Mathematics for the analysis of algorithms:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2008
|
Ausgabe: | 3. ed., reprint of the 1990 ed. |
Schriftenreihe: | Modern Birkhäuser classics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Orig. publ. as vol. 1 in the series Progresss in computer science and applied logic |
Beschreibung: | VIII, 132 S. |
ISBN: | 0817647287 9780817647285 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023041733 | ||
003 | DE-604 | ||
005 | 20140910 | ||
007 | t | ||
008 | 071210s2008 |||| 00||| eng d | ||
015 | |a 07,N39,0564 |2 dnb | ||
016 | 7 | |a 985584939 |2 DE-101 | |
020 | |a 0817647287 |c Pb. : ca. EUR 32.96 (freier Pr.), ca. sfr 54.00 (freier Pr.) |9 0-8176-4728-7 | ||
020 | |a 9780817647285 |c Pb. : ca. EUR 32.96 (freier Pr.), ca. sfr 54.00 (freier Pr.) |9 978-0-8176-4728-5 | ||
024 | 3 | |a 9780817647285 | |
028 | 5 | 2 | |a 12169603 |
035 | |a (OCoLC)845158054 | ||
035 | |a (DE-599)DNB985584939 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-355 |a DE-11 |a DE-83 | ||
082 | 0 | |a 510 | |
084 | |a ST 130 |0 (DE-625)143588: |2 rvk | ||
084 | |a ST 134 |0 (DE-625)143590: |2 rvk | ||
084 | |a ST 150 |0 (DE-625)143594: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Greene, Daniel H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematics for the analysis of algorithms |c Daniel H. Greene ; Donald E. Knuth |
250 | |a 3. ed., reprint of the 1990 ed. | ||
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2008 | |
300 | |a VIII, 132 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Modern Birkhäuser classics | |
500 | |a Orig. publ. as vol. 1 in the series Progresss in computer science and applied logic | ||
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmentheorie |0 (DE-588)4200409-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 1 | 1 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Algorithmentheorie |0 (DE-588)4200409-3 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
700 | 1 | |a Knuth, Donald Ervin |d 1938- |e Verfasser |0 (DE-588)121578437 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-8176-4729-2 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016245254&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016245254 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137270520840192 |
---|---|
adam_text | Contents
1.
Binomial
Identities
.................... 1
1.1
Summary of Useful Identities
.............. 1
1.2
Deriving the Identities
................. 3
1.3
Inverse Relations
.................... 5
1.4
Operator Calculus
................... 8
1.5
Hypergeometric Series
................. 9
1.6
Identities with the Harmonic Numbers
.......... 10
2.
Recurrence Relations
................... 11
2.1
Linear Recurrence Relations
............... 11
2.1.1
Finite History
................... 12
2.1.1.1
Constant Coefficients
.............. 12
2.1.1.2
Variable Coefficients
............... 14
2.1.2
Pull History
.................... 17
2.1.2.1
Differencing
.................. 17
2.1.2.2
By Repertoire
................. 17
2.2
Nonlinear Recurrence Relations
............. 21
2.2.1
Relations with Maximum or Minimum Functions
.... 21
2.2.2
Continued Fractions and Hidden Linear Recurrences
. . 25
2.2.3
Doubly Exponential Sequences
............ 27
3.
Operator Methods
..................... 31
3.1
The Cookie Monster
.................. 31
3.2
Coalesced Hashing
................... 34
3.3
Open Addressing: Uniform Hashing
............ 38
3.4
Open Addressing: Secondary Clustering
.......... 39
vili
CONTENTS
4.
