Understanding solids: the science of materials
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester [u.a.]
Wiley
2007
|
Ausgabe: | Repr. |
Schlagworte: | |
Online-Zugang: | Table of contents Inhaltsverzeichnis |
Beschreibung: | XXII, 593 S. Ill., graph. Darst. |
ISBN: | 0470852755 0470852763 9780470852767 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023034448 | ||
003 | DE-604 | ||
005 | 20071217 | ||
007 | t | ||
008 | 071204s2007 xxkad|| |||| 00||| eng d | ||
020 | |a 0470852755 |9 0-470-85275-5 | ||
020 | |a 0470852763 |9 0-470-85276-3 | ||
020 | |a 9780470852767 |9 978-0-470-85276-7 | ||
035 | |a (OCoLC)315979003 | ||
035 | |a (DE-599)BVBBV023034448 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-92 |a DE-355 | ||
082 | 0 | |a 620.11 | |
084 | |a UP 1000 |0 (DE-625)146338: |2 rvk | ||
084 | |a VE 9300 |0 (DE-625)147152:253 |2 rvk | ||
084 | |a VE 9301 |0 (DE-625)147152:254 |2 rvk | ||
084 | |a CHE 194f |2 stub | ||
084 | |a PHY 601f |2 stub | ||
084 | |a WER 001f |2 stub | ||
100 | 1 | |a Tilley, Richard J. D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Understanding solids |b the science of materials |c Richard J. D. Tilley |
250 | |a Repr. | ||
264 | 1 | |a Chichester [u.a.] |b Wiley |c 2007 | |
300 | |a XXII, 593 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Werkstoffkunde |0 (DE-588)4079184-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörperphysik |0 (DE-588)4016921-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörperchemie |0 (DE-588)4129288-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Festkörperphysik |0 (DE-588)4016921-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Festkörperchemie |0 (DE-588)4129288-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Werkstoffkunde |0 (DE-588)4079184-1 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip0415/2004004221.html |3 Table of contents | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016238248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016238248 |
Datensatz im Suchindex
_version_ | 1804137260584534016 |
---|---|
adam_text | Contents
Preface xxi
PART 1 STRUCTURES AND MICROSTRUCTURES 1
1 The electron structure of atoms 3
1.1 Atoms 3
1.2 The hydrogen atom 5
1.2.1 The quantum mechanical description of a hydrogen atom 5
1.2.2 The energy of the electron 6
1.2.3 The location of the electron 7
1.2.4 Orbital shapes 8
1.3 Many-electron atoms 10
1.3.1 The orbital approximation 10
1.3.2 Electron spin and electron configuration 11
1.3.3 The periodic table 13
1.4 Atomic energy levels 15
1.4.1 Electron energy levels 15
1.4.2 The vector model 15
1.4.3 Terms and term schemes 16
Answers to introductory questions 17
What is a wavefunction and what information does it provide? 17
Why does the periodic table summarise both the chemical and the physical properties
of the elements? 17
What is a term scheme? 18
Further reading 18
Problems and exercises 18
2 Chemical bonding 23
2.1 Ionic bonding 23
2.1.1 Ions 23
2.1.2 Ionic bonding 24
2.1.3 Madelung energy 24
2.1.4 Repulsive energy 26
2.1.5 Lattice energy 26
2.1.6 The formulae and structures of ionic compounds 27
viii CONTENTS
2.1.7 Ionic size and shape 28
2.1.8 Ionic structures 29
2.2 Covalent bonding 30
2.2.1 Molecular orbitals 30
2.2.2 The energies of molecular orbitals in diatomic molecules 31
2.2.3 Bonding between unlike atoms 34
2.2.4 Electronegativity 35
2.2.5 Bond strength and direction 36
2.2.6 Orbital hybridisation 37
2.2.7 Multiple bonds 40
2.2.8 Resonance 43
2.3 Metallic bonding 44
2.3.1 Bonding in metals 44
2.3.2 Chemical bonding 44
2.3.3 Atomic orbitals and energy bands 46
2.3.4 Divalent and other metals 46
2.3.5 The classical free-electron gas 47
2.3.6 The quantum free-electron gas 48
2.3.7 The Fermi energy and Fermi surface 49
2.3.8 Energy bands 51
2.3.9 Brillouin zones 53
2.3.10 Alloys and noncrystalline metals 53
2.3.11 Bands in ionic and covalent solids 54
Answers to introductory questions 56
What are the principle geometrical consequences of ionic, covalent and metallic bonding? 56
What orbitals are involved in multiple bond formation between atoms? 56
What are allowed energy bands? 56
Further reading 56
Problems and exercises 57
3 States of aggregation 61
3.1 Formulae and names 61
3.1.1 Weak chemical bonds 61
3.1.2 Chemical names and formulae 64
3.1.3 Polymorphism and other transformations 65
3.2 Macrostructures, microstructures and nanostructures 66
3.2.1 Structures and microstructures 66
3.2.2 Crystalline solids 67
3.2.3 Noncrystalline solids 67
3.2.4 Partly crystalline solids 69
3.2.5 Nanostructures 70
3.3 The development of microstructures 71
3.3.1 Solidification 71
3.3.2 Processing 73
3.4 Defects 73
3.4.1 Point defects in crystals of elements 73
3.4.2 Solid solutions 75
3.4.3 Schottky defects 75
3.4.4 Frenkel defects 77
3.4.5 Nonstoichiometric compounds 78
3.4.6 Edge dislocations 79
3.4.7 Screw dislocations 80
3.4.8 Partial and mixed dislocations 81
CONTENTS ix
3.4.9 Multiplication of dislocations 82
3.4.10 Planar defects 83
3.4.11 Volume defects: precipitates 84
Answers to introductory questions 85
What type of bonding causes the noble gases to condense to liquids? 85
What is the scale implied by the term nanostructure ? 85
What line defects occur in crystals? 85
Further reading 86
Problems and exercises 86
4 Phase diagrams 91
4.1 Phases and phase diagrams 91
4.1.1 One-component (unary) systems 91
4.2 Binary phase diagrams 94
4.2.1 Two-component (binary) systems 94
4.2.2 Simple binary phase diagrams: nickel-copper 94
4.2.3 Binary systems containing a eutectic point: lead-tin 96
4.2.4 Solid solution formation 99
4.2.5 Binary systems containing intermediate compounds 100
4.2.6 The iron-carbon phase diagram 101
4.2.7 Steels and cast irons 103
4.2.8 Invariant points 104
4.3 Ternary systems 104
4.3.1 Ternary phase diagrams 104
Answers to introductory questions 107
What is a binary phase diagram? 107
What is a peritectic transformation? 107
What is the difference between carbon steel and cast iron? 107
Further reading 107
Problems and exercises 108
5 Crystallography and crystal structures 115
5.1 Crystallography 115
5.1.1 Crystal lattices 115
5.1.2 Crystal structures and crystal systems 117
5.1.3 Symmetry and crystal classes 118
5.1.4 Crystal planes and Miller indices 119
5.1.5 Hexagonal crystals and Miller-Bravais indices 120
5.1.6 Directions 121
5.1.7 The reciprocal lattice 122
5.2 The determination of crystal structures 123
5.2.1 Single-crystal X-ray diffraction 124
5.2.2 Powder X-ray diffraction and crystal identification 124
