Classical mechanics: an introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 405 S. Ill., graph. Darst. |
ISBN: | 9783540736158 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023030353 | ||
003 | DE-604 | ||
005 | 20100507 | ||
007 | t | ||
008 | 071203s2009 ad|| |||| 00||| eng d | ||
015 | |a 07,N30,0971 |2 dnb | ||
016 | 7 | |a 984785574 |2 DE-101 | |
020 | |a 9783540736158 |9 978-3-540-73615-8 | ||
024 | 3 | |a 9783540736158 | |
028 | 5 | 2 | |a 11780212 |
035 | |a (OCoLC)174131496 | ||
035 | |a (DE-599)DNB984785574 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-20 |a DE-355 |a DE-703 |a DE-634 |a DE-83 | ||
050 | 0 | |a QC125.5 | |
082 | 0 | |a 531 |2 22 | |
084 | |a UF 1000 |0 (DE-625)145552: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Strauch, Dieter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Classical mechanics |b an introduction |c Dieter Strauch |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2009 | |
300 | |a XXI, 405 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Mechanics | |
650 | 0 | 7 | |a Theoretische Mechanik |0 (DE-588)4185100-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Theoretische Mechanik |0 (DE-588)4185100-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-73616-5 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016234250&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016234250 |
Datensatz im Suchindex
_version_ | 1804137254555222016 |
---|---|
adam_text | Contents
Preface
........................................................
v
1
The Newtonian Mechanics of Point-Mass Systems:
General Properties
........................................ 1
1.1
Point Masses, Open and Closed Systems
.................... 1
1.1.1
The Point Mass as an Idealization
................... 1
1.1.2
Open and Closed Systems, Internal and External Forces
2
1.2
Newton s Axioms
(1687):
A New Era
...................... 4
1.3
Einstein s Equivalence Principle
(1916):
Another New Era
.... 8
1.3.1
Mass, Weight, Force, and the Like
................... 8
1.3.2
Einstein s Equivalence Principle
..................... 9
1.4
Types of Forces
......................................... 9
1.4.1
Central Forces
.................................... 9
1.4.2
Conservative Forces (I)
............................. 11
1.4.3
Central Potentials
................................. 12
1.4.4
Potential and Potential Energy
...................... 12
1.4.5
The
Lorentz
Force
................................. 12
1.4.6
Frictional Forces
.................................. 13
1.5
Equations of Motion
..................................... 14
1.5.1
Definitions
....................................... 14
1.5.2
Equations of Motion
............................... 15
1.6
Conservation Laws
...................................... 17
1.6.1
Conservation of Momentum
......................... 17
1.6.2
Angular-Momentum Conservation and Central Forces
.. 18
1.7
Energy-Conservation Theorem and Conservative Forces
...... 18
1.7.1
Conservative Forces (II)
............................ 18
1.7.2
Potential Energy, Work, and Power
.................. 19
1.7.3
Energy Conservation Theorem
...................... 20
1.8
Invariances
and Conservation Laws
........................ 20
1.8.1
Translations and Rotations
......................... 20
Contents
1.8.2
Invariances
and Conservation Laws:
Noether s Theorem (I)
............................. 21
1.8.3
The Usefulness of the Conservation Laws
............. 23
1.8.4
The Usefulness of Symmetry Analysis
................ 23
1.9 *
Virial Theorem
........................................ 23
1.10
The Basic Problem of the Mechanics of a Point Mass
........ 25
Summary: Newtonian Mechanics
-
General Properties
............ 25
Problems
................................................... 27
Newtonian Mechanics: First Applications
.................. 29
2.1
One-Dimensional Motion
................................. 29
2.1.1
Constant Force
.................................... 29
2.1.2
Time-Dependent Force
............................. 30
2.1.3
Velocity-Dependent Force
.......................... 31
2.1.4
Coordinate-Dependent Force
........................ 32
2.1.5
Example: Plane Pendulum (with Small Amplitude)
.... 34
2.1.6 *
Example: Plane Pendulum with Large Amplitude
.... 38
2.2
Motion in a Plane
....................................... 41
2.2.1
Fixed and Moving Basis
............................ 41
2.2.2
Time Dependence of the Moving Basis
............... 42
2.2.3
Velocity, Acceleration, etc. in Plane Polar Coordinates
. 44
2.2.4
Example: Plane Pendulum
.......................... 46
2.3
Two-Particle Systems
.................................... 48
2.3.1
Center-of-Mass and Relative Coordinates
............. 48
2.3.2
Equations of Motion