Asymptotic Analysis
....................42
4.1
Basic Concepts
.....................42
4.1.1
Notation
...................... 43
4.1.2
Bootstrapping
................... 43
4.1.3
Dissecting
..................... 44
4.1.4
Limits of Limits
.................. 45
4.1.5
Summary of Useful Asymptotic Expansions
...... 47
4.1.6
An Example from Factorization Theory
........ 48
4.2
Stieltjes
Integration and Asymptotics
........... 55
4.2.1
О
-notation and Integrals
............... 57
4.2.2
Euler*s Summation Formula
............. 58
4.2.3
An Example from Number Theory
.......... 60
4.3
Asymptotics from Generating Functions
.......... 65
4.3.1
Darboux s Method
.................65
4.3.2
Residue Calculus
..................68
4.3.3
The Saddle Point Method
..............70
Bibliography
.........................77
Appendices
..........................81
A. Schedule of Lectures,
1980................81
B. Homework Assignments
.................83
C. Midterm Exam I and Solutions
..............84
D. Final Exam I and Solutions
...............95
E. Midterm Exam II and Solutions
............ 101
F. Final Exam II and Solutions
.............. 107
G. Midterm Exam III and Solutions
............
Ill
H. Final Exam III and Solutions
.............. 116
I. A Qualifying Exam Problem and Solution
........ 124
Index
........................... 129
|
adam_txt |
Contents
1.
Binomial
Identities
. 1
1.1
Summary of Useful Identities
. 1
1.2
Deriving the Identities
. 3
1.3
Inverse Relations
. 5
1.4
Operator Calculus
. 8
1.5
Hypergeometric Series
. 9
1.6
Identities with the Harmonic Numbers
. 10
2.
Recurrence Relations
. 11
2.1
Linear Recurrence Relations
. 11
2.1.1
Finite History
. 12
2.1.1.1
Constant Coefficients
. 12
2.1.1.2
Variable Coefficients
. 14
2.1.2
Pull History
. 17
2.1.2.1
Differencing
. 17
2.1.2.2
By Repertoire
. 17
2.2
Nonlinear Recurrence Relations
. 21
2.2.1
Relations with Maximum or Minimum Functions
. 21
2.2.2
Continued Fractions and Hidden Linear Recurrences
. . 25
2.2.3
Doubly Exponential Sequences
. 27
3.
Operator Methods
. 31
3.1
The Cookie Monster
. 31
3.2
Coalesced Hashing
. 34
3.3
Open Addressing: Uniform Hashing
. 38
3.4
Open Addressing: Secondary Clustering
. 39
vili
CONTENTS
4.
Asymptotic Analysis
.42
4.1
Basic Concepts
.42
4.1.1
Notation
. 43
4.1.2
Bootstrapping
. 43
4.1.3
Dissecting
. 44
4.1.4
Limits of Limits
. 45
4.1.5
Summary of Useful Asymptotic Expansions
. 47
4.1.6
An Example from Factorization Theory
. 48
4.2
Stieltjes
Integration and Asymptotics
. 55
4.2.1
О
-notation and Integrals
. 57
4.2.2
Euler*s Summation Formula
. 58
4.2.3
An Example from Number Theory
. 60
4.3
Asymptotics from Generating Functions
. 65
4.3.1
Darboux's Method
.65
4.3.2
Residue Calculus
.68
4.3.3
The Saddle Point Method
.70
Bibliography
.77
Appendices
.81
A. Schedule of Lectures,
1980.81
B. Homework Assignments
.83
C. Midterm Exam I and Solutions
.84
D. Final Exam I and Solutions
.95
E. Midterm Exam II and Solutions
. 101
F. Final Exam II and Solutions
. 107
G. Midterm Exam III and Solutions
.
