The quantum theory of fields: 3 Supersymmetry
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2005
|
Ausgabe: | Paperback ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 419 S. |
ISBN: | 0521670551 9780521670555 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV023054836 | ||
003 | DE-604 | ||
005 | 20120531 | ||
007 | t | ||
008 | 071217s2005 |||| 00||| eng d | ||
020 | |a 0521670551 |9 0-521-67055-1 | ||
020 | |a 9780521670555 |9 978-0-521-67055-5 | ||
035 | |a (OCoLC)314935744 | ||
035 | |a (DE-599)BVBBV023054836 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-91G |a DE-355 |a DE-19 |a DE-20 | ||
082 | 0 | |a 530.143 | |
100 | 1 | |a Weinberg, Steven |d 1933-2021 |e Verfasser |0 (DE-588)11562855X |4 aut | |
245 | 1 | 0 | |a The quantum theory of fields |n 3 |p Supersymmetry |c Steven Weinberg |
250 | |a Paperback ed. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2005 | |
300 | |a XXII, 419 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | |5 DE-604 | |
773 | 0 | 8 | |w (DE-604)BV010519919 |g 3 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016258146&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016258146 |
Datensatz im Suchindex
_version_ | 1804137289350119424 |
---|---|
adam_text | Contents
Sections
marked with an asterisk are somewhat out of the book s main line of
development and may be omitted in a first reading.
PREFACE TO VOLUME III
xvi
NOTATION
xx
24
HISTORICAL INTRODUCTION
1
24.1
Unconventional Symmetries and No-Go Theorems
1
SU(6) symmetry
Q
Elementary no-go theorem for unconventional semi-simple
compact Lie algebras
Π
Role of relativity
24.2
The Birth of Supersymmetry
4
Bosonic string theory
α
Fermionic coordinates
D
Worldsheet supersymmetry
О
Wess-Zumino model
Π
Precursors
Appendix A S t/(6) Symmetry of Non-Relativistic Quark Models
8
Appendix
В
The Coleman-Mandula Theorem
12
Problems
22
References
22
25
SUPERSYMMETRY ALGEBRAS
25
25.1
Graded Lie Algebras and Graded Parameters
25
Fermionic and bosonic generators
Π
Super-Jacobi identity
О
Grassmann
par¬
ameters
G
Structure constants from supergroup multiplication rules
□
Complex
conjugates
25.2
Supersymmetry Algebras
29
Haag-Lopuszanski-Sohnius theorem
□
Lorentz
transformation of fermionic gen¬
erators
□
Central charges
О
Other bosonic symmetries
D
Я
-symmetry
D
Simple
vii
viii Contents
and extended supersymmetry
D
Four-component notation
о
Superconformai
algebra
25.3
Space Inversion Properties of Supersymmetry Generators
40
Parity phases in simple supersymmetry
□
Fermions
have imaginary parity
О
Parity matrices in extended supersymmetry
O Dirac
notation
25.4
Massless Particle Supermultiplets
43
Known particles are massless for unbroken supersymmetry
□
Helicity
raising and
lowering operators
Q
Simple supersymmetry doublets
D
Squarks, sleptons, and
gauginos
□
Gravitino
Π
Extended supersymmetry
multiplets
α
Chirality problem
for extended supersymmetry
25.5
Massive Particle Supermultiplets
48
Raising and lowering operators for spin 3-component
О
General massive
multi¬
plets
for simple supersymmetry
D
Collapsed
supermultiplet D
Mass bounds in
extended supersymmetry
О
BPS
states and short supermultiplets
Problems
53
References
54
26
SUPERSYMMETRIC FIELD THEORIES
55
26.1
Direct Construction of Field Supermultiplets
55
Construction of simplest
N = 1
field
multiplet
О
Auxiliary field
□
Infinitesi¬
mal supersymmetry transformation rules
D
Four-component notation
ü Wess-
Zumino
supermultiplets regained
26.2
General Superfields
59
Superspace spinor coordinates
О
Supersymmetry generators as superspace dif¬
ferential operators
π
Supersymmetry transformations in superspace
□
General
superfields
□
Multiplication rales
□
Supersymmetric differential operators in su¬
perspace
□
Supersymmetric actions for general superfields
□
Parity of component
fields
□
Counting fermionic and bosonic components
26.3
Chiral and Linear Superfields
68
Chirality conditions on a general superfield
D
Left- and right-chiral superfields
ü
Coordinates
χμ±
D
Differential constraints
□
Product rules
□
Supersymmetric
&-
terms
α
J^-terms equivalent to D-terms
α
Superpotentials
G
Kahler
potentials
ü
Partial integration in superspace G
Space
inversion
of chiral superfields
□
.R-symmetry again
D
Linear superfields
26.4
Renormalizable Theories of Chiral Superfields
75
Counting powers
о
Kinematic Lagrangian
D
J^-term of the
superpotential
□
Complete Lagrangian
D
Elimination of auxiliary fields
□
On-shell superalgebra
π
Vacuum solutions
□
Masses and couplings
□
Wess-Zumino Lagrangian regained
Contents ix
26.5