............................... 49
2.3.3
Closed Systems
................................... 50
Summary: Newtonian Mechanics
-
First Applications
............. 51
Problems
................................................... 52
Lagrangian Mechanics
..................................... 55
3.1
Motion with Constraints
................................. 56
3.2
Constraints and Generalized Coordinates
................... 57
3.2.1
Examples of Constraints
........................... 57
3.2.2
Classification of Constraints
........................ 58
3.2.3
Degrees of Freedom
................................ 61
3.2.4
Generalized Coordinates
........................... 62
3.2.5
Example: Plane Double Pendulum
................... 62
3.3
Forces of Constraint
..................................... 63
3.4
The Principle of d Alembert
.............................. 64
3.4.1
Real and Virtual Displacements
..................... 64
3.4.2
The Principle of Virtual Work
...................... 66
3.4.3
The Principle of d Alembert
........................ 67
3.5
Lagrangian Equations of the Second Kind
.................. 67
3.5.1
External and Internal Forces
........................ 68
3.5.2
Conservative Forces
................................ 68
Contents xi
3.5.3
Inerţial
Forces.................................... 69
3.5.4 Lagrangian
Equations
of
Motion .................... 70
3.5.5
Example:
Plane Motion in
a
Central Potential........ 72
3.5.6
Example: Bead Sliding on a Uniformly
Rotating Rod
..................................... 73
3.5.7
Example: Plane Double Pendulum
................... 74
3.5.8
Separable Systems
................................. 76
3.6
Generalized Momentum, Force, etc
......................... 78
3.6.1
Generalized Force and Generalized Momentum
........ 78
3.7
Velocity-Dependent Forces
................................ 80
3.7.1
Generalized Potential
.............................. 80
3.7.2
Lorentz
Force
..................................... 80
3.8
Gauge
Invariance
and Form
Invariance
..................... 81
3.8.1
(Un)Ambiguity of the Lagrangian Function:
Gauge Transformation
............................. 81
3.8.2 *
Form
Invariance
of the Lagrangian Equations
under Point Transformations
........................ 83
3.9 *
Lagrangian Equations of the First Kind
.................. 84
3.9.1 Lagrange
Multipliers
............................... 84
3.9.2
Lagrangian Equations of the First Kind
.............. 85
3.9.3
Example: Atwood Machine
......................... 86
3.10
Hamilton s Principle
..................................... 92
3.10.1
The Action
....................................... 92
3.10.2
Hamilton s Principle
............................... 93
3.11
Symmetries and Conservation Laws
........................ 95
3.11.1
Noether s Theorem (II)
............................ 95
3.11.2
Cyclic Coordinate and Conservation
of the Conjugate Momentum
........................ 96
3.11.3
Homogeneity in Time and Energy Conservation
....... 97
3.11.4
Space Homogeneity and Conservation of Momentum
... 100
3.11.5
Isotropy and Angular-Momentum Conservation
.......100
Summary: Lagrangian Mechanics
..............................101
Problems
...................................................102
4
Harmonic Vibrations
......................................113
4.1
The Simple Oscillator
....................................117
4.1.1 Eigen
Solutions of the Homogeneous Differential
Equation
.........................................117
4.2
The Free Oscillator with Damping
.........................120
4.2.1 Eigen
Solutions of the Homogeneous Differential
Equation
.........................................120
4.2.2
Reality of the Solution
.............................122
4.2.3
Initial Conditions
.................................123
Contents
4.3
The Forced Harmonic Oscillator
...........................125
4.3.1
Equation of Motion
................................125
4.3.2
Solution of the Inhomogeneous Linear Differential
Equation by Fourier Transformation
.................126
4.3.3
Green Function of the Damped Oscillator
in Frequency Space
................................129
4.3.4
Time-Dependent Green Function
....................131
4.3.5
Energy Considerations
.............................134
4.4
Coupled Oscillators
......................................138
4.4.1
Introductory Example: Stretching Vibrations
in the CO2 Molecule
...............................138
4.4.2
General Coupled Vibrations
........................145
4.4.3
Normal Coordinates
...............................147
Summary: Harmonic Vibrations
................................148
Problems
...................................................149
Central Potentials and the Kepler Problem
................157
5.1
Central Force and Motion in a Plane
.......................157
