The Bayesian choice: from decision-theoretic foundations to computational implementation
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
New York, NY
Springer
2007
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Springer texts in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIV, 602 S. graph. Darst. |
ISBN: | 9780387715988 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023045855 | ||
003 | DE-604 | ||
005 | 20221213 | ||
007 | t | ||
008 | 071211s2007 xxud||| |||| 00||| eng d | ||
010 | |a 2007926596 | ||
020 | |a 9780387715988 |c pbk |9 978-0-387-71598-8 | ||
035 | |a (OCoLC)153582066 | ||
035 | |a (DE-599)BVBBV023045855 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 1 | |a eng |h fre | |
044 | |a xxu |c XD-US | ||
049 | |a DE-29T |a DE-11 |a DE-19 |a DE-91G |a DE-703 |a DE-188 |a DE-521 |a DE-355 | ||
050 | 0 | |a QA279.5 | |
082 | 0 | |a 519.5/42 | |
084 | |a CM 4000 |0 (DE-625)18951: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Robert, Christian P. |d 1961- |e Verfasser |0 (DE-588)115436448 |4 aut | |
240 | 1 | 0 | |a Analyse statistique bayésienne |
245 | 1 | 0 | |a The Bayesian choice |b from decision-theoretic foundations to computational implementation |c Christian P. Robert |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Springer |c 2007 | |
300 | |a XXIV, 602 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer texts in statistics | |
650 | 7 | |a Inferência bayesiana (inferência estatística) |2 larpcal | |
650 | 7 | |a Teoria da decisão (estatísticas e dados numéricos) |2 larpcal | |
650 | 4 | |a Bayesian statistical decision theory | |
650 | 0 | 7 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a CD-ROM |0 (DE-588)4139307-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 0 | 1 | |a CD-ROM |0 (DE-588)4139307-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 1 | 1 | |a Bayes-Verfahren |0 (DE-588)4204326-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-387-71599-5 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016249310&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016249310 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137276537569280 |
---|---|
adam_text | Titel: The Bayesian choice
Autor: Robert, Christian P.
Jahr: 2007
Contents
Preface to the Paperback Edition vii
Preface to the Second Edition ix
Preface to the First Edition xiii
List of Tables xxiii
List of Figures xxv
1 Introduction 1
1.1 Statistical problems and statistical models 1
1.2 The Bayesian paradigm as a duality principle 8
1.3 Likelihood Principle and Sufficiency Principle 13
1.3.1 Sufficiency 13
1.3.2 The Likelihood Principle 15
1.3.3 Derivation of the Likelihood Principle 18
1.3.4 Implementation of the Likelihood Principle 19
1.3.5 Maximum likelihood estimation 20
1.4 Prior and posterior distributions 22
1.5 Improper prior distributions 26
1.6 The Bayesian choice 31
1.7 Exercises 31
1.8 Notes 45
2 Decision-Theoretic Foundations 51
2.1 Evaluating estimators 51
2.2 Existence of a utility function 54
2.3 Utility and loss 60
2.4 Two optimalities: minimaxity and admissibility 65
2.4.1 Randomized estimators 65
2.4.2 Minimaxity 66
2.4.3 Existence of minimax rules and maximin strategy 69
2.4.4 Admissibility 74
2.5 Usual loss functions 77
2.5.1 The quadratic loss 77
2.5.2 The absolute error loss 79
2.5.3 The 0 - 1 loss 80
2.5.4 Intrinsic losses 81
2.6 Criticisms and alternatives 83
2.7 Exercises 85
2.8 Notes 96
From Prior Information to Prior Distributions 105
3.1 The difficulty in selecting a prior distribution 105
3.2 Subjective determination and approximations 106
3.2.1 Existence 106
3.2.2 Approximations to the prior distribution 108
3.2.3 Maximum entropy priors 109
3.2.4 Parametric approximations 111
3.2.5 Other techniques 113
3.3 Conjugate priors 113
3.3.1 Introduction 113
3.3.2 Justifications 114
3.3.3 Exponential families 115
3.3.4 Conjugate distributions for exponential families 120
3.4 Criticisms and extensions 123
3.5 Noninformative prior distributions 127
