Transparent boundary conditions for time-dependent problems:

Abstract: "A new approach to derive transparent boundary conditions (TBCs) for wave, Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and distinguishes between physical reasonable and unreasonable solutions by the location of the singularities of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Format: Buch
Sprache:English
Veröffentlicht: Berlin Konrad-Zuse-Zentrum für Informationstechnik 2007
Schriftenreihe:ZIB-Report 2007,12
Schlagworte:
Zusammenfassung:Abstract: "A new approach to derive transparent boundary conditions (TBCs) for wave, Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and distinguishes between physical reasonable and unreasonable solutions by the location of the singularities of the spatial Laplace transform of the exterior solution. To obtain a numerical algorithm, a Möbius transform is applied to map the Laplace transform onto the unit disc. In the transformed coordinate the solution is expanded into a power series. Finally, equations for the coefficients of the power series are derived. These are coupled to the equation in the interior, and yield transparent boundary conditions. Numerical results are presented in the last section, showing that the error introduced by the new approximate TBCs decays exponentially in the number of coefficients."
Beschreibung:20 S. Ill., graph. Darst.

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!