5.2.3 Neutron diffraction 126
5.2.4 Electron diffraction 126
5.3 Crystal structures 127
5.3.1 Unit cells, atomic coordinates and nomenclature 127
5.3.2 The density of a crystal 128
5.3.3 The cubic close-packed (Al) structure 129
5.3.4 The body-centred cubic (A2) structure 130
x CONTENTS
5.3.5 The hexagonal (A3) structure 130
5.3.6 The diamond (A4) structure 131
5.3.7 The hexagonal (graphite), A9 structure 131
5.3.8 The structure of boron nitride 132
5.3.9 The halite (rock salt, sodium chloride, Bl) structure 132
5.3.10 The spinel (Hlj) structure 133
5.4 Structural relationships 134
5.4.1 Sphere packing 134
5.4.2 Ionic structures in terms of anion packing 136
5.4.3 Polyhedral representations 138
Answers to introductory questions 140
How does a lattice differ from a structure? 140
What is a unit cell? 140
What is meant by a (100) plane? 140
Further reading 141
Problems and exercises 141
PART 2 CLASSES OF MATERIALS 149
6 Metals, ceramics, polymers and composites 151
6.1 Metals 151
6.1.1 The crystal structures of pure metals 152
6.1.2 Metallic radii 153
6.1.3 Alloy solid solutions 154
6.1.4 Metallic glasses 157
6.1.5 The principal properties of metals 158
6.2 Ceramics 159
6.2.1 Bonding and structure of silicate ceramics 159
6.2.2 Bonding and structure of nonsilicate ceramics 163
6.2.3 The preparation and processing of ceramics 165
6.2.4 The principal properties of ceramics 165
6.3 Glass 166
6.3.1 Bonding and structure of silicate glasses 166
6.3.2 Glass deformation 168
6.3.3 Strengthened glass 170
6.3.4 Glass ceramics 170
6.4 Polymers 172
6.4.1 The chemical structure of some polymers 172
6.4.2 Microstructures of polymers 176
6.4.3 Production of polymers 180
6.4.4 Elastomers 183
6.4.5 The principal properties of polymers 185
6.5 Composite materials 187
6.5.1 Fibre-reinforced plastics 187
6.5.2 Metal-matrix composites 188
6.5.3 Ceramic-matrix composites 188
6.5.4 Cement and concrete 188
Answers to introductory questions 191
Are hydrides alloys or ceramics? 191
Are glasses liquids? 191
Are polymers glasses? 191
Why are plastic bags difficult to degrade? 192
CONTENTS xi
Further reading 192
Problems and exercises 192
PART 3 REACTIONS AND TRANSFORMATIONS 201
7 Diffusion 203
7.1 Self-diffusion, tracer diffusion and tracer impurity diffusion 203
7.2 Nonsteady-state diffusion 206
7.3 Steady-state diffusion 208
7.4 Temperature variation of the diffusion coefficient 208
7.5 The effect of impurities 209
7.6 The penetration depth 210
7.7 Self-diffusion mechanisms 210
7.8 Atomic movement during diffusion 211
7.9 Atomic migration and diffusion coefficients 212
7.10 Self-diffusion in crystals 212
7.11 The Arrhenius equation and the effect of temperature 213
7.12 Correlation factors for self-diffusion 214
7.13 Ionic conductivity 215
7.14 The relationship between ionic conductivity and the diffusion coefficient 217
Answers to introductory questions 218
What is a steady-state diffusion? 218
How does one obtain a quick estimate of the distance moved by diffusing atoms? 218
How does the energy barrier for ionic diffusion change when an electric field is present? 218
Further reading 218
Problems and exercises 218
8 Reactions and transformations 225
8.1 Dynamic equilibrium 225
8.1.1 Reversible reactions and equilibrium 225
8.1.2 Equilibrium constants 226
8.1.3 Combining equilibrium constants 227
8.1.4 Equilibrium conditions 227
8.1.5 Pseudochemical equilibrium 228
8.2 Phase diagrams and microstructures 229
8.2.1 Equilibrium solidification of simple binary alloys 229
8.2.2 Nonequilibrium solidification and coring 230
8.2.3 Solidification in systems containing a eutectic point 231
8.2.4 Equilibrium heat treatment of steels 233
8.2.5 Rapid cooling of steels 236
8.3 Martensitic transformations 237
8.3.1 Displacive transitions 237
8.3.2 Martensitic transitions in alloys 238
8.3.3 Shape-memory alloys 239
8.4 Sintering 241
8.4.1 Sintering and reaction 241
8.4.2 The driving force for sintering 242
xii CONTENTS
8.4.3 The kinetics of neck growth 243
8.5 High-temperature oxidation of metals 244
8.5.1 The driving force for oxidation 244
8.5.2 The rate of oxidation 244
8.5.3 Mechanisms of oxidation 245
8.6 Solid-state reactions 247
8.6.1 Spinel formation 247
8.6.2 The kinetics of spinel formation 249
Answers to introductory questions 249
What is dynamic equilibrium? 249
What defines a martensitic transformation? 250
What is the main driving force for sintering? 250
Further reading 250
Problems and exercises 251
9 Oxidation and reduction 257
9.1 Redox reactions 257
9.1.1 Oxidation and reduction 257
9.2 Galvanic cells 258
9.2.1 The Daniel cell 258
9.2.2 Standard electrode potentials 259
9.2.3 Cell potential and free energy 261
9.2.4 Concentration dependence 262
9.2.5 Chemical analysis using galvanic cells 263
9.3 Batteries 265
9.3.1 Dry and alkaline primary batteries 265
9.3.2 Lithium-ion primary batteries 266
9.3.3 The lead-acid secondary battery 267
9.3.4 Nickel-cadmium (Ni-Cd, nicad) rechargable batteries 267
9.3.5 Nickel-metal-hydride rechargeable batteries 268
9.3.6 Lithium-ion rechargeable batteries 269
9.3.7 Fuel cells 270
9.4 Corrosion 272
9.4.1 The reaction of metals with water and aqueous acids 272
9.4.2 Dissimilar-metal corrosion 274
9.4.3 Single-metal electrochemical corrosion 275
9.5 Electrolysis 277
9.5.1 Electrolytic cells 277
9.5.2 Electrolysis of fused salts 277
9.5.3 The electrolytic preparation of titanium by the Fray-Farthing-Chen Cambridge process 278
9.5.4 Electrolysis of aqueous solutions 280
9.5.5 The amount of product produced during electrolysis 281
9.5.6 Electroplating 282
9.6 Pourbaix diagrams 283
9.6.1 Passivation and corrosion 283
9.6.2 Variable valence states 283
9.6.3 Pourbaix diagram for a metal showing two valence states, M2+ and M3+ 284
9.6.4 Pourbaix diagram displaying tendency for corrosion 285
9.6.5 Limitations of Pourbaix diagrams 285
Answers to introductory questions 286
What is an electrochemical cell? 286
What are the electrode materials in nickel-metal-hydride batteries? 286
What information is contained in a Pourbaix diagram? 286
CONTENTS xiii
Further reading 287
Problems and exercises 287
PART 4 PHYSICAL PROPERTIES 293
10 Mechanical properties of solids 295
10.1 Deformation 296
10.1.1 Strength 296
10.1.2 Stress and strain 296
10.1.3 Stress-strain curves 297
10.1.4 Elastic deformation: the elastic (Young s) modulus 300
10.1.5 Poisson s ratio 301
10.1.6 Toughness and stiffness 302
10.1.7 Brittle fracture 302
10.1.8 Plastic deformation of metals and ceramics 305