3.5.1 Laplace s prior 127
3.5.2 Invariant priors 128
3.5.3 The Jeffreys prior 129
3.5.4 Reference priors 133
3.5.5 Matching priors 137
3.5.6 Other approaches 140
3.6 Posterior validation and robustness 141
3.7 Exercises 144
3.8 Notes 158
Bayesian Point Estimation 165
4.1 Bayesian inference 165
4.1.1 Introduction 165
4.1.2 MAP estimator 166
4.1.3 Likelihood Principle 167
4.1.4 Restricted parameter space 168
4.1.5 Precision of the Bayes estimators 170
4.1.6 Prediction 171
4.1.7 Back to Decision Theory 173
4.2 Bayesian Decision Theory 173
4.2.1 Bayes estimators 173
4.2.2 Conjugate priors 175
4.2.3 Loss estimation 178
4.3 Sampling models 180
4.3.1 Laplace succession rule 180
4.3.2 The tramcar problem 181
4.3.3 Capture-recapture models 182
4.4 The particular case of the normal model 186
4.4.1 Introduction 186
4.4.2 Estimation of variance 187
4.4.3 Linear models and G-priors 190
4.5 Dynamic models 193
4.5.1 Introduction 193
4.5.2 The AR model 196
4.5.3 The MA model 198
4.5.4 The ARMA model 201
4.6 Exercises 201
4.7 Notes 216
Tests and Confidence Regions 223
5.1 Introduction 223
5.2 A first approach to testing theory 224
5.2.1 Decision-theoretic testing 224
5.2.2 The Bayes factor 227
5.2.3 Modification of the prior 229
5.2.4 Point-null hypotheses 230
5.2.5 Improper priors 232
5.2.6 Pseudo-Bayes factors 236
5.3 Comparisons with the classical approach 242
5.3.1 UMP and UMPU tests 242
5.3.2 Least favorable prior distributions 245
5.3.3 Criticisms 247
5.3.4 Thep-values 249
5.3.5 Least favorable Bayesian answers 250
5.3.6 The one-sided case 254
5.4 A second decision-theoretic approach 256
5.5 Confidence regions 259
5.5.1 Credible intervals 260
5.5.2 Classical confidence intervals 263
5.5.3 Decision-theoretic evaluation of confidence sets 264
5.6 Exercises 267
5.7 Notes 279
Bayesian Calculations 285
6.1 Implementation difficulties 285
6.2 Classical approximation methods 293
6.2.1 Numerical integration 293
6.2.2 Monte Carlo methods 294
6.2.3 Laplace analytic approximation 298
6.3 Markov chain Monte Carlo methods 301
6.3.1 MCMC in practice 302
6.3.2 Metropolis-Hastings algorithms
6.3.3 The Gibbs sampler
6.3.4 Rao-Blackwellization
6.3.5 The general Gibbs sampler
6.3.6 The slice sampler
6.3.7 The impact on Bayesian Statistics
6.4 An application to mixture estimation
6.5 Exercises
6.6 Notes
303
307
309
311
315
317
318
321
334
Model Choice 343
7.1 Introduction 343
7.1.1 Choice between models 344
7.1.2 Model choice: motives and uses 347
7.2 Standard framework 348
7.2.1 Prior modeling for model choice 348
7.2.2 Bayes factors 350
7.2.3 Schwartz s criterion 352
7.2.4 Bayesian deviance 354
7.3 Monte Carlo and MCMC approximations 356
7.3.1 Importance sampling 356
7.3.2 Bridge sampling 358
7.3.3 MCMC methods 359
7.3.4 Reversible jump MCMC 363
7.4 Model averaging 366
7.5 Model projections 369
7.6 Goodness-of-fit 374
7.7 Exercises 377
7.8 Notes 386
Admissibility and Complete Classes 391
8.1 Introduction 391
8.2 Admissibility of Bayes estimators 391
8.2.1 General characterizations 391
8.2.2 Boundary conditions 393
8.2.3 Inadmissible generalized Bayes estimators 395
8.2.4 Differential representations 396
8.2.5 Recurrence conditions 398
8.3 Necessary and sufficient admissibility conditions 400
8.3.1 Continuous risks 401
8.3.2 Blyth s sufficient condition 402
8.3.3 Stein s necessary and sufficient condition 407
8.3.4 Another limit theorem 407
8.4 Complete classes 409
8.5 Necessary admissibility conditions 412
8.6 Exercises 416
8.7 Notes 425
9 Invariance, Haar Measures, and Equivariant Estimators 427
9.1 Invariance principles 427
9.2 The particular case of location parameters 429
9.3 Invariant decision problems 431
9.4 Best equivariant noninformative distributions 436
9.5 The Hunt-Stein theorem 441
9.6 The role of invariance in Bayesian Statistics 445
9.7 Exercises 446
9.8 Notes 454
10 Hierarchical and Empirical Bayes Extensions 457
10.1 Incompletely Specified Priors 457
10.2 Hierarchical Bayes analysis 460
10.2.1 Hierarchical models 460
10.2.2 Justifications 462