Spontaneous Snpersymmetry Breaking in the Tree Approximation
83
O Raifeartaigh mechanism
□
R-symmetry constraints
π
Flat directions
□
Gold-
stino
26.6
Superspace Integrals, Field Equations, and the Current
Superitela
86
Berezin integration
D D-
and J^-terms as superspace integrals
G
Potential su-
perfields
Π
Superspace field equations
π
Conserved currents as components of
linear superfields
□
Conservation conditions in superspace
26.7
The Supercurrent
90
Supersymmetry current
α
Superspace transformations generated by the super-
symmetry current
□
Local supersymmetry transformations
Π
Construction of
the supercurrent
D
Conservation of the supercurrent
D
Energy-momentum ten¬
sor and R-current
Π
Scale
invariance
and
R
conservation
□
Non-uniqueness of
supercurrent
26.8
General
Kahler
Potentials*
102
Non-renormalizable non-derivative actions
□
D-term of
Kahler
potential
□
Kahler
metric
О
Lagrangian density
□
Non-linear
σ
-models
from spontaneous
internal symmetry breaking
□ Kahler
manifolds
□
Complexified coset spaces
Appendix Majorana Spinors 107
Problems 111
References
112
27
SUPERSYMMETRIC GAUGE THEORIES
113
27.1
Gauge-Invariant Actions for Chiral Superfields
113
Gauge transformation of chiral superfields
Π
Gauge superfield
V
□
Extended
gauge
invariance
□
Wess-Zumino gauge
□
Supersymmetric gauge-invariant kine¬
matic terms for chiral superfields
27.2
Gauge-Invariant Action for Abelian Gauge Superfields
122
Field strength
supermultiplet
Π
Kinematic Lagrangian density for Abelian gauge
supermultiplet
D
Fayet-Iliopoulos terms
о
Abelian field-strength spinor super-
field Wx
□
Left- and right-chiral parts of Wx
□
Wx as a superspace derivative of
V
□
Gauge
invariance
of W%
□
Bianchi
identities in superspace
27.3
Gauge-Invariant Action for General Gauge Superfields
127
Kinematic Lagrangian density for non-Abelian gauge
supermultiplet
α Νοη-
Abelian field-strength spinor superfield
Wąx
D
Left- and right-chiral parts of
□
6-term
D
Complex coupling parameter
τ
ПА
Renormalizable Gauge Theories with Chiral Superfields
132
Supersymmetric Lagrangian density
□
Elimination of auxiliary fields
О
Condi¬
tions for unbroken supersymmetry
О
Counting independent conditions and field
x
Contents
variables
О
Unitarity
gauge
Π
Masses for spins
0, 1/2,
and
1 □
Supersymmetry
current
О
Non-Abelian gauge theories with general
Kahler
potentials
□
Gaugino
mass
27.5
Snpersymmetry Breaking in the Tree Approximation Resumed
144
Supersymmetry breaking in supersymmetric quantum electrodynamics
□
General
case: masses for spins
0, 1/2,
and
1 □
Mass sum rule
α
Goldstino
component of
gaugino and chiral fermion fields
27.6
Perturbative Non-Renormalization Theorems
148
Non-renormalization of Wilsonian
superpotential
Π
One-loop renormalization
of terms quadratic in gauge superfields
Π
Proof using holomorphy and new
symmetries with external superfields
О
Non-renormalization of Fayet-Iliopoulos
constants
ξά
D
For
ξΛ =
0,
supersymmetry breaking depends only on super-
potential
O Non-renormalizable
theories
27.7
Soft Supersymmetry Breaking*
155
Limitation on supersymmetry-breaking radiative corrections
D
Quadratic diver¬
gences in tadpole graphs
27.8
Another Approach: Gauge-Invariant Supersymmetry Transformations
157
De
Wit-Freedman transformation rules
О
Preserving Wess-Zumino gauge with
combined supersymmetry and extended gauge transformations
27.9
Gauge Theories with Extended Supersymmetry*
160
N = 2
supersymmetry from
N — 1
supersymmetry and .R-symmetry
D La-
grangian for
N = 2
supersymmetric gauge theory
D
Eliminating auxiliary fields
□
Supersymmetry currents
□
Witten-Olive calculation of central charge
O Non-
renormalization
of masses
D
BPS monopoles
π
Adding hypermultiplets
G N
= 4
supersymmetry
Π
Calculation of beta function
D N
= 4
theory is finite
□
Montonen-Olive duality
Problems
175
References
176
28
SUPERSYMMETRIC VERSIONS OF THE STANDARD MODEL
179
28.1
Superfields, Anomalies, and Conservation Laws
180
Quark,
lepton,
and gauge superfields
D
At least two scalar doublet superfields
D
J^-term Yukawa couplings
D
Constraints from anomalies
□
Unsuppressed
violation of baryon and
lepton
numbers
D
R-symmetry
D R
parity
О
/¿-term
□
Hierarchy problem
D
Sparticle masses
D Cosmological
constraints on lightest
superparticle
28.2
Supersymmetry and Strong-Electroweak Unification
188
Renormalization group equations for running gauge couplings
□
Effect of super-
Contents xi
symmetry on beta functions
□
Calculation of weak mixing angle and unification
mass
Π
Just two scalar doublet superfields
□
Coupling at unification scale
28.3
Where is Supersymmetry Broken?