10.1.9 Dislocation movement and plastic deformation 306
10.1.10 Brittle and ductile materials 307
10.1.11 Plastic deformation of polymers 310
10.1.12 Fracture following plastic deformation 311
10.1.13 Strengthening 313
10.1.14 Hardness 314
10.2 Time-dependent properties 316
10.2.1 Fatigue 316
10.2.2 Creep 317
10.3 Nanoscale properties 320
10.3.1 Solid lubricants 320
10.3.2 Auxetic materials 322
10.3.3 Thin films 323
10.4 Composite materials 326
10.4.1 Elastic modulus of large-particle composites 326
10.4.2 Elastic modulus of fibre-reinforced composites 326
10.4.3 Elastic modulus of a two-phase system 328
Answers to introductory questions 328
How are stress and strain defined? 328
Why are alloys stronger than pure metals? 329
What are solid lubricants? 329
Further reading 330
Problems and exercises 330
11 Insulating solids 337
11.1 Dielectrics 337
11.1.1 Relative permittivity and polarisation 337
11.1.2 Polarisability 339
11.1.3 Polarisability and relative permittivity 340
11.1.4 The frequency dependence of polarizability and relative permittivity 341
11.1.5 Polarisation in nonisotropic crystals 343
11.2 Piezoelectrics, pyroelectrics and ferroelectrics 343
11.2.1 The piezoelectric and pyroelectric effects 343
11.2.2 Piezoelectric mechanisms 345
xiv CONTENTS
11.2.3 Piezoelectric polymers 347
11.2.4 The pyroelectric effect 349
11.3 Ferroelectrics 350
11.3.1 Ferroelectric crystals 350
11.3.2 Hysteresis in ferroelectric crystals 351
11.3.3 Antiferroelectrics 351
11.3.4 The temperature dependence of ferroelectricity and antiferroelectricity 352
11.3.5 Ferroelectricity due to hydrogen bonds 352
11.3.6 Ferroelectricity due to polar groups 354
11.3.7 Ferroelectricity due to medium-sized transition-metal cations 354
11.3.8 Poling and polycrystalline ferroelectric solids 355
11.3.9 Doping and modification of properties 356
Answers to introductory questions 356
How are the relative permittivity and refractive index of a transparent solid related? 356
What is the relationship between ferroelectric and pyroelectric crystals? 357
How can a ferroelectric solid be made from a polycrystalline aggregate? 357
Further reading 357
Problems and exercises 358
12 Magnetic solids 363
12.1 Magnetic materials 363
12.1.1 Characterisation of magnetic materials 363
12.1.2 Types of magnetic material 364
12.1.3 Atomic magnetism 367
12.2 Weak magnetic materials 368
12.2.1 Diamagnetic materials 368
12.2.2 Paramagnetic materials 368
12.2.3 The temperature dependence of paramagnetic susceptibility 371
12.3 Ferromagnetic materials 372
12.3.1 Ferromagnetism 372
12.3.2 Exchange energy 373
12.3.3 Antiferromagnetism and superexchange 374
12.3.4 Ferrimagnetism and double exchange 375
12.3.5 Cubic spinel ferrites 376
12.3.6 Hexagonal ferrites 377
12.4 Microstructures of ferromagnetic solids 378
12.4.1 Domains 378
12.4.2 Hysteresis 379
12.4.3 Hysteresis loops: hard and soft magnetic materials 380
12.5 Free electrons 381
12.5.1 Pauli paramagnetism 381
12.5.2 Transition metals 382
12.6 Nanostructures 383
12.6.1 Small particles and data recording 383
12.6.2 Superparamagnetism and thin films 383
12.6.3 Molecular magnetism 384
Answers to introductory questions 385
What atomic feature renders a material paramagnetic? 385
Why do ferromagnetic solids show a domain structure? 385
What is a ferrimagnetic material? 385
Further reading 386
Problems and exercises 386
CONTENTS xv
13 Electronic conductivity in solids 391
13.1 Metals 391
13.1.1 Metals, semiconductors and insulators 39]
13.1.2 Conductivity of metals and alloys 393
13.2 Semiconductors 396
13.2.1 Intrinsic semiconductors 396
13.2.2 Carrier concentrations in intrinsic semiconductors 398
13.2.3 Extrinsic semiconductors 399
13.2.4 Carrier concentrations in extrinsic semiconductors 400
13.2.5 Characterisation 401
13.2.6 The p-n junction diode 405
13.2.7 Modification of insulators 408
13.2.8 Conducting polymers 408
13.3 Nanostructures and quantum confinement of electrons 412
13.3.1 Quantum wells 412
13.3.2 Quantum wires and quantum dots 414
13.4 Superconductivity 415
13.4.1 Superconductors 415
13.4.2 The effect of magnetic fields 415
13.4.3 The effect of current 417
13.4.4 The nature of superconductivity 417
13.4.5 Ceramic high-temperature superconductors 418
13.4.6 Josephson junctions 421
Answers to introductory questions 422
How are donor atoms and acceptor atoms in semiconductors differentiated? 422
What is a quantum well? 422
What are Cooper pairs? 422
Further reading 422
Problems and exercises 423
14 Optical aspects of solids 431
14.1 The electromagnetic spectrum 431
14.1.1 Light waves 431
14.1.2 Photons 433
14.1.3 The interaction of light with matter 433
14.2 Sources of light 434
14.2.1 Luminescence 434
14.2.2 Incandescence 435
14.2.3 Fluorescence and solid-state lasers 436
14.2.4 The ruby laser: three-level lasers 437
14.2.5 The neodymium (Nd3+) solid-state laser: four-level lasers 438
14.2.6 Light-emitting diodes 439
14.2.7 Semiconductor lasers 441
14.3 Colour and appearance 441
14.3.1 Luminous solids 441
14.3.2 Nonluminous solids 441
14.3.3 The Beer-Lambert law 443
14.4 Refraction and dispersion 443
14.4.1 Refraction 443
14.4.2 Refractive index and structure 445
14.4.3 The refractive index of metals and semiconductors 446
14.4.4 Dispersion 446
xvi CONTENTS
14.5 Reflection 447
14.5.1 Reflection from a surface 447
14.5.2 Reflection from a single thin film 448
14.5.3 The reflectivity of a single thin film in air 449
14.5.4 The colour of a single thin film in air 449
14.5.5 The colour of a single thin film on a substrate 450
14.5.6 Low-reflectivity (antireflection) and high-reflectivity coatings 450
14.5.7 Multiple thin films and dielectric mirrors 451
14.6 Scattering 452
14.6.1 Rayleigh scattering 452
14.6.2 Mie scattering 453
14.7 Diffraction 454
14.7.1 Diffraction by an aperture 454
14.7.2 Diffraction gratings 455
14.7.3 Diffraction from crystal-like structures 456
14.7.4 Photonic crystals 456
14.8 Fibre optics 457
14.8.1 Optical communications 457
14.8.2 Attenuation in glass fibres 458
14.8.3 Dispersion and optical fibre design 459
14.8.4 Optical amplification 460
14.9 Nonlinear optical materials 461
14.9.1 Nonlinear optics 461
14.10 Energy conversion 462
14.10.1 Photoconductivity and photovoltaic solar cells 462
14.10.2 Photoelectrochemical cells 463
14.11 Nanostructures 464
14.11.1 The optical properties of quantum wells 465
14.11.2 Quantum wires and quantum dots 465
Answers to introductory questions 466
What are lasers? 466
Why are thin films often brightly coloured? 466
What produces the colour in opal? 466