10.2.3 Conditional decompositions 465
10.2.4 Computational issues 468
10.2.5 Hierarchical extensions for the normal model 470
10.3 Optimality of hierarchical Bayes estimators 474
10.4 The empirical Bayes alternative 478
10.4.1 Nonparametric empirical Bayes 479
10.4.2 Parametric empirical Bayes 481
10.5 Empirical Bayes justifications of the Stein effect 484
10.5.1 Point estimation 485
10.5.2 Variance evaluation 487
10.5.3 Confidence regions 488
10.5.4 Comments 490
10.6 Exercises 490
10.7 Notes 502
11 A Defense of the Bayesian Choice 507
A Probability Distributions 519
A.I Normal distribution, Afp{0,E) 519
A.2 Gamma distribution, £7(a,/3) 519
A.3 Beta distribution, Be(a, ß) 519
A.4 Student s t-distribution, Tp (u,9, E) 520
A.5 Fisher s F-distribution, T(y, g) 520
A.6 Inverse gamma distribution, IQ{a, ß) 520
A.7 Noncentral chi-squared distribution, xlW 520
A.8 Dirichlet distribution, Vk{a ,...,ak) 521
A.9 Pareto distribution, Va(a,x0) 521
A.10 Binomial distribution, B(n,p). 521
A.ll Multinomial distribution, Mk(n;pi,.. .,Pk) 521
A.12 Poisson distribution, 7 (A) 521
A.13 Negative Binomial distribution, ßfeg(n, p) 522
A.14Hypergeometric distribution, Hyp(N;n;p) 522
B Usual Pseudo-random Generators 523
B.I Normal distribution, 7V(0,1) 523
B.2 Exponential distribution, £xp(X) 523
B.3 Student s i-distribution, T(v, 0,1) 524
B.4 Gamma distribution, G(a, 1) 524
B.5 Binomial distribution, B(n, p) 525
B.6 Poisson distribution, V{ ) 525
C Notations 527
C.I Mathematical 527
C.2 Probabilistic 528
C.3 Distributional 528
C.4 Decisional 529
C.5 Statistical 529
C.6 Markov chains 530
References 531
Author Index 579
Subject Index 587
|
adam_txt |
Titel: The Bayesian choice
Autor: Robert, Christian P.
Jahr: 2007
Contents
Preface to the Paperback Edition vii
Preface to the Second Edition ix
Preface to the First Edition xiii
List of Tables xxiii
List of Figures xxv
1 Introduction 1
1.1 Statistical problems and statistical models 1
1.2 The Bayesian paradigm as a duality principle 8
1.3 Likelihood Principle and Sufficiency Principle 13
1.3.1 Sufficiency 13
1.3.2 The Likelihood Principle 15
1.3.3 Derivation of the Likelihood Principle 18
1.3.4 Implementation of the Likelihood Principle 19
1.3.5 Maximum likelihood estimation 20
1.4 Prior and posterior distributions 22
1.5 Improper prior distributions 26
1.6 The Bayesian choice 31
1.7 Exercises 31
1.8 Notes 45
2 Decision-Theoretic Foundations 51
2.1 Evaluating estimators 51
2.2 Existence of a utility function 54
2.3 Utility and loss 60
2.4 Two optimalities: minimaxity and admissibility 65
2.4.1 Randomized estimators 65
2.4.2 Minimaxity 66
2.4.3 Existence of minimax rules and maximin strategy 69
2.4.4 Admissibility 74
2.5 Usual loss functions 77
2.5.1 The quadratic loss 77
2.5.2 The absolute error loss 79
2.5.3 The 0 - 1 loss 80
2.5.4 Intrinsic losses 81
2.6 Criticisms and alternatives 83
2.7 Exercises 85
2.8 Notes 96
From Prior Information to Prior Distributions 105
3.1 The difficulty in selecting a prior distribution 105
3.2 Subjective determination and approximations 106
3.2.1 Existence 106
3.2.2 Approximations to the prior distribution 108
3.2.3 Maximum entropy priors 109
3.2.4 Parametric approximations 111
3.2.5 Other techniques 113
3.3 Conjugate priors 113
3.3.1 Introduction 113
3.3.2 Justifications 114
3.3.3 Exponential families 115
3.3.4 Conjugate distributions for exponential families 120
3.4 Criticisms and extensions 123
3.5 Noninformative prior distributions 127
3.5.1 Laplace's prior 127
3.5.2 Invariant priors 128
3.5.3 The Jeffreys prior 129
3.5.4 Reference priors 133
3.5.5 Matching priors 137
3.5.6 Other approaches 140
3.6 Posterior validation and robustness 141
3.7 Exercises 144
3.8 Notes 158
Bayesian Point Estimation 165
4.1 Bayesian inference 165
4.1.1 Introduction 165
4.1.2 MAP estimator 166
4.1.3 Likelihood Principle 167
4.1.4 Restricted parameter space 168
4.1.5 Precision of the Bayes estimators 170
4.1.6 Prediction 171
4.1.7 Back to Decision Theory 173
4.2 Bayesian Decision Theory 173
