, Elliptic Number theory Elliptische Kurve (DE-588)4014487-2 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Kryptologie (DE-588)4033329-2 gnd rswk-swf Elliptische Kurve (DE-588)4014487-2 s Zahlentheorie (DE-588)4067277-3 s Kryptologie (DE-588)4033329-2 s DE-604 Discrete mathematics and its applications 50 (DE-604)BV023551867 50 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016260894&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Washington, Lawrence C. Elliptic curves number theory and cryptography Discrete mathematics and its applications Cryptography Curves, Elliptic Number theory Elliptische Kurve (DE-588)4014487-2 gnd Zahlentheorie (DE-588)4067277-3 gnd Kryptologie (DE-588)4033329-2 gnd |
subject_GND | (DE-588)4014487-2 (DE-588)4067277-3 (DE-588)4033329-2 |
title | Elliptic curves number theory and cryptography |
title_auth | Elliptic curves number theory and cryptography |
title_exact_search | Elliptic curves number theory and cryptography |
title_exact_search_txtP | Elliptic curves number theory and cryptography |
title_full | Elliptic curves number theory and cryptography Lawrence C. Washington |
title_fullStr | Elliptic curves number theory and cryptography Lawrence C. Washington |
title_full_unstemmed | Elliptic curves number theory and cryptography Lawrence C. Washington |
title_short | Elliptic curves |
title_sort | elliptic curves number theory and cryptography |
title_sub | number theory and cryptography |
topic | Cryptography Curves, Elliptic Number theory Elliptische Kurve (DE-588)4014487-2 gnd Zahlentheorie (DE-588)4067277-3 gnd Kryptologie (DE-588)4033329-2 gnd |
topic_facet | Cryptography Curves, Elliptic Number theory Elliptische Kurve Zahlentheorie Kryptologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016260894&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV023551867 |
work_keys_str_mv | AT washingtonlawrencec ellipticcurvesnumbertheoryandcryptography |