Further reading 466
Problems and exercises 467
15 Thermal properties 473
15.1 Temperature effects 473
15.1.1 Heat capacity 473
15.1.2 Theory of heat capacity 474
15.1.3 Quantum and classical statistics 475
15.1.4 Thermal conductivity 475
15.1.5 Heat transfer 478
15.1.6 Thermal expansion 478
15.1.7 Thermal expansion and interatomic potentials 480
15.1.8 Thermal contraction 481
15.2 Thermoelectric effects 483
15.2.1 Thermoelectric coefficients 483
15.2.2 Thermoelectric effects and charge carriers 484
15.2.3 Thermocouples, power generation and refrigeration 485
Answers to introductory questions 487
What is zero-point energy? 487
CONTENTS xvii
What solids are named high thermal conductivity materials? 487
What physical property does thermoelectric refrigeration utilise? 487
Further reading 487
Problems and exercises 487
PART 5 NUCLEAR PROPERTIES OF SOLIDS 491
16 Radioactivity and nuclear reactions 493
16.1 Radioactivity 493
16.1.1 Radioactive elements 493
16.1.2 Isotopes and nuclides 494
16.1.3 Nuclear equations 494
16.1.4 Radioactive series 495
16.1.5 Transuranic elements 497
16.1.6 Artificial radioactivity 497
16.2 Rates of decay 499
16.2.1 Nuclear stability 499
16.2.2 The rate of nuclear decay 499
16.2.3 Radioactive dating 501
16.3 Nuclear power 502
16.3.1 The binding energy of nuclides 502
16.3.2 Nuclear fission 503
16.3.3 Thermal reactors for power generation 504
16.3.4 Fuel for space exploration 505
16.3.5 Fast breeder reactors 505
16.3.6 Fusion 505
16.3.7 Solar cycles 506
16.4 Nuclear waste 506
16.4.1 Nuclear accidents 507
16.4.2 The storage of nuclear waste 507
Answers to introductory questions 508
What is the difference between an isotope and a nuclide? 508
What chemical or physical procedures can be used to accelerate radioactive decay? 509
Why does nuclear fission release energy? 509
Further reading 509
Problems and exercises 509
SUPPLEMENTARY MATERIAL 513
SI Supplementary material to Part 1: structures and microstructure 515
51.1 Chemical equations and units 515
51.2 Electron configurations 516
51.2.1 The electron configurations of the lighter atoms 516
51.2.2 The electron configurations of the 3d transition metals 516
51.2.3 The electron configurations of the lanthanides 517
51.3 Energy levels and term schemes 517
51.3.1 Energy levels and terms schemes of many-electron atoms 517
51.3.2 The ground-state term of an atom 519
xviii CONTENTS
51.4 Madelung constants 519
51.5 The phase rule 520
51.5.1 The phase rule for one-component (unary) sytems 520
51.5.2 The phase rule for two-component (binary) systems 521
51.6 Miller indices 522
51.7 Interplanar spacing and unit cell volume 522
51.8 Construction of a reciprocal lattice 522
52 Supplementary material to Part 2: classes of materials 525
S2.1 Summary of organic chemical nomenclature 525
52.1.1 Hydrocarbons 525
52.1.2 Functional groups 529
53 Supplementary material to Part 3: reactions and transformations 531
53.1 Diffusion 531
53.1.1 The relationship between D and diffusion distance 531
53.1.2 Atomic migration and the diffusion coefficient 532
53.1.3 Ionic conductivity 533
53.2 Phase transformations and thermodynamics 534
53.2.1 Phase stability 534
53.2.2 Reactions 534
53.2.3 Oxidation 535
53.2.4 Temperature 536
53.2.5 Activity 536
53.3 Oxidation numbers 537
53.4 Cell notation 537
53.5 The stability field of water 538
53.6 Corrosion and the calculation of the Pourbaix diagram for iron 539
53.6.1 Corrosion of iron 539
53.6.2 The simplified Pourbaix diagram for iron in water and air 540
54 Supplementary material to Part 4: physical properties 543
54.1 Elastic and bulk moduli 543
54.1.1 Young s modulus or the modulus of elasticity, Y or E 543
54.1.2 The shear modulus or modulus of rigidity, G 543
54.1.3 The bulk modulus, K or B 544
54.1.4 The longitudinal or axial modulus, M 545
54.1.5 Poisson s ratio, v 545
54.1.6 Relations between the elastic moduli 545
54.1.7 The calculation of elastic and bulk moduli 545
54.2 Estimation of fracture strength 547
54.2.1 Estimation of the fracture strength of a brittle solid 547
54.2.2 Estimation of the fracture strength of a brittle solid containing a crack 548
54.3 Formulae and units used to describe the electrical properties of insulators 549
54.4 Formulae and units used to describe the magnetic properties of materials 550
S4.4.1 Conversion factors for superconductivity 551
54.5 Crystal field theory and ligand field theory 552
54.6 Electrical resistance and conductivity 553
CONTENTS xix
54.7 Current flow 554
54.8 The electron and hole concentrations in intrinsic semiconductors 555
54.9 Energy and wavelength conversions 557
54.10 Rates of absorption and emission of energy 557
54.11 The colour of a thin film in white light 559
54.12 Classical and quantum statistics 560
54.13 Physical properties and vectors 561
Answers to problems and exercises 563
Chemical Index 575
Subject Index 585
|
adam_txt |
Contents
Preface xxi
PART 1 STRUCTURES AND MICROSTRUCTURES 1
1 The electron structure of atoms 3
1.1 Atoms 3
1.2 The hydrogen atom 5
1.2.1 The quantum mechanical description of a hydrogen atom 5
1.2.2 The energy of the electron 6
1.2.3 The location of the electron 7
1.2.4 Orbital shapes 8
1.3 Many-electron atoms 10
1.3.1 The orbital approximation 10
1.3.2 Electron spin and electron configuration 11
1.3.3 The periodic table 13
1.4 Atomic energy levels 15
1.4.1 Electron energy levels 15
1.4.2 The vector model 15
1.4.3 Terms and term schemes 16
Answers to introductory questions 17
What is a wavefunction and what information does it provide? 17
Why does the periodic table summarise both the chemical and the physical properties
of the elements? 17
What is a term scheme? 18
Further reading 18
Problems and exercises 18
2 Chemical bonding 23
2.1 Ionic bonding 23
2.1.1 Ions 23
2.1.2 Ionic bonding 24
2.1.3 Madelung energy 24
2.1.4 Repulsive energy 26
2.1.5 Lattice energy 26
2.1.6 The formulae and structures of ionic compounds 27
viii CONTENTS
2.1.7 Ionic size and shape 28
2.1.8 Ionic structures 29
2.2 Covalent bonding 30
2.2.1 Molecular orbitals 30
2.2.2 The energies of molecular orbitals in diatomic molecules 31
2.2.3 Bonding between unlike atoms 34
2.2.4 Electronegativity 35
2.2.5 Bond strength and direction 36
2.2.6 Orbital hybridisation 37
2.2.7 Multiple bonds 40
2.2.8 Resonance 43
2.3 Metallic bonding 44
2.3.1 Bonding in metals 44
2.3.2 Chemical bonding 44
2.3.3 Atomic orbitals and energy bands 46
2.3.4 Divalent and other metals 46
2.3.5 The classical free-electron gas 47
2.3.6 The quantum free-electron gas 48