5.1.1
Central Potential, Central Force, and
Angular-Momentum Conservation
...................157
5.1.2
Central Potential and Effective Radial Potential
.......159
5.1.3
Central Potential and Trajectory
....................160
5.2
Kinematics of the Kepler Motion
..........................163
5.2.1
Kepler s Laws
.....................................163
5.2.2
Polar Representation of the Conies
..................165
5.2.3
Determination of the Force and Potential
from the Trajectory
................................166
5.2.4
Determination of the Trajectory from the Potential
.... 168
5.2.5
Trajectory and Rotation Periods
....................171
5.2.6
The Laplace-Runge-Lenz Vector
....................173
5.2.7
Perihelion Rotation
................................175
Summary: Central Potentials and the Kepler Problem
............177
Problems
...................................................178
Collision and Scattering Problems
.........................183
6.1
Kinematics
.............................................183
6.1.1
Scattering and Collision
............................184
6.1.2
Momentum Change and Impulsive Force
.............184
6.1.3
Laboratory System and Center-of-Mass System
.......185
6.1.4
Consequences of the Conservation of Momentum
......186
6.1.5
Elastic and Inelastic Scattering
......................187
6.1.6
Consequences of the Angular-Momentum
Conservation
.....................................189
Contents xiii
6.2
Collision
of Hard Spheres
.................................190
6.2.1
Notations
........................................190
6.2.2
Elastic Collision of Smooth Spheres
(Laboratory System)
...............................190
6.3
Scattering by a Central Potential
..........................194
6.3.1
Central Potential and Scattering Angle
...............194
6.3.2
Scattering by the Gravitational Potential
.............195
6.4 *
The Cross-Section
.....................................196
6.4.1
The Problem
.....................................196
6.4.2
Scattering of Many Probe Particles
by Many Target Particles
...........................197
6.4.3
Scattering from a Particle at Rest
...................197
6.4.4
The Differential Cross-Section
.......................198
6.4.5
The Total Cross-Section
............................200
6.4.6
The Rutherford Cross-Section
.......................200
6.4.7
Scattering Cross-Section for a Collision
of Hard Spheres
...................................201
Summary: Collision and Scattering Problems
....................202
Problems
...................................................203
Moving Reference Frames
.................................207
7.1
Translations
............................................208
7.1.1
The Transformation
...............................208
7.1.2
Inerţial
Forces
....................................209
7.2
Rotation Around a Fixed Point
...........................209
7.2.1
Active and Passive Rotation
........................209
7.2.2
Infinitesimal Rotations
.............................210
7.2.3
Representation in Different Coordinate Systems
.......211
7.2.4
Uniformly Rotating System: Centrifugal
and Coriolis Force
.................................214
7.2.5
The
Foucault
Pendulum
............................214
7.3
Galilean and
Lorentz
Transformation
......................217
7.3.1
The Relativity Principle
............................218
7.3.2
General and Special Transformation
.................218
7.3.3
The Galilean Transformation
.......................219
7.3.4
Galilean
Invariance
................................220
7.3.5
The
Lorentz
Transformation
........................221
Summary: Moving Reference Frames
...........................222
Problems
...................................................223
Dynamics of a Rigid Body
.................................227
8.1
The Rigid Body as a System of
N
Point Masses
.............227
8.2
Translational and Rotational Energy: Inertia Tensor
.........228
8.2.1
The Center of Mass as the Specific Point
.............228
8.2.2
The Instantaneously Fixed Point as the Specific Point
.. 231
Contents
8.3 Transition
to the Continuum
..............................232
8.3.1
Example: Center of Mass of a Homogeneous
Hemisphere
.......................................233
8.3.2
Examples of Inertia Tensors
........................234
8.4
Change of the Reference System: Steiner s Theorem
..........238
8.4.1
Steiner s Theorem
.................................238
8.4.2
Angular Momentum and Torque
....................239
8.4.3
Examples
........................................241
8.5
Principal Moments of Inertia and Principal Axes
............242
8.5.1
Definitions
.......................................242
8.5.2
Examples
........................................244
8.6