4.2.1 Bayes estimators 173
4.2.2 Conjugate priors 175
4.2.3 Loss estimation 178
4.3 Sampling models 180
4.3.1 Laplace succession rule 180
4.3.2 The tramcar problem 181
4.3.3 Capture-recapture models 182
4.4 The particular case of the normal model 186
4.4.1 Introduction 186
4.4.2 Estimation of variance 187
4.4.3 Linear models and G-priors 190
4.5 Dynamic models 193
4.5.1 Introduction 193
4.5.2 The AR model 196
4.5.3 The MA model 198
4.5.4 The ARMA model 201
4.6 Exercises 201
4.7 Notes 216
Tests and Confidence Regions 223
5.1 Introduction 223
5.2 A first approach to testing theory 224
5.2.1 Decision-theoretic testing 224
5.2.2 The Bayes factor 227
5.2.3 Modification of the prior 229
5.2.4 Point-null hypotheses 230
5.2.5 Improper priors 232
5.2.6 Pseudo-Bayes factors 236
5.3 Comparisons with the classical approach 242
5.3.1 UMP and UMPU tests 242
5.3.2 Least favorable prior distributions 245
5.3.3 Criticisms 247
5.3.4 Thep-values 249
5.3.5 Least favorable Bayesian answers 250
5.3.6 The one-sided case 254
5.4 A second decision-theoretic approach 256
5.5 Confidence regions 259
5.5.1 Credible intervals 260
5.5.2 Classical confidence intervals 263
5.5.3 Decision-theoretic evaluation of confidence sets 264
5.6 Exercises 267
5.7 Notes 279
Bayesian Calculations 285
6.1 Implementation difficulties 285
6.2 Classical approximation methods 293
6.2.1 Numerical integration 293
6.2.2 Monte Carlo methods 294
6.2.3 Laplace analytic approximation 298
6.3 Markov chain Monte Carlo methods 301
6.3.1 MCMC in practice 302
6.3.2 Metropolis-Hastings algorithms
6.3.3 The Gibbs sampler
6.3.4 Rao-Blackwellization
6.3.5 The general Gibbs sampler
6.3.6 The slice sampler
6.3.7 The impact on Bayesian Statistics
6.4 An application to mixture estimation
6.5 Exercises
6.6 Notes
303
307
309
311
315
317
318
321
334
Model Choice 343
7.1 Introduction 343
7.1.1 Choice between models 344
7.1.2 Model choice: motives and uses 347
7.2 Standard framework 348
7.2.1 Prior modeling for model choice 348
7.2.2 Bayes factors 350
7.2.3 Schwartz's criterion 352
7.2.4 Bayesian deviance 354
7.3 Monte Carlo and MCMC approximations 356
7.3.1 Importance sampling 356
7.3.2 Bridge sampling 358
7.3.3 MCMC methods 359
7.3.4 Reversible jump MCMC 363
7.4 Model averaging 366
7.5 Model projections 369
7.6 Goodness-of-fit 374
7.7 Exercises 377
7.8 Notes 386
Admissibility and Complete Classes 391
8.1 Introduction 391
8.2 Admissibility of Bayes estimators 391
8.2.1 General characterizations 391
8.2.2 Boundary conditions 393
8.2.3 Inadmissible generalized Bayes estimators 395
8.2.4 Differential representations 396
8.2.5 Recurrence conditions 398
8.3 Necessary and sufficient admissibility conditions 400
8.3.1 Continuous risks 401
8.3.2 Blyth's sufficient condition 402
8.3.3 Stein's necessary and sufficient condition 407
8.3.4 Another limit theorem 407
8.4 Complete classes 409
8.5 Necessary admissibility conditions 412
8.6 Exercises 416
8.7 Notes 425
9 Invariance, Haar Measures, and Equivariant Estimators 427
9.1 Invariance principles 427
9.2 The particular case of location parameters 429
9.3 Invariant decision problems 431
9.4 Best equivariant noninformative distributions 436
9.5 The Hunt-Stein theorem 441
9.6 The role of invariance in Bayesian Statistics 445
9.7 Exercises 446
9.8 Notes 454
10 Hierarchical and Empirical Bayes Extensions 457
10.1 Incompletely Specified Priors 457
10.2 Hierarchical Bayes analysis 460
10.2.1 Hierarchical models 460
10.2.2 Justifications 462
10.2.3 Conditional decompositions 465
10.2.4 Computational issues 468
10.2.5 Hierarchical extensions for the normal model 470
10.3 Optimality of hierarchical Bayes estimators 474
10.4 The empirical Bayes alternative 478
10.4.1 Nonparametric empirical Bayes 479
10.4.2 Parametric empirical Bayes 481
10.5 Empirical Bayes justifications of the Stein effect 484
10.5.1 Point estimation 485
10.5.2 Variance evaluation 487
10.5.3 Confidence regions 488
10.5.4 Comments 490
10.6 Exercises 490
10.7 Notes 502