2.3.7 The Fermi energy and Fermi surface 49
2.3.8 Energy bands 51
2.3.9 Brillouin zones 53
2.3.10 Alloys and noncrystalline metals 53
2.3.11 Bands in ionic and covalent solids 54
Answers to introductory questions 56
What are the principle geometrical consequences of ionic, covalent and metallic bonding? 56
What orbitals are involved in multiple bond formation between atoms? 56
What are allowed energy bands? 56
Further reading 56
Problems and exercises 57
3 States of aggregation 61
3.1 Formulae and names 61
3.1.1 Weak chemical bonds 61
3.1.2 Chemical names and formulae 64
3.1.3 Polymorphism and other transformations 65
3.2 Macrostructures, microstructures and nanostructures 66
3.2.1 Structures and microstructures 66
3.2.2 Crystalline solids 67
3.2.3 Noncrystalline solids 67
3.2.4 Partly crystalline solids 69
3.2.5 Nanostructures 70
3.3 The development of microstructures 71
3.3.1 Solidification 71
3.3.2 Processing 73
3.4 Defects 73
3.4.1 Point defects in crystals of elements 73
3.4.2 Solid solutions 75
3.4.3 Schottky defects 75
3.4.4 Frenkel defects 77
3.4.5 Nonstoichiometric compounds 78
3.4.6 Edge dislocations 79
3.4.7 Screw dislocations 80
3.4.8 Partial and mixed dislocations 81
CONTENTS ix
3.4.9 Multiplication of dislocations 82
3.4.10 Planar defects 83
3.4.11 Volume defects: precipitates 84
Answers to introductory questions 85
What type of bonding causes the noble gases to condense to liquids? 85
What is the scale implied by the term 'nanostructure'? 85
What line defects occur in crystals? 85
Further reading 86
Problems and exercises 86
4 Phase diagrams 91
4.1 Phases and phase diagrams 91
4.1.1 One-component (unary) systems 91
4.2 Binary phase diagrams 94
4.2.1 Two-component (binary) systems 94
4.2.2 Simple binary phase diagrams: nickel-copper 94
4.2.3 Binary systems containing a eutectic point: lead-tin 96
4.2.4 Solid solution formation 99
4.2.5 Binary systems containing intermediate compounds 100
4.2.6 The iron-carbon phase diagram 101
4.2.7 Steels and cast irons 103
4.2.8 Invariant points 104
4.3 Ternary systems 104
4.3.1 Ternary phase diagrams 104
Answers to introductory questions 107
What is a binary phase diagram? 107
What is a peritectic transformation? 107
What is the difference between carbon steel and cast iron? 107
Further reading 107
Problems and exercises 108
5 Crystallography and crystal structures 115
5.1 Crystallography 115
5.1.1 Crystal lattices 115
5.1.2 Crystal structures and crystal systems 117
5.1.3 Symmetry and crystal classes 118
5.1.4 Crystal planes and Miller indices 119
5.1.5 Hexagonal crystals and Miller-Bravais indices 120
5.1.6 Directions 121
5.1.7 The reciprocal lattice 122
5.2 The determination of crystal structures 123
5.2.1 Single-crystal X-ray diffraction 124
5.2.2 Powder X-ray diffraction and crystal identification 124
5.2.3 Neutron diffraction 126
5.2.4 Electron diffraction 126
5.3 Crystal structures 127
5.3.1 Unit cells, atomic coordinates and nomenclature 127
5.3.2 The density of a crystal 128
5.3.3 The cubic close-packed (Al) structure 129
5.3.4 The body-centred cubic (A2) structure 130
x CONTENTS
5.3.5 The hexagonal (A3) structure 130
5.3.6 The diamond (A4) structure 131
5.3.7 The hexagonal (graphite), A9 structure 131
5.3.8 The structure of boron nitride 132
5.3.9 The halite (rock salt, sodium chloride, Bl) structure 132
5.3.10 The spinel (Hlj) structure 133
5.4 Structural relationships 134
5.4.1 Sphere packing 134
5.4.2 Ionic structures in terms of anion packing 136
5.4.3 Polyhedral representations 138
Answers to introductory questions 140
How does a lattice differ from a structure? 140
What is a unit cell? 140
What is meant by a (100) plane? 140
Further reading 141
Problems and exercises 141
PART 2 CLASSES OF MATERIALS 149
6 Metals, ceramics, polymers and composites 151
6.1 Metals 151
6.1.1 The crystal structures of pure metals 152
6.1.2 Metallic radii 153
6.1.3 Alloy solid solutions 154
6.1.4 Metallic glasses 157
6.1.5 The principal properties of metals 158
6.2 Ceramics 159
6.2.1 Bonding and structure of silicate ceramics 159
6.2.2 Bonding and structure of nonsilicate ceramics 163
6.2.3 The preparation and processing of ceramics 165
6.2.4 The principal properties of ceramics 165
6.3 Glass 166
6.3.1 Bonding and structure of silicate glasses 166
6.3.2 Glass deformation 168
6.3.3 Strengthened glass 170
6.3.4 Glass ceramics 170
6.4 Polymers 172
6.4.1 The chemical structure of some polymers 172
6.4.2 Microstructures of polymers 176
6.4.3 Production of polymers 180
6.4.4 Elastomers 183
6.4.5 The principal properties of polymers 185
6.5 Composite materials 187
6.5.1 Fibre-reinforced plastics 187
6.5.2 Metal-matrix composites 188
6.5.3 Ceramic-matrix composites 188
6.5.4 Cement and concrete 188
Answers to introductory questions 191
Are hydrides alloys or ceramics? 191
Are glasses liquids? 191
Are polymers glasses? 191
Why are plastic bags difficult to degrade? 192
CONTENTS xi
Further reading 192
Problems and exercises 192
PART 3 REACTIONS AND TRANSFORMATIONS 201
7 Diffusion 203
7.1 Self-diffusion, tracer diffusion and tracer impurity diffusion 203
7.2 Nonsteady-state diffusion 206
7.3 Steady-state diffusion 208
7.4 Temperature variation of the diffusion coefficient 208
7.5 The effect of impurities 209
7.6 The penetration depth 210
7.7 Self-diffusion mechanisms 210
7.8 Atomic movement during diffusion 211
7.9 Atomic migration and diffusion coefficients 212
7.10 Self-diffusion in crystals 212
7.11 The Arrhenius equation and the effect of temperature 213
7.12 Correlation factors for self-diffusion 214
7.13 Ionic conductivity 215
7.14 The relationship between ionic conductivity and the diffusion coefficient 217
Answers to introductory questions 218
What is a steady-state diffusion? 218
How does one obtain a quick estimate of the distance moved by diffusing atoms? 218
How does the energy barrier for ionic diffusion change when an electric field is present? 218
Further reading 218
Problems and exercises 218
8 Reactions and transformations 225
8.1 Dynamic equilibrium 225
8.1.1 Reversible reactions and equilibrium 225
8.1.2 Equilibrium constants 226
8.1.3 Combining equilibrium constants 227
8.1.4 Equilibrium conditions 227
8.1.5 Pseudochemical equilibrium 228
8.2 Phase diagrams and microstructures 229
8.2.1 Equilibrium solidification of simple binary alloys 229
8.2.2 Nonequilibrium solidification and coring 230
8.2.3 Solidification in systems containing a eutectic point 231
8.2.4 Equilibrium heat treatment of steels 233
8.2.5 Rapid cooling of steels 236
8.3 Martensitic transformations 237