Rotation Around a Fixed Axis
............................247
8.6.1
Inertia Tensor and Moment of Inertia
................248
8.6.2
The Equation of Motion
............................249
8.6.3
Example: Motion in the Homogeneous Gravitational
Field: The Physical Pendulum
......................249
8.6.4
Example: A Cylinder Rolling on an Inclined Plane
.....251
8.7
Rotation Around a Fixed Point: The Top
...................253
8.7.1
Space-Fixed
(Inerţial)
and Body-Fixed Coordinate
System
...........................................253
8.7.2 *
Euler
Angles
....................................254
8.7.3 *
The
Euler
Equations of Motion
....................257
8.8
The Force-Free Symmetrical Top
..........................258
8.8.1
The Equations of Motion
...........................258
8.8.2 *
Stability of the Rotational Motion of the Top
.......260
Summary: Dynamics of a Rigid Body
...........................262
Problems
...................................................263
Hamiltonian Dynamics
....................................269
9.1
Hamiltonian Equations of Motion
..........................269
9.1.1
The Hamiltonian Function
..........................269
9.1.2
Canonical (Hamiltonian) Equations of Motion
.........271
9.1.3 *
(Un)Ambiguity of the Hamiltonian Function:
Gauge Transformation
.............................274
9.2 *
Poisson
Brackets
.......................................275
9.2.1
Definition
29.
(Poisson
Brackets)
....................275
9.2.2
Equations of Motion
...............................276
9.2.3
Fundamental
Poisson
Brackets
......................277
9.2.4
Properties of the
Poisson
Brackets
...................277
9.2.5
Example: Harmonic oscillator
.......................277
9.2.6
Transition to Quantum Mechanics
...................278
9.3
Configuration Space and Phase Space
......................278
9.3.1
Configuration Space
...............................278
9.3.2
Phase Space
......................................279
Contents xv
9.4 *
The Modified Hamilton Principle
........................281
9.5 *
Canonical Transformation
...............................282
9.5.1
Point Transformation in Configuration Space
.........282
9.5.2
Point Transformation in Phase Space
................283
9.5.3
Canonical Transformation
..........................284
9.5.4
Time Development as a Canonical Transformation
.....287
9.5.5
Canonical Invariants
...............................288
9.5.6
Generating Function
...............................289
9.5.7
The Theorem of Liouville
...........................294
9.6 *
Hamilton-Jacobi Equation
..............................296
9.6.1
Action Function
...................................296
9.6.2
The Characteristic Function
........................298
9.6.3
Examples
........................................299
Summary: Hamiltonian Dynamics
..............................303
Problems
...................................................304
10 *
Introduction to the Mechanics of
Continua
..............309
10.1
Fields
..................................................309
10.2
Lagrangian Density
......................................311
10.2.1
Kinetic Energy Density
............................311
10.2.2
Potential Energy Density
...........................312
10.2.3
Lagrangian Density
................................314
10.3
Hamilton s Principle and Lagrangian Equations
.............314
10.4
The Energy-Momentum Tensor
...........................317
10.4.1
The Conservation Theorem
.........................317
10.4.2
Energy Density
...................................318
10.4.3
Energy-Current Density
............................319
10.4.4
Energy Conservation
...............................320
10.4.5
The Strain-Momentum Density
.....................320
10.4.6
The Stress Tensor
.................................322
10.4.7
Conservation of the Strain Momentum
...............323
Summary: Mechanics of
Continua
..............................324
A Physical Constants
........................................325
В
Scalars, Vectors, Tensors
..................................329
B.I Definitions and Simple Rules
..............................329
B.I.I Definitions
.......................................329
B.1.2 Behavior Under Inversion
...........................330
B.2 Vectors
.................................................330
B.2.1 Rules for Vectors
..................................330
B.2.2 Dyadic Product (Tensor Product) of Vectors
..........331
B.2.3 Vector Product (Cross Product) of Vectors
...........331
B.2.4 Triple Scalar Product of Vectors
.....................332
B.2.5 Multiple Products of Vectors
........................332
xvi Contents
С
Rectangular
Coordinate
Systems
..........................333
Cl
Definitions
..............................................333
С.