192
Tree approximation supersymmetry breakdown ruled out
D
Hierarchy from non-
perturbative effects of asymptotically free gauge couplings
□
Gauge and grav¬
itational mediation of supersymmetry breaking
α
Estimates of supersymmetry-
breaking scale
Π
Gravitino
mass
□
Cosmological constraints
28.4
The Minimal Supersymmetric Standard Model
198
Supersymmetry breaking by superrenormalizable terms
□
General Lagrangian
О
Flavor changing processes
□
Calculation of K°
<-»·
К
□
Degenerate squarks and
sleptons
D CP
violation
D
Calculation of quark chromoelectric
dipole
moment
□
Naive dimensional analysis
□
Neutron electric
dipole
moment
□
Constraints
on masses and/or phases
28.5
The Sector of Zero
Baryon
and
Lepton
Number
209
D-term contribution to scalar potential
D
/¿-term contribution to scalar poten¬
tial
□
Soft supersymmetry breaking terms
□
Vacuum stability constraint on
parameters
α
Finding a minimum of potential
□
Βμ φ
0
Π
Masses of CP-odd
neutral scalars
□
Masses of CP-even neutral scalars
□
Masses of charged scalars
D
Bounds on masses
□
Radiative corrections
ü
Conditions for electroweak
symmetry breaking
G
Charginos and neutralinos
D
Lower bound on
ΙμΙ
28.6
Gauge Mediation of Supersymmetry Breaking
220
Messenger superfields
Q
Supersymmetry breaking in gauge
supermultiplet
prop¬
agators
D
Gaugino masses
□
Squark
and slepton masses
Π
Derivation from
holomorphy
□
Radiative corrections
о
Numerical examples
D
Higgs scalar
masses
Π μ
problem
D
Ац
and
Су
parameters
Π
Gravitino
as lightest sparticle
О
Next-to-lightest sparticle
28.7 Baryon
and
Lepton
Non-Conservation
235
Dimensionality five interactions
о
Gaugino exchange
О
Gluino exchange sup¬
pressed
D
Wino
and
bino
exchange effects
Π
Estimate of proton lifetime
□
Favored modes of proton decay
Problems
240
References
241
29
BEYOND PERTURBATION THEORY
248
29.1
General Aspects of Supersymmetry Breaking
248
Finite volume
α
Vacuum energy and supersymmetry breaking
D
Partially broken
extended supersymmetry?
□
Pairing of bosonic and fermionic states
□
Pairing
of vacuum and one-goldstino state
O Witten
index
О
Supersymmetry unbroken
xii
Contents
in the Wess-Zumino model
D
Models with unbroken supersymmetry and zero
Witten
index
D
Large field values
D
Weighted
Witten
indices
29.2
Supersymmetry Current Sum Rules
256
Sum rale for vacuum energy density
□
One-goldstino contribution
□
The
supersymmetry-breaking parameter
F
□
Soft goldstino amplitudes
□
Sum rule
for supersymmetry current-fermion spectral functions
□
One-goldstino contribu¬
tion
□
Vacuum energy density in terms of
êF
and
D
vacuum values
D
Vacuum
energy sum rule for infinite volume
29.3
Non-Perturbative Corrections to the
Superpotential
266
Non-perturbative effects break external field translation and R-conservation
D
Remaining symmetry
О
Example: generalized supersymmetric quantum chromo-
dynamics
Π
Structure of induced
superpotential
for
Ci
>
Сг О
Stabilizing the
vacuum with a bare
superpotential
□
Vacuum moduli in generalized supersym¬
metric quantum chromodynamics for Nc
>
Nf
□
Induced
superpotential
is linear
in bare
superpotential
parameters for
Q
=
Сг
□
One-loop renormalization of
term for all Cu C2
29.4
Supersymmetry Breaking in Gauge Theories
276
Witten
index vanishes in supersymmetric quantum electrodynamics
D
C-weighted
Witten
index
О
Supersymmetry unbroken in supersymmetric quantum electro¬
dynamics
G
Counting zero-energy gauge field states in supersymmetric quantum
electrodynamics
О
Calculating
Witten
index for general supersymmetric pure
gauge theories
О
Counting zero-energy gauge field states for general supersym¬
metric pure gauge theories
α
Weyl
invariance D
Supersymmetry unbroken in
general supersymmetric pure gauge theories
D
Witten
index and
R
anomalies
Π
Adding chiral scalars
Π
Model with spontaneously broken supersymmetry
29.5
The Seiberg-Witten Solution*
287
Underlying
N = 2
supersymmetric Lagrangian
□
Vacuum modulus
Π
Leading
non-renormalizable terms in the eifective Lagrangian
□
Effective Lagrangian for
component fields
Π
Kahler
potential and gauge coupling from a function
й(Ф)
□
S
1/(2)
R-symmetry
D
Prepotential
□
Duality transformation
□
й(Ф)
translation
D
Z<¡
R-symmetry
D
SL(2,Z)-symmetry
D
Central charge
D
Charge and magnetic
monopole
moments
D
Perturbative behavior for large a
□
Monodromy at
infinity
Π
Singularities from dyons
□
Monodromy at singularities
Π
Seiberg-
Witten solution
π
Uniqueness proof
Problems 3Q5
References
305
3β
SUPERGRAPHS
307
ЗОЛ
Potential Superfields
ЗО8
Contents xiii
Problem
of chiral constraints
□
Corresponding problem in quantum electro¬
dynamics
D
Path integrals over potential superfields
30.2
Superpr
opagators