8.3.1 Displacive transitions 237
8.3.2 Martensitic transitions in alloys 238
8.3.3 Shape-memory alloys 239
8.4 Sintering 241
8.4.1 Sintering and reaction 241
8.4.2 The driving force for sintering 242
xii CONTENTS
8.4.3 The kinetics of neck growth 243
8.5 High-temperature oxidation of metals 244
8.5.1 The driving force for oxidation 244
8.5.2 The rate of oxidation 244
8.5.3 Mechanisms of oxidation 245
8.6 Solid-state reactions 247
8.6.1 Spinel formation 247
8.6.2 The kinetics of spinel formation 249
Answers to introductory questions 249
What is dynamic equilibrium? 249
What defines a martensitic transformation? 250
What is the main driving force for sintering? 250
Further reading 250
Problems and exercises 251
9 Oxidation and reduction 257
9.1 Redox reactions 257
9.1.1 Oxidation and reduction 257
9.2 Galvanic cells 258
9.2.1 The Daniel cell 258
9.2.2 Standard electrode potentials 259
9.2.3 Cell potential and free energy 261
9.2.4 Concentration dependence 262
9.2.5 Chemical analysis using galvanic cells 263
9.3 Batteries 265
9.3.1 'Dry' and alkaline primary batteries 265
9.3.2 Lithium-ion primary batteries 266
9.3.3 The lead-acid secondary battery 267
9.3.4 Nickel-cadmium (Ni-Cd, nicad) rechargable batteries 267
9.3.5 Nickel-metal-hydride rechargeable batteries 268
9.3.6 Lithium-ion rechargeable batteries 269
9.3.7 Fuel cells 270
9.4 Corrosion 272
9.4.1 The reaction of metals with water and aqueous acids 272
9.4.2 Dissimilar-metal corrosion 274
9.4.3 Single-metal electrochemical corrosion 275
9.5 Electrolysis 277
9.5.1 Electrolytic cells 277
9.5.2 Electrolysis of fused salts 277
9.5.3 The electrolytic preparation of titanium by the Fray-Farthing-Chen Cambridge process 278
9.5.4 Electrolysis of aqueous solutions 280
9.5.5 The amount of product produced during electrolysis 281
9.5.6 Electroplating 282
9.6 Pourbaix diagrams 283
9.6.1 Passivation and corrosion 283
9.6.2 Variable valence states 283
9.6.3 Pourbaix diagram for a metal showing two valence states, M2+ and M3+ 284
9.6.4 Pourbaix diagram displaying tendency for corrosion 285
9.6.5 Limitations of Pourbaix diagrams 285
Answers to introductory questions 286
What is an electrochemical cell? 286
What are the electrode materials in nickel-metal-hydride batteries? 286
What information is contained in a Pourbaix diagram? 286
CONTENTS xiii
Further reading 287
Problems and exercises 287
PART 4 PHYSICAL PROPERTIES 293
10 Mechanical properties of solids 295
10.1 Deformation 296
10.1.1 Strength 296
10.1.2 Stress and strain 296
10.1.3 Stress-strain curves 297
10.1.4 Elastic deformation: the elastic (Young's) modulus 300
10.1.5 Poisson's ratio 301
10.1.6 Toughness and stiffness 302
10.1.7 Brittle fracture 302
10.1.8 Plastic deformation of metals and ceramics 305
10.1.9 Dislocation movement and plastic deformation 306
10.1.10 Brittle and ductile materials 307
10.1.11 Plastic deformation of polymers 310
10.1.12 Fracture following plastic deformation 311
10.1.13 Strengthening 313
10.1.14 Hardness 314
10.2 Time-dependent properties 316
10.2.1 Fatigue 316
10.2.2 Creep 317
10.3 Nanoscale properties 320
10.3.1 Solid lubricants 320
10.3.2 Auxetic materials 322
10.3.3 Thin films 323
10.4 Composite materials 326
10.4.1 Elastic modulus of large-particle composites 326
10.4.2 Elastic modulus of fibre-reinforced composites 326
10.4.3 Elastic modulus of a two-phase system 328
Answers to introductory questions 328
How are stress and strain defined? 328
Why are alloys stronger than pure metals? 329
What are solid lubricants? 329
Further reading 330
Problems and exercises 330
11 Insulating solids 337
11.1 Dielectrics 337
11.1.1 Relative permittivity and polarisation 337
11.1.2 Polarisability 339
11.1.3 Polarisability and relative permittivity 340
11.1.4 The frequency dependence of polarizability and relative permittivity 341
11.1.5 Polarisation in nonisotropic crystals 343
11.2 Piezoelectrics, pyroelectrics and ferroelectrics 343
11.2.1 The piezoelectric and pyroelectric effects 343
11.2.2 Piezoelectric mechanisms 345
xiv CONTENTS
11.2.3 Piezoelectric polymers 347
11.2.4 The pyroelectric effect 349
11.3 Ferroelectrics 350
11.3.1 Ferroelectric crystals 350
11.3.2 Hysteresis in ferroelectric crystals 351
11.3.3 Antiferroelectrics 351
11.3.4 The temperature dependence of ferroelectricity and antiferroelectricity 352
11.3.5 Ferroelectricity due to hydrogen bonds 352
11.3.6 Ferroelectricity due to polar groups 354
11.3.7 Ferroelectricity due to medium-sized transition-metal cations 354
11.3.8 Poling and polycrystalline ferroelectric solids 355
11.3.9 Doping and modification of properties 356
Answers to introductory questions 356
How are the relative permittivity and refractive index of a transparent solid related? 356
What is the relationship between ferroelectric and pyroelectric crystals? 357
How can a ferroelectric solid be made from a polycrystalline aggregate? 357
Further reading 357
Problems and exercises 358
12 Magnetic solids 363
12.1 Magnetic materials 363
12.1.1 Characterisation of magnetic materials 363
12.1.2 Types of magnetic material 364
12.1.3 Atomic magnetism 367
12.2 Weak magnetic materials 368
12.2.1 Diamagnetic materials 368
12.2.2 Paramagnetic materials 368
12.2.3 The temperature dependence of paramagnetic susceptibility 371
12.3 Ferromagnetic materials 372
12.3.1 Ferromagnetism 372
12.3.2 Exchange energy 373
12.3.3 Antiferromagnetism and superexchange 374
12.3.4 Ferrimagnetism and double exchange 375
12.3.5 Cubic spinel ferrites 376
12.3.6 Hexagonal ferrites 377
12.4 Microstructures of ferromagnetic solids 378
12.4.1 Domains 378
12.4.2 Hysteresis 379
12.4.3 Hysteresis loops: hard and soft magnetic materials 380
12.5 Free electrons 381
12.5.1 Pauli paramagnetism 381
12.5.2 Transition metals 382
12.6 Nanostructures 383
12.6.1 Small particles and data recording 383
12.6.2 Superparamagnetism and thin films 383
12.6.3 Molecular magnetism 384
Answers to introductory questions 385
What atomic feature renders a material paramagnetic? 385
Why do ferromagnetic solids show a domain structure? 385
What is a ferrimagnetic material? 385
Further reading 386
Problems and exercises 386
CONTENTS xv
13 Electronic conductivity in solids 391
13.1 Metals 391
13.1.1 Metals, semiconductors and insulators 39]
13.1.2 Conductivity of metals and alloys 393
13.2 Semiconductors 396
13.2.1 Intrinsic semiconductors 396
13.2.2 Carrier concentrations in intrinsic semiconductors 398
13.2.3 Extrinsic semiconductors 399
13.2.4 Carrier concentrations in extrinsic semiconductors 400