11 A Defense of the Bayesian Choice 507
A Probability Distributions 519
A.I Normal distribution, Afp{0,E) 519
A.2 Gamma distribution, £7(a,/3) 519
A.3 Beta distribution, Be(a, ß) 519
A.4 Student's t-distribution, Tp (u,9, E) 520
A.5 Fisher's F-distribution, T(y, g) 520
A.6 Inverse gamma distribution, IQ{a, ß) 520
A.7 Noncentral chi-squared distribution, xlW 520
A.8 Dirichlet distribution, Vk{a\,.,ak) 521
A.9 Pareto distribution, Va(a,x0) 521
A.10 Binomial distribution, B(n,p). 521
A.ll Multinomial distribution, Mk(n;pi,. .,Pk) 521
A.12 Poisson distribution, 7 (A) 521
A.13 Negative Binomial distribution, ßfeg(n, p) 522
A.14Hypergeometric distribution, Hyp(N;n;p) 522
B Usual Pseudo-random Generators 523
B.I Normal distribution, 7V(0,1) 523
B.2 Exponential distribution, £xp(X) 523
B.3 Student's i-distribution, T(v, 0,1) 524
B.4 Gamma distribution, G(a, 1) 524
B.5 Binomial distribution, B(n, p) 525
B.6 Poisson distribution, V{\) 525
C Notations 527
C.I Mathematical 527
C.2 Probabilistic 528
C.3 Distributional 528
C.4 Decisional 529
C.5 Statistical 529
C.6 Markov chains 530
References 531
Author Index 579
Subject Index 587 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Robert, Christian P. 1961- |
author_GND | (DE-588)115436448 |
author_facet | Robert, Christian P. 1961- |
author_role | aut |
author_sort | Robert, Christian P. 1961- |
author_variant | c p r cp cpr |
building | Verbundindex |
bvnumber | BV023045855 |
callnumber-first | Q - Science |
callnumber-label | QA279 |
callnumber-raw | QA279.5 |
callnumber-search | QA279.5 |
callnumber-sort | QA 3279.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | CM 4000 SK 830 |
ctrlnum | (OCoLC)153582066 (DE-599)BVBBV023045855 |
dewey-full | 519.5/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 |
dewey-search | 519.5/42 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Psychologie Mathematik |
discipline_str_mv | Psychologie Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02413nam a2200565zc 4500</leader><controlfield tag="001">BV023045855</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221213 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071211s2007 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007926596</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387715988</subfield><subfield code="c">pbk</subfield><subfield code="9">978-0-387-71598-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)153582066</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023045855</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA279.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5/42</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4000</subfield><subfield code="0">(DE-625)18951:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Robert, Christian P.</subfield><subfield code="d">1961-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115436448</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Analyse statistique bayésienne</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Bayesian choice</subfield><subfield code="b">from decision-theoretic foundations to computational implementation</subfield><subfield code="c">Christian P. Robert</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 602 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer texts in statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inferência bayesiana (inferência estatística)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria da decisão (estatísticas e dados numéricos)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">CD-ROM</subfield><subfield code="0">(DE-588)4139307-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">CD-ROM</subfield><subfield code="0">(DE-588)4139307-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Bayes-Verfahren</subfield><subfield code="0">(DE-588)4204326-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-71599-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016249310&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016249310</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV023045855 |