310
A troublesome
invariance
□
Change of variables
□
Defining property of super-
propagator
□
Analogy with quantum electrodynamics
ü
Propagator for potential
superfields
О
Propagator for chiral superfields
30.3
Calculations with Supergraphs
313
Superspace quantum effective action
α
Locality in fermionic coordinates
α
D-
terms and J^-terms in effective action
□
Counting superspace derivatives
□
No
renormalization of J^terms
Problems
316
References
316
31
SUPERGRAVITY
318
31.1
The Metric Superfield
319
Vierbein formalism
О
Transformation of gravitational field
□
Transformation of
gravitino
field
Q
Generalized transformation of metric superfield
Ημ
□
Interaction
of
Η
џ
with supercurrent
Π
Invariance
of interaction
□
Generalized transformation
of
Ημ
components
О
Auxiliary fields
□
Counting components
Π
Interaction of
Ημ
component fields
α
Normalization of action
31.2
The Gravitational Action
326
Einstein superfield
Εμ α
Component fields of
Εμ
D
Lagrangian for
Нџ
□
Value of
к О
Total Lagrangian
О
Vacuum energy density
D
Minimum vacuum energy
D
De
Sitter and anti-de Sitter spaces
□
Why vacuum energy is negative
ü
Stability
of flat space
□
Weyl transformation
31.3
The
Gravitino
333
Irreducibility conditions on
gravitino
field
D
Gravitino
propagator
G
Gravitino
kinematic Lagrangian
□
Gravitino
field equation
□
Gravitino
mass from broken
supersymmetry
Π
Gravitino
mass from
s
and
ρ
31.4
Anomaly-Mediated Supersymmetry Breaking
337
First-order interaction with scale non-invariance superfield
X D
General formula
for X
О
General first-order interaction
□
Gaugino masses
Π
Gluino mass
□
В
parameter
□
Wino
and
bino
masses
О
A parameters
31.5
Local Supersymmetry Transformations
341
Wess-Zumino gauge for metric superfield
Π
Local supersymmetry transforma¬
tions
□
Invariance
of action
xiv
Contents
31.6
Supergravity to AH Orders
343
Local supersymmetry transformation of vierbein.
gravitino,
and auxiliary fields
□
Extended spin connection
□
Local supersymmetry transformation of general
scalar
supermultiplet
D
Product rules for general superfields
ü
Real matter
superfields
D
Chiral matter superfields
α
Product rules for chiral superfields
π
Cosmological constant and
gravitino
mass
α
Lagrangian for supergravity and
chiral fields with general
Kahler
potential and
superpotential
□
Elimination of
auxiliary fields
D
Kahler
metric
о
Weyl transformation
π
Scalar field potential
D
Conditions for flat space and unbroken supersymmetry
О
Complete bosonic
Lagrangian
π
Canonical normalization
α
Combining
superpotential
and
Kahler
potential
О
No-scale models
31.7
Gravity-Mediated Supersymmetry Breaking
355
Early theories with hidden sectors
□
Hidden sector gauge coupling strong at
energy
Λ Π
First version: Observable and hidden sectors
D
Separable bare
superpotential
О
General potential
□
Terms of order
к4Л8
«
m4g
□
Л
estimated
as
«
1011
GeV
Ο μ-
and
.Βμ
-terms
α
Squark
and slepton masses
D Gaugino
masses
D
^-parameters
D
Second version: Observable, hidden, and modular
sectors
D
Dynamically induced
superpotential
for modular superfields
□
Effective
superpotential
of observable sector
О
μ
-term
О
Potential of observable sector
scalars
О
Terms of order
к8Л12
»
nŕg O
Soft supersymmetry-breaking terms
□
Л
estimated as
» 10°
GeV
D
Shifts in modular fields
D
Absence of
Су
terms
□
Squark
and slepton masses
D
Gaugino masses
Appendix The Vierbein Formalism
375
Problems
378
References
379
32
SUPERSYMMETRY ALGEBRAS IN HIGHER DIMENSIONS
382
32.1
General Supersymmetry Algebras
382
Classification of fermionic generators
D
Definition of weight
D Fermionic
gen¬
erators in fundamental spinor representation
G
Fermionic generators commute
with
Ρμ
Q
General form of
anticommutation
relations
D
Central charges
G Anti¬
commutation
relations for odd dimensionality
G Anticommutation
relations for
even dimensionality
Q .R-symmetry
groups
32.2
Massless
Multiplets
393
Little group O(d
- 2)
α
Definition of spin
j
α
Exclusion of
j
> 2
α
Missing
fermionic generators
G
Number of fermionic generators
< 32
G N
= 1
supersym¬
metry for
d = U D
Three-form massless particle
Π
Types
ΠΑ, ΙΙΒ
and heterotic
supersymmetry for
d
= 10
32.3
p-Branes
397
New conserved tensors
D
Fermionic generators still in fundamental spinor
repre-
Contents xv
sentation
о
Fermionic
generators
still
commute with
Ρμ
D
Symmetry conditions
on tensor central charges
□
2-form and 5-form central charges for
d
= 11
Appendix Spinors in Higher Dimensions
401
Problems
407
References
407
AUTHOR INDEX
411
SUBJECT INDEX
416
|
adam_txt |
Contents
Sections
marked with an asterisk are somewhat out of the book's main line of
development and may be omitted in a first reading.