13.2.5 Characterisation 401
13.2.6 The p-n junction diode 405
13.2.7 Modification of insulators 408
13.2.8 Conducting polymers 408
13.3 Nanostructures and quantum confinement of electrons 412
13.3.1 Quantum wells 412
13.3.2 Quantum wires and quantum dots 414
13.4 Superconductivity 415
13.4.1 Superconductors 415
13.4.2 The effect of magnetic fields 415
13.4.3 The effect of current 417
13.4.4 The nature of superconductivity 417
13.4.5 Ceramic 'high-temperature' superconductors 418
13.4.6 Josephson junctions 421
Answers to introductory questions 422
How are donor atoms and acceptor atoms in semiconductors differentiated? 422
What is a quantum well? 422
What are Cooper pairs? 422
Further reading 422
Problems and exercises 423
14 Optical aspects of solids 431
14.1 The electromagnetic spectrum 431
14.1.1 Light waves 431
14.1.2 Photons 433
14.1.3 The interaction of light with matter 433
14.2 Sources of light 434
14.2.1 Luminescence 434
14.2.2 Incandescence 435
14.2.3 Fluorescence and solid-state lasers 436
14.2.4 The ruby laser: three-level lasers 437
14.2.5 The neodymium (Nd3+) solid-state laser: four-level lasers 438
14.2.6 Light-emitting diodes 439
14.2.7 Semiconductor lasers 441
14.3 Colour and appearance 441
14.3.1 Luminous solids 441
14.3.2 Nonluminous solids 441
14.3.3 The Beer-Lambert law 443
14.4 Refraction and dispersion 443
14.4.1 Refraction 443
14.4.2 Refractive index and structure 445
14.4.3 The refractive index of metals and semiconductors 446
14.4.4 Dispersion 446
xvi CONTENTS
14.5 Reflection 447
14.5.1 Reflection from a surface 447
14.5.2 Reflection from a single thin film 448
14.5.3 The reflectivity of a single thin film in air 449
14.5.4 The colour of a single thin film in air 449
14.5.5 The colour of a single thin film on a substrate 450
14.5.6 Low-reflectivity (antireflection) and high-reflectivity coatings 450
14.5.7 Multiple thin films and dielectric mirrors 451
14.6 Scattering 452
14.6.1 Rayleigh scattering 452
14.6.2 Mie scattering 453
14.7 Diffraction 454
14.7.1 Diffraction by an aperture 454
14.7.2 Diffraction gratings 455
14.7.3 Diffraction from crystal-like structures 456
14.7.4 Photonic crystals 456
14.8 Fibre optics 457
14.8.1 Optical communications 457
14.8.2 Attenuation in glass fibres 458
14.8.3 Dispersion and optical fibre design 459
14.8.4 Optical amplification 460
14.9 Nonlinear optical materials 461
14.9.1 Nonlinear optics 461
14.10 Energy conversion 462
14.10.1 Photoconductivity and photovoltaic solar cells 462
14.10.2 Photoelectrochemical cells 463
14.11 Nanostructures 464
14.11.1 The optical properties of quantum wells 465
14.11.2 Quantum wires and quantum dots 465
Answers to introductory questions 466
What are lasers? 466
Why are thin films often brightly coloured? 466
What produces the colour in opal? 466
Further reading 466
Problems and exercises 467
15 Thermal properties 473
15.1 Temperature effects 473
15.1.1 Heat capacity 473
15.1.2 Theory of heat capacity 474
15.1.3 Quantum and classical statistics 475
15.1.4 Thermal conductivity 475
15.1.5 Heat transfer 478
15.1.6 Thermal expansion 478
15.1.7 Thermal expansion and interatomic potentials 480
15.1.8 Thermal contraction 481
15.2 Thermoelectric effects 483
15.2.1 Thermoelectric coefficients 483
15.2.2 Thermoelectric effects and charge carriers 484
15.2.3 Thermocouples, power generation and refrigeration 485
Answers to introductory questions 487
What is zero-point energy? 487
CONTENTS xvii
What solids are named high thermal conductivity materials? 487
What physical property does thermoelectric refrigeration utilise? 487
Further reading 487
Problems and exercises 487
PART 5 NUCLEAR PROPERTIES OF SOLIDS 491
16 Radioactivity and nuclear reactions 493
16.1 Radioactivity 493
16.1.1 Radioactive elements 493
16.1.2 Isotopes and nuclides 494
16.1.3 Nuclear equations 494
16.1.4 Radioactive series 495
16.1.5 Transuranic elements 497
16.1.6 Artificial radioactivity 497
16.2 Rates of decay 499
16.2.1 Nuclear stability 499
16.2.2 The rate of nuclear decay 499
16.2.3 Radioactive dating 501
16.3 Nuclear power 502
16.3.1 The binding energy of nuclides 502
16.3.2 Nuclear fission 503
16.3.3 Thermal reactors for power generation 504
16.3.4 Fuel for space exploration 505
16.3.5 Fast breeder reactors 505
16.3.6 Fusion 505
16.3.7 Solar cycles 506
16.4 Nuclear waste 506
16.4.1 Nuclear accidents 507
16.4.2 The storage of nuclear waste 507
Answers to introductory questions 508
What is the difference between an isotope and a nuclide? 508
What chemical or physical procedures can be used to accelerate radioactive decay? 509
Why does nuclear fission release energy? 509
Further reading 509
Problems and exercises 509
SUPPLEMENTARY MATERIAL 513
SI Supplementary material to Part 1: structures and microstructure 515
51.1 Chemical equations and units 515
51.2 Electron configurations 516
51.2.1 The electron configurations of the lighter atoms 516
51.2.2 The electron configurations of the 3d transition metals 516
51.2.3 The electron configurations of the lanthanides 517
51.3 Energy levels and term schemes 517
51.3.1 Energy levels and terms schemes of many-electron atoms 517
51.3.2 The ground-state term of an atom 519
xviii CONTENTS
51.4 Madelung constants 519
51.5 The phase rule 520
51.5.1 The phase rule for one-component (unary) sytems 520
51.5.2 The phase rule for two-component (binary) systems 521
51.6 Miller indices 522
51.7 Interplanar spacing and unit cell volume 522
51.8 Construction of a reciprocal lattice 522
52 Supplementary material to Part 2: classes of materials 525
S2.1 Summary of organic chemical nomenclature 525
52.1.1 Hydrocarbons 525
52.1.2 Functional groups 529
53 Supplementary material to Part 3: reactions and transformations 531
53.1 Diffusion 531
53.1.1 The relationship between D and diffusion distance 531
53.1.2 Atomic migration and the diffusion coefficient 532
53.1.3 Ionic conductivity 533
53.2 Phase transformations and thermodynamics 534
53.2.1 Phase stability 534
53.2.2 Reactions 534
53.2.3 Oxidation 535
53.2.4 Temperature 536
53.2.5 Activity 536
53.3 Oxidation numbers 537
53.4 Cell notation 537
53.5 The stability field of water 538
53.6 Corrosion and the calculation of the Pourbaix diagram for iron 539
53.6.1 Corrosion of iron 539
53.6.2 The simplified Pourbaix diagram for iron in water and air 540
54 Supplementary material to Part 4: physical properties 543
54.1 Elastic and bulk moduli 543
54.1.1 Young's modulus or the modulus of elasticity, Y or E 543
54.1.2 The shear modulus or modulus of rigidity, G 543
54.1.3 The bulk modulus, K or B 544