2
Cartesian Coordinates
...................................333
C.3 Spherical Polar Coordinates (Spherical Coordinates)
.........334
C.4 Cylindrical Coordinates
..................................335
C.5 Plane Polar Coordinates
..................................335
C.6 Inverse Relations
........................................336
Problems
...................................................336
D
Nabla (Del)
Operator and Laplace Operator
...............339
D.I Representations of the
Nabla
and Laplace Operators
.........339
D.2 Standard Relations
......................................340
D.3 Rules
..................................................341
D.4 Integral Theorems
.......................................342
D.4.1 The Theorem of
Gauß .............................342
D.4.2 Stokes Theorem
..................................343
D.4.3 The Theorem of Green
.............................343
Problems
...................................................344
E Variational
Method
........................................347
E.I Functions and Functionals
................................347
E.2 Variational Problem and
Euler
Equation
...................348
Problems
...................................................350
F
Linear Differential Equations with Constant Coefficients
... 351
F.I Homogeneous Linear Differential Equations
.................351
F.2 Inhomogeneous Linear Differential Equations
...............352
F.3 Stability of Solutions
.....................................353
G
Quadratic Matrices and Their
Eigen
Solutions
.............355
G.I The
Eigen
Value Problem
................................355
G.2 Definitions
..............................................355
G.3 Properties of the
Eigen
Values
............................357
G.4 Properties of the
Eigen
Vectors of Hermitian Matrices
........358
H
Dirac
б-
Function and Heaviside Step Function
.............361
H.I Properties of the Dirac ¿-Function and of the Heaviside
Step Function
...........................................361
H.2 Representation of the ¿-Function by Functional Sequences
.... 362
H.3 Integral Representation of the ¿»-Function
...................363
H.4 Periodic ¿-Function
......................................363
H.5 The ¿-Function in R3
....................................363
H.6 The ¿-Function as an Inhomogeneity of the
Poisson
Equation
. 364
Contents xvii
I Fourier Transformation
....................................365
1.1 The Transformation: Fourier Integral
......................365
1.1.1
Examples and Applications
.........................366
1.1.2
Convolution Theorem
..............................370
1.1.3
Parsevaľs
Equation
................................371
1.1.4
Uncertainty Relation
...............................372
1.2
Fourier Transformation in
IR4:
Plane Waves
.................374
1.2.1
The Whole K3
....................................374
1.2.2
Normalization Volume V
...........................375
1.3
Fourier Series
...........................................376
1.3.1
The Series
........................................376
1.3.2
Examples and Applications
.........................378
1.3.3
Convolution Theorem
..............................380
1.3.4
Parsevaľs
Equation
................................382
1.3.5
Fourier Series in
Ж3:
Lattices
.......................382
1.3.6
Functions with Lattice Periodicity
...................383
Summary: Fourier Integral and Fourier Series
....................384
Problems
...................................................385
J
Change of Variables: Legendre Transformation
.............387
References
.....................................................389
Index
..........................................................391
|
adam_txt |
Contents
Preface
.
