Transparent boundary conditions for time-dependent problems:
Abstract: "A new approach to derive transparent boundary conditions (TBCs) for wave, Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and distinguishes between physical reasonable and unreasonable solutions by the location of the singularities of the...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin
Konrad-Zuse-Zentrum für Informationstechnik
2007
|
Schriftenreihe: | ZIB-Report
2007,12 |
Schlagworte: | |
Zusammenfassung: | Abstract: "A new approach to derive transparent boundary conditions (TBCs) for wave, Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and distinguishes between physical reasonable and unreasonable solutions by the location of the singularities of the spatial Laplace transform of the exterior solution. To obtain a numerical algorithm, a Möbius transform is applied to map the Laplace transform onto the unit disc. In the transformed coordinate the solution is expanded into a power series. Finally, equations for the coefficients of the power series are derived. These are coupled to the equation in the interior, and yield transparent boundary conditions. Numerical results are presented in the last section, showing that the error introduced by the new approximate TBCs decays exponentially in the number of coefficients." |
Beschreibung: | 20 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023035826 | ||
003 | DE-604 | ||
005 | 20080818 | ||
007 | t| | ||
008 | 071205s2007 xx ad|| |||| 00||| eng d | ||
035 | |a (OCoLC)308361937 | ||
035 | |a (DE-599)BVBBV023035826 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
245 | 1 | 0 | |a Transparent boundary conditions for time-dependent problems |c Daniel Ruprecht ... |
264 | 1 | |a Berlin |b Konrad-Zuse-Zentrum für Informationstechnik |c 2007 | |
300 | |a 20 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a ZIB-Report |v 2007,12 | |
520 | 3 | |a Abstract: "A new approach to derive transparent boundary conditions (TBCs) for wave, Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and distinguishes between physical reasonable and unreasonable solutions by the location of the singularities of the spatial Laplace transform of the exterior solution. To obtain a numerical algorithm, a Möbius transform is applied to map the Laplace transform onto the unit disc. In the transformed coordinate the solution is expanded into a power series. Finally, equations for the coefficients of the power series are derived. These are coupled to the equation in the interior, and yield transparent boundary conditions. Numerical results are presented in the last section, showing that the error introduced by the new approximate TBCs decays exponentially in the number of coefficients." | |
650 | 4 | |a Boundary value problems | |
650 | 4 | |a Wave equation | |
700 | 1 | |a Ruprecht, Daniel |e Sonstige |4 oth | |
830 | 0 | |a ZIB-Report |v 2007,12 |w (DE-604)BV013191727 |9 2007,12 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016239608 |
Datensatz im Suchindex
_version_ | 1820882437605949440 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
building | Verbundindex |
bvnumber | BV023035826 |
classification_rvk | SS 4779 |
ctrlnum | (OCoLC)308361937 (DE-599)BVBBV023035826 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV023035826</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080818</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">071205s2007 xx ad|| |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)308361937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023035826</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transparent boundary conditions for time-dependent problems</subfield><subfield code="c">Daniel Ruprecht ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Konrad-Zuse-Zentrum für Informationstechnik</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">20 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ZIB-Report</subfield><subfield code="v">2007,12</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "A new approach to derive transparent boundary conditions (TBCs) for wave, Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and distinguishes between physical reasonable and unreasonable solutions by the location of the singularities of the spatial Laplace transform of the exterior solution. To obtain a numerical algorithm, a Möbius transform is applied to map the Laplace transform onto the unit disc. In the transformed coordinate the solution is expanded into a power series. Finally, equations for the coefficients of the power series are derived. These are coupled to the equation in the interior, and yield transparent boundary conditions. Numerical results are presented in the last section, showing that the error introduced by the new approximate TBCs decays exponentially in the number of coefficients."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wave equation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruprecht, Daniel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">ZIB-Report</subfield><subfield code="v">2007,12</subfield><subfield code="w">(DE-604)BV013191727</subfield><subfield code="9">2007,12</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016239608</subfield></datafield></record></collection> |
id | DE-604.BV023035826 |
illustrated | Illustrated |
index_date | 2024-07-02T19:18:52Z |
indexdate | 2025-01-10T17:06:53Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016239608 |
oclc_num | 308361937 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 20 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Konrad-Zuse-Zentrum für Informationstechnik |
record_format | marc |
series | ZIB-Report |
series2 | ZIB-Report |
spelling | Transparent boundary conditions for time-dependent problems Daniel Ruprecht ... Berlin Konrad-Zuse-Zentrum für Informationstechnik 2007 20 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier ZIB-Report 2007,12 Abstract: "A new approach to derive transparent boundary conditions (TBCs) for wave, Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and distinguishes between physical reasonable and unreasonable solutions by the location of the singularities of the spatial Laplace transform of the exterior solution. To obtain a numerical algorithm, a Möbius transform is applied to map the Laplace transform onto the unit disc. In the transformed coordinate the solution is expanded into a power series. Finally, equations for the coefficients of the power series are derived. These are coupled to the equation in the interior, and yield transparent boundary conditions. Numerical results are presented in the last section, showing that the error introduced by the new approximate TBCs decays exponentially in the number of coefficients." Boundary value problems Wave equation Ruprecht, Daniel Sonstige oth ZIB-Report 2007,12 (DE-604)BV013191727 2007,12 |
spellingShingle | Transparent boundary conditions for time-dependent problems ZIB-Report Boundary value problems Wave equation |
title | Transparent boundary conditions for time-dependent problems |
title_auth | Transparent boundary conditions for time-dependent problems |
title_exact_search | Transparent boundary conditions for time-dependent problems |
title_exact_search_txtP | Transparent boundary conditions for time-dependent problems |
title_full | Transparent boundary conditions for time-dependent problems Daniel Ruprecht ... |
title_fullStr | Transparent boundary conditions for time-dependent problems Daniel Ruprecht ... |
title_full_unstemmed | Transparent boundary conditions for time-dependent problems Daniel Ruprecht ... |
title_short | Transparent boundary conditions for time-dependent problems |
title_sort | transparent boundary conditions for time dependent problems |
topic | Boundary value problems Wave equation |
topic_facet | Boundary value problems Wave equation |
volume_link | (DE-604)BV013191727 |
work_keys_str_mv | AT ruprechtdaniel transparentboundaryconditionsfortimedependentproblems |