54.1.4 The longitudinal or axial modulus, M 545
54.1.5 Poisson's ratio, v 545
54.1.6 Relations between the elastic moduli 545
54.1.7 The calculation of elastic and bulk moduli 545
54.2 Estimation of fracture strength 547
54.2.1 Estimation of the fracture strength of a brittle solid 547
54.2.2 Estimation of the fracture strength of a brittle solid containing a crack 548
54.3 Formulae and units used to describe the electrical properties of insulators 549
54.4 Formulae and units used to describe the magnetic properties of materials 550
S4.4.1 Conversion factors for superconductivity 551
54.5 Crystal field theory and ligand field theory 552
54.6 Electrical resistance and conductivity 553
CONTENTS xix
54.7 Current flow 554
54.8 The electron and hole concentrations in intrinsic semiconductors 555
54.9 Energy and wavelength conversions 557
54.10 Rates of absorption and emission of energy 557
54.11 The colour of a thin film in white light 559
54.12 Classical and quantum statistics 560
54.13 Physical properties and vectors 561
Answers to problems and exercises 563
Chemical Index 575
Subject Index 585 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Tilley, Richard J. D. |
author_facet | Tilley, Richard J. D. |
author_role | aut |
author_sort | Tilley, Richard J. D. |
author_variant | r j d t rjd rjdt |
building | Verbundindex |
bvnumber | BV023034448 |
classification_rvk | UP 1000 VE 9300 VE 9301 |
classification_tum | CHE 194f PHY 601f WER 001f |
ctrlnum | (OCoLC)315979003 (DE-599)BVBBV023034448 |
dewey-full | 620.11 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.11 |
dewey-search | 620.11 |
dewey-sort | 3620.11 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Chemie Werkstoffwissenschaften |
discipline_str_mv | Chemie / Pharmazie Physik Chemie Werkstoffwissenschaften |
edition | Repr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01910nam a2200517zc 4500</leader><controlfield tag="001">BV023034448</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071217 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071204s2007 xxkad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470852755</subfield><subfield code="9">0-470-85275-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470852763</subfield><subfield code="9">0-470-85276-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470852767</subfield><subfield code="9">978-0-470-85276-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315979003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023034448</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1000</subfield><subfield code="0">(DE-625)146338:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9300</subfield><subfield code="0">(DE-625)147152:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9301</subfield><subfield code="0">(DE-625)147152:254</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 194f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 601f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 001f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tilley, Richard J. D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding solids</subfield><subfield code="b">the science of materials</subfield><subfield code="c">Richard J. D. Tilley</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Repr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 593 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoffkunde</subfield><subfield code="0">(DE-588)4079184-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperchemie</subfield><subfield code="0">(DE-588)4129288-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Festkörperchemie</subfield><subfield code="0">(DE-588)4129288-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Werkstoffkunde</subfield><subfield code="0">(DE-588)4079184-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip0415/2004004221.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016238248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016238248</subfield></datafield></record></collection> |
id | DE-604.BV023034448 |
illustrated | Illustrated |
index_date | 2024-07-02T19:18:19Z |
indexdate | 2024-07-09T21:09:28Z |
institution | BVB |
isbn | 0470852755 0470852763 9780470852767 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016238248 |
oclc_num | 315979003 |
open_access_boolean | |
owner | DE-92 DE-355 DE-BY-UBR |
owner_facet | DE-92 DE-355 DE-BY-UBR |
physical | XXII, 593 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley |
record_format | marc |
spelling | Tilley, Richard J. D. Verfasser aut Understanding solids the science of materials Richard J. D. Tilley Repr. Chichester [u.a.] Wiley 2007 XXII, 593 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Werkstoffkunde (DE-588)4079184-1 gnd rswk-swf Festkörperphysik (DE-588)4016921-2 gnd rswk-swf Festkörperchemie (DE-588)4129288-1 gnd rswk-swf Festkörperphysik (DE-588)4016921-2 s DE-604 Festkörperchemie (DE-588)4129288-1 s Werkstoffkunde (DE-588)4079184-1 s http://www.loc.gov/catdir/toc/ecip0415/2004004221.html Table of contents HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016238248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tilley, Richard J. D. Understanding solids the science of materials Werkstoffkunde (DE-588)4079184-1 gnd Festkörperphysik (DE-588)4016921-2 gnd Festkörperchemie (DE-588)4129288-1 gnd |
subject_GND | (DE-588)4079184-1 (DE-588)4016921-2 (DE-588)4129288-1 |
title | Understanding solids the science of materials |
title_auth | Understanding solids the science of materials |
title_exact_search | Understanding solids the science of materials |
title_exact_search_txtP | Understanding solids the science of materials |
title_full | Understanding solids the science of materials Richard J. D. Tilley |
title_fullStr | Understanding solids the science of materials Richard J. D. Tilley |
title_full_unstemmed | Understanding solids the science of materials Richard J. D. Tilley |
title_short | Understanding solids |
title_sort | understanding solids the science of materials |
title_sub | the science of materials |
topic | Werkstoffkunde (DE-588)4079184-1 gnd Festkörperphysik (DE-588)4016921-2 gnd Festkörperchemie (DE-588)4129288-1 gnd |
topic_facet | Werkstoffkunde Festkörperphysik Festkörperchemie |
url | http://www.loc.gov/catdir/toc/ecip0415/2004004221.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016238248&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tilleyrichardjd understandingsolidsthescienceofmaterials |