v
1
The Newtonian Mechanics of Point-Mass Systems:
General Properties
. 1
1.1
Point Masses, Open and Closed Systems
. 1
1.1.1
The Point Mass as an Idealization
. 1
1.1.2
Open and Closed Systems, Internal and External Forces
2
1.2
Newton's Axioms
(1687):
A New Era
. 4
1.3
Einstein's Equivalence Principle
(1916):
Another New Era
. 8
1.3.1
Mass, Weight, Force, and the Like
. 8
1.3.2
Einstein's Equivalence Principle
. 9
1.4
Types of Forces
. 9
1.4.1
Central Forces
. 9
1.4.2
Conservative Forces (I)
. 11
1.4.3
Central Potentials
. 12
1.4.4
Potential and Potential Energy
. 12
1.4.5
The
Lorentz
Force
. 12
1.4.6
Frictional Forces
. 13
1.5
Equations of Motion
. 14
1.5.1
Definitions
. 14
1.5.2
Equations of Motion
. 15
1.6
Conservation Laws
. 17
1.6.1
Conservation of Momentum
. 17
1.6.2
Angular-Momentum Conservation and Central Forces
. 18
1.7
Energy-Conservation Theorem and Conservative Forces
. 18
1.7.1
Conservative Forces (II)
. 18
1.7.2
Potential Energy, Work, and Power
. 19
1.7.3
Energy Conservation Theorem
. 20
1.8
Invariances
and Conservation Laws
. 20
1.8.1
Translations and Rotations
. 20
Contents
1.8.2
Invariances
and Conservation Laws:
Noether's Theorem (I)
. 21
1.8.3
The Usefulness of the Conservation Laws
. 23
1.8.4
The Usefulness of Symmetry Analysis
. 23
1.9 *
Virial Theorem
. 23
1.10
The Basic Problem of the Mechanics of a Point Mass
. 25
Summary: Newtonian Mechanics
-
General Properties
. 25
Problems
. 27
Newtonian Mechanics: First Applications
. 29
2.1
One-Dimensional Motion
. 29
2.1.1
Constant Force
. 29
2.1.2
Time-Dependent Force
. 30
2.1.3
Velocity-Dependent Force
. 31
2.1.4
Coordinate-Dependent Force
. 32
2.1.5
Example: Plane Pendulum (with Small Amplitude)
. 34
2.1.6 *
Example: Plane Pendulum with Large Amplitude
. 38
2.2
Motion in a Plane
. 41
2.2.1
Fixed and Moving Basis
. 41
2.2.2
Time Dependence of the Moving Basis
. 42
2.2.3
Velocity, Acceleration, etc. in Plane Polar Coordinates
. 44
2.2.4
Example: Plane Pendulum
. 46
2.3
Two-Particle Systems
. 48
2.3.1
Center-of-Mass and Relative Coordinates
. 48
2.3.2
Equations of Motion
. 49
2.3.3
Closed Systems
. 50
Summary: Newtonian Mechanics
-
First Applications
. 51
Problems
. 52
Lagrangian Mechanics
. 55
3.1
Motion with Constraints
. 56
3.2
Constraints and Generalized Coordinates
. 57
3.2.1
Examples of Constraints
. 57
3.2.2
Classification of Constraints
. 58
3.2.3
Degrees of Freedom
. 61
3.2.4
Generalized Coordinates
. 62
3.2.5
Example: Plane Double Pendulum
. 62
3.3
Forces of Constraint
. 63
3.4
The Principle of d'Alembert
. 64
3.4.1
Real and Virtual Displacements
. 64
3.4.2
The Principle of Virtual Work
. 66
3.4.3
The Principle of d'Alembert
. 67
3.5
Lagrangian Equations of the Second Kind
. 67
3.5.1
External and Internal Forces
. 68
3.5.2
Conservative Forces
. 68
Contents xi
3.5.3
Inerţial
Forces. 69
3.5.4 Lagrangian
Equations
of
Motion . 70
3.5.5
Example:
Plane Motion in
a
Central Potential. 72
3.5.6
Example: Bead Sliding on a Uniformly
Rotating Rod
. 73
3.5.7
Example: Plane Double Pendulum
. 74
3.5.8
Separable Systems
. 76
3.6
Generalized Momentum, Force, etc
. 78
3.6.1
Generalized Force and Generalized Momentum
. 78
3.7
Velocity-Dependent Forces
. 80
3.7.1
Generalized Potential
. 80
3.7.2
Lorentz
Force
. 80
3.8
Gauge
Invariance
and Form
Invariance
. 81
3.8.1
(Un)Ambiguity of the Lagrangian Function:
Gauge Transformation
. 81
3.8.2 *
Form
Invariance