illustrated | Illustrated |
index_date | 2024-07-02T19:22:31Z |
indexdate | 2024-07-09T21:09:43Z |
institution | BVB |
isbn | 9780387715988 |
language | English French |
lccn | 2007926596 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016249310 |
oclc_num | 153582066 |
open_access_boolean | |
owner | DE-29T DE-11 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-703 DE-188 DE-521 DE-355 DE-BY-UBR |
owner_facet | DE-29T DE-11 DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-703 DE-188 DE-521 DE-355 DE-BY-UBR |
physical | XXIV, 602 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series2 | Springer texts in statistics |
spelling | Robert, Christian P. 1961- Verfasser (DE-588)115436448 aut Analyse statistique bayésienne The Bayesian choice from decision-theoretic foundations to computational implementation Christian P. Robert 2. ed. New York, NY Springer 2007 XXIV, 602 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer texts in statistics Inferência bayesiana (inferência estatística) larpcal Teoria da decisão (estatísticas e dados numéricos) larpcal Bayesian statistical decision theory Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd rswk-swf CD-ROM (DE-588)4139307-7 gnd rswk-swf Bayes-Verfahren (DE-588)4204326-8 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Bayes-Entscheidungstheorie (DE-588)4144220-9 s CD-ROM (DE-588)4139307-7 s 1\p DE-604 Bayes-Verfahren (DE-588)4204326-8 s 2\p DE-604 Erscheint auch als Online-Ausgabe 978-0-387-71599-5 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016249310&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Robert, Christian P. 1961- The Bayesian choice from decision-theoretic foundations to computational implementation Inferência bayesiana (inferência estatística) larpcal Teoria da decisão (estatísticas e dados numéricos) larpcal Bayesian statistical decision theory Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd CD-ROM (DE-588)4139307-7 gnd Bayes-Verfahren (DE-588)4204326-8 gnd |
subject_GND | (DE-588)4144220-9 (DE-588)4139307-7 (DE-588)4204326-8 (DE-588)4123623-3 |
title | The Bayesian choice from decision-theoretic foundations to computational implementation |
title_alt | Analyse statistique bayésienne |
title_auth | The Bayesian choice from decision-theoretic foundations to computational implementation |
title_exact_search | The Bayesian choice from decision-theoretic foundations to computational implementation |
title_exact_search_txtP | The Bayesian choice from decision-theoretic foundations to computational implementation |
title_full | The Bayesian choice from decision-theoretic foundations to computational implementation Christian P. Robert |
title_fullStr | The Bayesian choice from decision-theoretic foundations to computational implementation Christian P. Robert |
title_full_unstemmed | The Bayesian choice from decision-theoretic foundations to computational implementation Christian P. Robert |
title_short | The Bayesian choice |
title_sort | the bayesian choice from decision theoretic foundations to computational implementation |
title_sub | from decision-theoretic foundations to computational implementation |
topic | Inferência bayesiana (inferência estatística) larpcal Teoria da decisão (estatísticas e dados numéricos) larpcal Bayesian statistical decision theory Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd CD-ROM (DE-588)4139307-7 gnd Bayes-Verfahren (DE-588)4204326-8 gnd |
topic_facet | Inferência bayesiana (inferência estatística) Teoria da decisão (estatísticas e dados numéricos) Bayesian statistical decision theory Bayes-Entscheidungstheorie CD-ROM Bayes-Verfahren Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016249310&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT robertchristianp analysestatistiquebayesienne AT robertchristianp thebayesianchoicefromdecisiontheoreticfoundationstocomputationalimplementation |