PREFACE TO VOLUME III
xvi
NOTATION
xx
24
HISTORICAL INTRODUCTION
1
24.1
Unconventional Symmetries and 'No-Go' Theorems
1
SU(6) symmetry
Q
Elementary no-go theorem for unconventional semi-simple
compact Lie algebras
Π
Role of relativity
24.2
The Birth of Supersymmetry
4
Bosonic string theory
α
Fermionic coordinates
D
Worldsheet supersymmetry
О
Wess-Zumino model
Π
Precursors
Appendix A S t/(6) Symmetry of Non-Relativistic Quark Models
8
Appendix
В
The Coleman-Mandula Theorem
12
Problems
22
References
22
25
SUPERSYMMETRY ALGEBRAS
25
25.1
Graded Lie Algebras and Graded Parameters
25
Fermionic and bosonic generators
Π
Super-Jacobi identity
О
Grassmann
par¬
ameters
G
Structure constants from supergroup multiplication rules
□
Complex
conjugates
25.2
Supersymmetry Algebras
29
Haag-Lopuszanski-Sohnius theorem
□
Lorentz
transformation of fermionic gen¬
erators
□
Central charges
О
Other bosonic symmetries
D
Я
-symmetry
D
Simple
vii
viii Contents
and extended supersymmetry
D
Four-component notation
о
Superconformai
algebra
25.3
Space Inversion Properties of Supersymmetry Generators
40
Parity phases in simple supersymmetry
□
Fermions
have imaginary parity
О
Parity matrices in extended supersymmetry
O Dirac
notation
25.4
Massless Particle Supermultiplets
43
Known particles are massless for unbroken supersymmetry
□
Helicity
raising and
lowering operators
Q
Simple supersymmetry doublets
D
Squarks, sleptons, and
gauginos
□
Gravitino
Π
Extended supersymmetry
multiplets
α
Chirality problem
for extended supersymmetry
25.5
Massive Particle Supermultiplets
48
Raising and lowering operators for spin 3-component
О
General massive
multi¬
plets
for simple supersymmetry
D
Collapsed
supermultiplet D
Mass bounds in
extended supersymmetry
О
BPS
states and short supermultiplets
Problems
53
References
54
26
SUPERSYMMETRIC FIELD THEORIES
55
26.1
Direct Construction of Field Supermultiplets
55
Construction of simplest
N = 1
field
multiplet
О
Auxiliary field
□
Infinitesi¬
mal supersymmetry transformation rules
D
Four-component notation
ü Wess-
Zumino
supermultiplets regained
26.2
General Superfields
59
Superspace spinor coordinates
О
Supersymmetry generators as superspace dif¬
ferential operators
π
Supersymmetry transformations in superspace
□
General
superfields
□
Multiplication rales
□
Supersymmetric differential operators in su¬
perspace
□
Supersymmetric actions for general superfields
□
Parity of component
fields
□
Counting fermionic and bosonic components
26.3
Chiral and Linear Superfields
68
Chirality conditions on a general superfield
D
Left- and right-chiral superfields
ü
Coordinates
χμ±
D
Differential constraints
□
Product rules
□
Supersymmetric
&-
terms
α
J^-terms equivalent to D-terms
α
Superpotentials
G
Kahler
potentials
ü
Partial integration in superspace G
Space
inversion
of chiral superfields
□
.R-symmetry again
D
Linear superfields
26.4
Renormalizable Theories of Chiral Superfields
75
Counting powers
о
Kinematic Lagrangian
D
J^-term of the
superpotential
□
Complete Lagrangian
D
Elimination of auxiliary fields
□
On-shell superalgebra
π
Vacuum solutions
□
Masses and couplings
□
Wess-Zumino Lagrangian regained
Contents ix
26.5
Spontaneous Snpersymmetry Breaking in the Tree Approximation
83
O'Raifeartaigh mechanism
□
R-symmetry constraints
π
Flat directions
□
Gold-
stino
26.6
Superspace Integrals, Field Equations, and the Current
Superitela
86
Berezin integration
D D-
and J^-terms as superspace integrals
G
Potential su-
perfields
Π
Superspace field equations
π
Conserved currents as components of
linear superfields
□
Conservation conditions in superspace
26.7
The Supercurrent
90
Supersymmetry current
α
Superspace transformations generated by the super-
symmetry current
□
Local supersymmetry transformations
Π
Construction of
the supercurrent
D
Conservation of the supercurrent
D
Energy-momentum ten¬
sor and R-current
Π
Scale
invariance
and
R
conservation
□
Non-uniqueness of
supercurrent
26.8
General
Kahler
Potentials*
102
Non-renormalizable non-derivative actions
□
D-term of
Kahler
potential
□
Kahler
metric
О
Lagrangian density
□
Non-linear
σ
-models
from spontaneous
internal symmetry breaking
□ Kahler
manifolds
□
Complexified coset spaces
Appendix Majorana Spinors 107
Problems 111
References
112
27
SUPERSYMMETRIC GAUGE THEORIES
113
27.1
Gauge-Invariant Actions for Chiral Superfields
113
Gauge transformation of chiral superfields
Π
Gauge superfield
V
□
Extended
gauge
invariance
□
Wess-Zumino gauge
□
Supersymmetric gauge-invariant kine¬
matic terms for chiral superfields
27.2
Gauge-Invariant Action for Abelian Gauge Superfields
122
Field strength
supermultiplet
Π
Kinematic Lagrangian density for Abelian gauge
supermultiplet
D
Fayet-Iliopoulos terms
о
Abelian field-strength spinor super-
field Wx
□
Left- and right-chiral parts of Wx
□
Wx as a superspace derivative of
V
□
Gauge
invariance
of W%
□
'Bianchi'