of the Lagrangian Equations
under Point Transformations
. 83
3.9 *
Lagrangian Equations of the First Kind
. 84
3.9.1 Lagrange
Multipliers
. 84
3.9.2
Lagrangian Equations of the First Kind
. 85
3.9.3
Example: Atwood Machine
. 86
3.10
Hamilton's Principle
. 92
3.10.1
The Action
. 92
3.10.2
Hamilton's Principle
. 93
3.11
Symmetries and Conservation Laws
. 95
3.11.1
Noether's Theorem (II)
. 95
3.11.2
Cyclic Coordinate and Conservation
of the Conjugate Momentum
. 96
3.11.3
Homogeneity in Time and Energy Conservation
. 97
3.11.4
Space Homogeneity and Conservation of Momentum
. 100
3.11.5
Isotropy and Angular-Momentum Conservation
.100
Summary: Lagrangian Mechanics
.101
Problems
.102
4
Harmonic Vibrations
.113
4.1
The Simple Oscillator
.117
4.1.1 Eigen
Solutions of the Homogeneous Differential
Equation
.117
4.2
The Free Oscillator with Damping
.120
4.2.1 Eigen
Solutions of the Homogeneous Differential
Equation
.120
4.2.2
Reality of the Solution
.122
4.2.3
Initial Conditions
.123
Contents
4.3
The Forced Harmonic Oscillator
.125
4.3.1
Equation of Motion
.125
4.3.2
Solution of the Inhomogeneous Linear Differential
Equation by Fourier Transformation
.126
4.3.3
Green Function of the Damped Oscillator
in Frequency Space
.129
4.3.4
Time-Dependent Green Function
.131
4.3.5
Energy Considerations
.134
4.4
Coupled Oscillators
.138
4.4.1
Introductory Example: Stretching Vibrations
in the CO2 Molecule
.138
4.4.2
General Coupled Vibrations
.145
4.4.3
Normal Coordinates
.147
Summary: Harmonic Vibrations
.148
Problems
.149
Central Potentials and the Kepler Problem
.157
5.1
Central Force and Motion in a Plane
.157
5.1.1
Central Potential, Central Force, and
Angular-Momentum Conservation
.157
5.1.2
Central Potential and Effective Radial Potential
.159
5.1.3
Central Potential and Trajectory
.160
5.2
Kinematics of the Kepler Motion
.163
5.2.1
Kepler's Laws
.163
5.2.2
Polar Representation of the Conies
.165
5.2.3
Determination of the Force and Potential
from the Trajectory
.166
5.2.4
Determination of the Trajectory from the Potential
. 168
5.2.5
Trajectory and Rotation Periods
.171
5.2.6
The Laplace-Runge-Lenz Vector
.173
5.2.7
Perihelion Rotation
.175
Summary: Central Potentials and the Kepler Problem
.177
Problems
.178
Collision and Scattering Problems
.183
6.1
Kinematics
.183
6.1.1
Scattering and Collision
.184
6.1.2
Momentum Change and Impulsive Force
.184
6.1.3
Laboratory System and Center-of-Mass System
.185
6.1.4
Consequences of the Conservation of Momentum
.186
6.1.5
Elastic and Inelastic Scattering
.187
6.1.6
Consequences of the Angular-Momentum
Conservation
.189
Contents xiii
6.2
Collision
of Hard Spheres
.190
6.2.1
Notations
.190
6.2.2
Elastic Collision of Smooth Spheres
(Laboratory System)
.190
6.3
Scattering by a Central Potential
.194
6.3.1
Central Potential and Scattering Angle
.194
6.3.2
Scattering by the Gravitational Potential
.195
6.4 *
The Cross-Section
.196
6.4.1
The Problem
.196
6.4.2
Scattering of Many Probe Particles
by Many Target Particles
.197
6.4.3
Scattering from a Particle at Rest
.197
6.4.4
The Differential Cross-Section
.198
6.4.5
The Total Cross-Section
.200
6.4.6
The Rutherford Cross-Section
.200
6.4.7
Scattering Cross-Section for a Collision
of Hard Spheres
.201
Summary: Collision and Scattering Problems
.202
Problems
.203
Moving Reference Frames
.207
7.1
Translations
.208
7.1.1
The Transformation
.208