Ill
H. Final Exam III and Solutions
. 116
I. A Qualifying Exam Problem and Solution
. 124
Index
. 129 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Greene, Daniel H. Knuth, Donald Ervin 1938- |
author_GND | (DE-588)121578437 |
author_facet | Greene, Daniel H. Knuth, Donald Ervin 1938- |
author_role | aut aut |
author_sort | Greene, Daniel H. |
author_variant | d h g dh dhg d e k de dek |
building | Verbundindex |
bvnumber | BV023041733 |
classification_rvk | ST 130 ST 134 ST 150 |
ctrlnum | (OCoLC)845158054 (DE-599)DNB985584939 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
edition | 3. ed., reprint of the 1990 ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02499nam a2200601 c 4500</leader><controlfield tag="001">BV023041733</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140910 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071210s2008 |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N39,0564</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985584939</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817647287</subfield><subfield code="c">Pb. : ca. EUR 32.96 (freier Pr.), ca. sfr 54.00 (freier Pr.)</subfield><subfield code="9">0-8176-4728-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647285</subfield><subfield code="c">Pb. : ca. EUR 32.96 (freier Pr.), ca. sfr 54.00 (freier Pr.)</subfield><subfield code="9">978-0-8176-4728-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780817647285</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12169603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)845158054</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB985584939</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 130</subfield><subfield code="0">(DE-625)143588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 150</subfield><subfield code="0">(DE-625)143594:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Greene, Daniel H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics for the analysis of algorithms</subfield><subfield code="c">Daniel H. Greene ; Donald E. Knuth</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed., reprint of the 1990 ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 132 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhäuser classics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Orig. publ. as vol. 1 in the series Progresss in computer science and applied logic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmentheorie</subfield><subfield code="0">(DE-588)4200409-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algorithmentheorie</subfield><subfield code="0">(DE-588)4200409-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Knuth, Donald Ervin</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121578437</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-8176-4729-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016245254&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016245254</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023041733 |
illustrated | Not Illustrated |
index_date | 2024-07-02T19:20:51Z |
indexdate | 2024-07-09T21:09:38Z |
institution | BVB |
isbn | 0817647287 9780817647285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016245254 |
oclc_num | 845158054 |
open_access_boolean | |
owner | DE-824 DE-355 DE-BY-UBR DE-11 DE-83 |
owner_facet | DE-824 DE-355 DE-BY-UBR DE-11 DE-83 |
physical | VIII, 132 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Birkhäuser |
record_format | marc |
series2 | Modern Birkhäuser classics |
spelling | Greene, Daniel H. Verfasser aut Mathematics for the analysis of algorithms Daniel H. Greene ; Donald E. Knuth 3. ed., reprint of the 1990 ed. Boston [u.a.] Birkhäuser 2008 VIII, 132 S. txt rdacontent n rdamedia nc rdacarrier Modern Birkhäuser classics Orig. publ. as vol. 1 in the series Progresss in computer science and applied logic Algorithmus (DE-588)4001183-5 gnd rswk-swf Algorithmentheorie (DE-588)4200409-3 gnd rswk-swf Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Algorithmus (DE-588)4001183-5 s Mathematik (DE-588)4037944-9 s DE-604 Datenverarbeitung (DE-588)4011152-0 s Algorithmentheorie (DE-588)4200409-3 s 1\p DE-604 Knuth, Donald Ervin 1938- Verfasser (DE-588)121578437 aut Erscheint auch als Online-Ausgabe 978-0-8176-4729-2 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016245254&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Greene, Daniel H. Knuth, Donald Ervin 1938- Mathematics for the analysis of algorithms Algorithmus (DE-588)4001183-5 gnd Algorithmentheorie (DE-588)4200409-3 gnd Datenverarbeitung (DE-588)4011152-0 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4001183-5 (DE-588)4200409-3 (DE-588)4011152-0 (DE-588)4037944-9 |
title | Mathematics for the analysis of algorithms |
title_auth | Mathematics for the analysis of algorithms |
title_exact_search | Mathematics for the analysis of algorithms |
title_exact_search_txtP | Mathematics for the analysis of algorithms |
title_full | Mathematics for the analysis of algorithms Daniel H. Greene ; Donald E. Knuth |
title_fullStr | Mathematics for the analysis of algorithms Daniel H. Greene ; Donald E. Knuth |
title_full_unstemmed | Mathematics for the analysis of algorithms Daniel H. Greene ; Donald E. Knuth |
title_short | Mathematics for the analysis of algorithms |
title_sort | mathematics for the analysis of algorithms |
topic | Algorithmus (DE-588)4001183-5 gnd Algorithmentheorie (DE-588)4200409-3 gnd Datenverarbeitung (DE-588)4011152-0 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Algorithmus Algorithmentheorie Datenverarbeitung Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016245254&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT greenedanielh mathematicsfortheanalysisofalgorithms AT knuthdonaldervin mathematicsfortheanalysisofalgorithms |