identities in superspace
27.3
Gauge-Invariant Action for General Gauge Superfields
127
Kinematic Lagrangian density for non-Abelian gauge
supermultiplet
α Νοη-
Abelian field-strength spinor superfield
Wąx
D
Left- and right-chiral parts of
□
6-term
D
Complex coupling parameter
τ
ПА
Renormalizable Gauge Theories with Chiral Superfields
132
Supersymmetric Lagrangian density
□
Elimination of auxiliary fields
О
Condi¬
tions for unbroken supersymmetry
О
Counting independent conditions and field
x
Contents
variables
О
Unitarity
gauge
Π
Masses for spins
0, 1/2,
and
1 □
Supersymmetry
current
О
Non-Abelian gauge theories with general
Kahler
potentials
□
Gaugino
mass
27.5
Snpersymmetry Breaking in the Tree Approximation Resumed
144
Supersymmetry breaking in supersymmetric quantum electrodynamics
□
General
case: masses for spins
0, 1/2,
and
1 □
Mass sum rule
α
Goldstino
component of
gaugino and chiral fermion fields
27.6
Perturbative Non-Renormalization Theorems
148
Non-renormalization of Wilsonian
superpotential
Π
One-loop renormalization
of terms quadratic in gauge superfields
Π
Proof using holomorphy and new
symmetries with external superfields
О
Non-renormalization of Fayet-Iliopoulos
constants
ξά
D
For
ξΛ =
0,
supersymmetry breaking depends only on super-
potential
O Non-renormalizable
theories
27.7
Soft Supersymmetry Breaking*
155
Limitation on supersymmetry-breaking radiative corrections
D
Quadratic diver¬
gences in tadpole graphs
27.8
Another Approach: Gauge-Invariant Supersymmetry Transformations
157
De
Wit-Freedman transformation rules
О
Preserving Wess-Zumino gauge with
combined supersymmetry and extended gauge transformations
27.9
Gauge Theories with Extended Supersymmetry*
160
N = 2
supersymmetry from
N — 1
supersymmetry and .R-symmetry
D La-
grangian for
N = 2
supersymmetric gauge theory
D
Eliminating auxiliary fields
□
Supersymmetry currents
□
Witten-Olive calculation of central charge
O Non-
renormalization
of masses
D
BPS monopoles
π
Adding hypermultiplets
G N
= 4
supersymmetry
Π
Calculation of beta function
D N
= 4
theory is finite
□
Montonen-Olive duality
Problems
175
References
176
28
SUPERSYMMETRIC VERSIONS OF THE STANDARD MODEL
179
28.1
Superfields, Anomalies, and Conservation Laws
180
Quark,
lepton,
and gauge superfields
D
At least two scalar doublet superfields
D
J^-term Yukawa couplings
D
Constraints from anomalies
□
Unsuppressed
violation of baryon and
lepton
numbers
D
R-symmetry
D R
parity
О
/¿-term
□
Hierarchy problem
D
Sparticle masses
D Cosmological
constraints on lightest
superparticle
28.2
Supersymmetry and Strong-Electroweak Unification
188
Renormalization group equations for running gauge couplings
□
Effect of super-
Contents xi
symmetry on beta functions
□
Calculation of weak mixing angle and unification
mass
Π
Just two scalar doublet superfields
□
Coupling at unification scale
28.3
Where is Supersymmetry Broken?
192
Tree approximation supersymmetry breakdown ruled out
D
Hierarchy from non-
perturbative effects of asymptotically free gauge couplings
□
Gauge and grav¬
itational mediation of supersymmetry breaking
α
Estimates of supersymmetry-
breaking scale
Π
Gravitino
mass
□
Cosmological constraints
28.4
The Minimal Supersymmetric Standard Model
198
Supersymmetry breaking by superrenormalizable terms
□
General Lagrangian
О
Flavor changing processes
□
Calculation of K°
<-»·
К
□
Degenerate squarks and
sleptons
D CP
violation
D
Calculation of quark chromoelectric
dipole
moment
□
'Naive dimensional analysis'
□
Neutron electric
dipole
moment
□
Constraints
on masses and/or phases
28.5
The Sector of Zero
Baryon
and
Lepton
Number
209
D-term contribution to scalar potential
D
/¿-term contribution to scalar poten¬
tial
□
Soft supersymmetry breaking terms
□
Vacuum stability constraint on
parameters
α
Finding a minimum of potential
□
Βμ φ
0
Π
Masses of CP-odd
neutral scalars
□
Masses of CP-even neutral scalars
□
Masses of charged scalars
D
Bounds on masses
□
Radiative corrections
ü
Conditions for electroweak
symmetry breaking
G
Charginos and neutralinos
D
Lower bound on
ΙμΙ
28.6
Gauge Mediation of Supersymmetry Breaking
220
Messenger superfields
Q
Supersymmetry breaking in gauge
supermultiplet
prop¬
agators
D
Gaugino masses
□
Squark
and slepton masses
Π
Derivation from
holomorphy
□
Radiative corrections
о
Numerical examples
D
Higgs scalar
masses
Π μ
problem
D
Ац
and
Су
parameters
Π
Gravitino
as lightest sparticle
О
Next-to-lightest sparticle
28.7 Baryon
and
Lepton
Non-Conservation
235
Dimensionality five interactions
о
Gaugino exchange
О
Gluino exchange sup¬
pressed
D
Wino
and
bino
exchange effects
Π
Estimate of proton lifetime
□
Favored modes of proton decay
Problems
240
References
241
29
BEYOND PERTURBATION THEORY
248
29.1
General Aspects of Supersymmetry Breaking
248
Finite volume
α
Vacuum energy and supersymmetry breaking
D
Partially broken
extended supersymmetry?
□
Pairing of bosonic and fermionic states
□
Pairing
of vacuum and one-goldstino state
O Witten
index
О
Supersymmetry unbroken
xii
Contents
in the Wess-Zumino model
D
Models with unbroken supersymmetry and zero
Witten
index
D
Large field values
D
Weighted
Witten
indices
29.2
Supersymmetry Current Sum Rules
256
Sum rale for vacuum energy density
□
One-goldstino contribution
□
The
supersymmetry-breaking parameter
F
□
Soft goldstino amplitudes
□
Sum rule
for supersymmetry current-fermion spectral functions
□
One-goldstino contribu¬
tion
□
Vacuum energy density in terms of
êF
and
D
vacuum values
D
Vacuum
energy sum rule for infinite volume
29.3
Non-Perturbative Corrections to the
Superpotential
266
Non-perturbative effects break external field translation and R-conservation
D
Remaining symmetry
О
Example: generalized supersymmetric quantum chromo-
dynamics
Π
Structure of induced
superpotential
for
Ci
>
Сг О
Stabilizing the
vacuum with a bare
superpotential
□
Vacuum moduli in generalized supersym¬
metric quantum chromodynamics for Nc
>
Nf
□
Induced
superpotential
is linear
in bare
superpotential
parameters for
Q
=
Сг
□
One-loop renormalization of
term for all Cu C2
29.4
Supersymmetry Breaking in Gauge Theories
276
Witten
index vanishes in supersymmetric quantum electrodynamics
D
C-weighted
Witten
index
О
Supersymmetry unbroken in supersymmetric quantum electro¬
dynamics
G
Counting zero-energy gauge field states in supersymmetric quantum
electrodynamics
О
Calculating
Witten
index for general supersymmetric pure
gauge theories
О
Counting zero-energy gauge field states for general supersym¬
metric pure gauge theories
α
Weyl
invariance D
Supersymmetry unbroken in
general supersymmetric pure gauge theories
D
Witten
index and
R
anomalies
Π
Adding chiral scalars
Π
Model with spontaneously broken supersymmetry
29.5
The Seiberg-Witten Solution*
287
Underlying
N = 2
supersymmetric Lagrangian
□
Vacuum modulus
Π
Leading
non-renormalizable terms in the eifective Lagrangian
□
Effective Lagrangian for
component fields
Π
Kahler
potential and gauge coupling from a function
й(Ф)
□
S
1/(2)
R-symmetry
D
Prepotential
□
Duality transformation
□
й(Ф)
translation
D
Z<¡
R-symmetry
D
SL(2,Z)-symmetry
D
Central charge
D
Charge and magnetic
monopole
moments
D
Perturbative behavior for large \a\
□
Monodromy at
infinity
Π
Singularities from dyons
□
Monodromy at singularities
Π
Seiberg-
Witten solution
π
Uniqueness proof
Problems 3Q5
References
305
3β
SUPERGRAPHS
307
ЗОЛ
Potential Superfields
ЗО8
Contents xiii
Problem
of chiral constraints
□
Corresponding problem in quantum electro¬
dynamics
D
Path integrals over potential superfields
30.2
Superpr
opagators
310
A troublesome
invariance
□
Change of variables
□
Defining property of super-
propagator
□
Analogy with quantum electrodynamics
ü
Propagator for potential
superfields
О
Propagator for chiral superfields
30.3
Calculations with Supergraphs
313
Superspace quantum effective action
α
Locality in fermionic coordinates
α
D-
terms and J^-terms in effective action
□
Counting superspace derivatives
□
No
renormalization of J^terms
Problems
316
References
316
31
SUPERGRAVITY
318
31.1
The Metric Superfield
319
Vierbein formalism
О
Transformation of gravitational field
□
Transformation of
gravitino
field
Q
Generalized transformation of metric superfield
Ημ
□
Interaction
of
Η
џ
with supercurrent
Π
Invariance
of interaction
□
Generalized transformation
of
Ημ
components
О
Auxiliary fields
□
Counting components
Π
Interaction of
Ημ
component fields
α
Normalization of action
31.2
The Gravitational Action
326
Einstein superfield
Εμ α
Component fields of
Εμ
D
Lagrangian for
Нџ
□
Value of
к О
Total Lagrangian
О
Vacuum energy density
D
Minimum vacuum energy
D
De
Sitter and anti-de Sitter spaces
□
Why vacuum energy is negative
ü
Stability
of flat space
□
Weyl transformation
31.3
The
Gravitino
333
Irreducibility conditions on
gravitino
field
D
Gravitino
propagator
G
Gravitino
kinematic Lagrangian
□
Gravitino
field equation
□
Gravitino
mass from broken
supersymmetry
Π
Gravitino
mass from
s
and
ρ
31.4
Anomaly-Mediated Supersymmetry Breaking
337
First-order interaction with scale non-invariance superfield
X D
General formula
for X
О
General first-order interaction
□
Gaugino masses
Π
Gluino mass
□
В
parameter
□
Wino
and
bino
masses
О
A parameters
31.5
Local Supersymmetry Transformations
341
Wess-Zumino gauge for metric superfield
Π
Local supersymmetry transforma¬
tions
□
Invariance
of action
xiv
Contents
31.6
Supergravity to AH Orders
343
Local supersymmetry transformation of vierbein.
gravitino,
and auxiliary fields
□
Extended spin connection
□
Local supersymmetry transformation of general
scalar
supermultiplet
D
Product rules for general superfields
ü
Real matter
superfields
D
Chiral matter superfields
α
Product rules for chiral superfields
π
Cosmological constant and
gravitino
mass
α
Lagrangian for supergravity and
chiral fields with general
Kahler
potential and
superpotential
□
Elimination of
auxiliary fields
D
Kahler
metric
о
Weyl transformation
π
Scalar field potential
D
Conditions for flat space and unbroken supersymmetry
О
Complete bosonic
Lagrangian
π
Canonical normalization
α
Combining
superpotential
and
Kahler
potential
О
No-scale models
31.7
Gravity-Mediated Supersymmetry Breaking
355
Early theories with hidden sectors
□
Hidden sector gauge coupling strong at
energy
Λ Π
First version: Observable and hidden sectors
D
Separable bare
superpotential
О
General potential
□
Terms of order
к4Л8
«
m4g
□
Л
estimated
as
«
1011
GeV
Ο μ-
and
.Βμ
-terms
α
Squark
and slepton masses
D Gaugino
masses
D
^-parameters
D
Second version: Observable, hidden, and modular
sectors
D
Dynamically induced
superpotential
for modular superfields
□
Effective
superpotential
of observable sector
О
μ
-term
О
Potential of observable sector
scalars
О
Terms of order
к8Л12
»
nŕg O
Soft supersymmetry-breaking terms
□
Л
estimated as
» 10°
GeV
D
Shifts in modular fields
D
Absence of
Су
terms
□
Squark
and slepton masses
D
Gaugino masses
Appendix The Vierbein Formalism
375
Problems
378
References
379
32
SUPERSYMMETRY ALGEBRAS IN HIGHER DIMENSIONS
382
32.1
General Supersymmetry Algebras
382
Classification of fermionic generators
D
Definition of weight
D Fermionic
gen¬
erators in fundamental spinor representation
G
Fermionic generators commute
with
Ρμ
Q
General form of
anticommutation
relations
D
Central charges
G Anti¬
commutation
relations for odd dimensionality
G Anticommutation
relations for
even dimensionality
Q .R-symmetry
groups
32.2
Massless
Multiplets
393
Little group O(d
- 2)
α
Definition of 'spin'
j
α
Exclusion of
j
> 2
α
Missing
fermionic generators
G
Number of fermionic generators
< 32
G N
= 1
supersym¬
metry for
d = U D
Three-form massless particle
Π
Types
ΠΑ, ΙΙΒ
and heterotic
supersymmetry for
d
= 10
32.3
p-Branes
397
New conserved tensors
D
Fermionic generators still in fundamental spinor
repre-
Contents xv
sentation
о
Fermionic
generators
still
commute with
Ρμ
D
Symmetry conditions
on tensor central charges
□
2-form and 5-form central charges for
d
= 11
Appendix Spinors in Higher Dimensions
401
Problems
407
References
407
AUTHOR INDEX
411
SUBJECT INDEX
416 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Weinberg, Steven 1933-2021 |
author_GND | (DE-588)11562855X |
author_facet | Weinberg, Steven 1933-2021 |
author_role | aut |
author_sort | Weinberg, Steven 1933-2021 |
author_variant | s w sw |
building | Verbundindex |
bvnumber | BV023054836 |
ctrlnum | (OCoLC)314935744 (DE-599)BVBBV023054836 |
dewey-full | 530.143 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.143 |
dewey-search | 530.143 |
dewey-sort | 3530.143 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | Paperback ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01332nam a2200349 cc4500</leader><controlfield tag="001">BV023054836</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120531 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071217s2005 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521670551</subfield><subfield code="9">0-521-67055-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521670555</subfield><subfield code="9">978-0-521-67055-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)314935744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023054836</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.143</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weinberg, Steven</subfield><subfield code="d">1933-2021</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11562855X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The quantum theory of fields</subfield><subfield code="n">3</subfield><subfield code="p">Supersymmetry</subfield><subfield code="c">Steven Weinberg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Paperback ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 419 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV010519919</subfield><subfield code="g">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016258146&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016258146</subfield></datafield></record></collection> |
id | DE-604.BV023054836 |
illustrated | Not Illustrated |
index_date | 2024-07-02T19:26:11Z |
indexdate | 2024-07-09T21:09:56Z |
institution | BVB |
isbn | 0521670551 9780521670555 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016258146 |
oclc_num | 314935744 |
open_access_boolean | |
owner | DE-29T DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-20 |
owner_facet | DE-29T DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-20 |
physical | XXII, 419 S. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Weinberg, Steven 1933-2021 Verfasser (DE-588)11562855X aut The quantum theory of fields 3 Supersymmetry Steven Weinberg Paperback ed. Cambridge [u.a.] Cambridge Univ. Press 2005 XXII, 419 S. txt rdacontent n rdamedia nc rdacarrier Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s DE-604 (DE-604)BV010519919 3 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016258146&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Weinberg, Steven 1933-2021 The quantum theory of fields Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4047984-5 |
title | The quantum theory of fields |
title_auth | The quantum theory of fields |
title_exact_search | The quantum theory of fields |
title_exact_search_txtP | The quantum theory of fields |
title_full | The quantum theory of fields 3 Supersymmetry Steven Weinberg |
title_fullStr | The quantum theory of fields 3 Supersymmetry Steven Weinberg |
title_full_unstemmed | The quantum theory of fields 3 Supersymmetry Steven Weinberg |
title_short | The quantum theory of fields |
title_sort | the quantum theory of fields supersymmetry |
topic | Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Quantenfeldtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016258146&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV010519919 |
work_keys_str_mv | AT weinbergsteven thequantumtheoryoffields3 |