7.1.2
Inerţial
Forces
.209
7.2
Rotation Around a Fixed Point
.209
7.2.1
Active and Passive Rotation
.209
7.2.2
Infinitesimal Rotations
.210
7.2.3
Representation in Different Coordinate Systems
.211
7.2.4
Uniformly Rotating System: Centrifugal
and Coriolis Force
.214
7.2.5
The
Foucault
Pendulum
.214
7.3
Galilean and
Lorentz
Transformation
.217
7.3.1
The Relativity Principle
.218
7.3.2
General and Special Transformation
.218
7.3.3
The Galilean Transformation
.219
7.3.4
Galilean
Invariance
.220
7.3.5
The
Lorentz
Transformation
.221
Summary: Moving Reference Frames
.222
Problems
.223
Dynamics of a Rigid Body
.227
8.1
The Rigid Body as a System of
N
Point Masses
.227
8.2
Translational and Rotational Energy: Inertia Tensor
.228
8.2.1
The Center of Mass as the Specific Point
.228
8.2.2
The Instantaneously Fixed Point as the Specific Point
. 231
Contents
8.3 Transition
to the Continuum
.232
8.3.1
Example: Center of Mass of a Homogeneous
Hemisphere
.233
8.3.2
Examples of Inertia Tensors
.234
8.4
Change of the Reference System: Steiner's Theorem
.238
8.4.1
Steiner's Theorem
.238
8.4.2
Angular Momentum and Torque
.239
8.4.3
Examples
.241
8.5
Principal Moments of Inertia and Principal Axes
.242
8.5.1
Definitions
.242
8.5.2
Examples
.244
8.6
Rotation Around a Fixed Axis
.247
8.6.1
Inertia Tensor and Moment of Inertia
.248
8.6.2
The Equation of Motion
.249
8.6.3
Example: Motion in the Homogeneous Gravitational
Field: The Physical Pendulum
.249
8.6.4
Example: A Cylinder Rolling on an Inclined Plane
.251
8.7
Rotation Around a Fixed Point: The Top
.253
8.7.1
Space-Fixed
(Inerţial)
and Body-Fixed Coordinate
System
.253
8.7.2 *
Euler
Angles
.254
8.7.3 *
The
Euler
Equations of Motion
.257
8.8
The Force-Free Symmetrical Top
.258
8.8.1
The Equations of Motion
.258
8.8.2 *
Stability of the Rotational Motion of the Top
.260
Summary: Dynamics of a Rigid Body
.262
Problems
.263
Hamiltonian Dynamics
.269
9.1
Hamiltonian Equations of Motion
.269
9.1.1
The Hamiltonian Function
.269
9.1.2
Canonical (Hamiltonian) Equations of Motion
.271
9.1.3 *
(Un)Ambiguity of the Hamiltonian Function:
Gauge Transformation
.274
9.2 *
Poisson
Brackets
.275
9.2.1
Definition
29.
(Poisson
Brackets)
.275
9.2.2
Equations of Motion
.276
9.2.3
Fundamental
Poisson
Brackets
.277
9.2.4
Properties of the
Poisson
Brackets
.277
9.2.5
Example: Harmonic oscillator
.277
9.2.6
Transition to Quantum Mechanics
.278
9.3
Configuration Space and Phase Space
.278
9.3.1
Configuration Space
.278
9.3.2
Phase Space
.279
Contents xv
9.4 *
The Modified Hamilton Principle
.281
9.5 *
Canonical Transformation
.282
9.5.1
Point Transformation in Configuration Space
.282
9.5.2
Point Transformation in Phase Space
.283
9.5.3
Canonical Transformation
.284
9.5.4
Time Development as a Canonical Transformation
.287
9.5.5
Canonical Invariants
.288
9.5.6
Generating Function
.289
9.5.7
The Theorem of Liouville
.294
9.6 *
Hamilton-Jacobi Equation
.296
9.6.1
Action Function
.296
9.6.2
The Characteristic Function
.298
9.6.3
Examples
.299
Summary: Hamiltonian Dynamics
.303
Problems
.304
10 *
Introduction to the Mechanics of
Continua
.309
10.1
Fields
.309
10.2
Lagrangian Density
.311
10.2.1
Kinetic Energy Density
.311
10.2.2
Potential Energy Density
.312
10.2.3
Lagrangian Density
.314
10.3
Hamilton's Principle and Lagrangian Equations
.314
10.4
The Energy-Momentum Tensor
.317
10.4.1
The Conservation Theorem
.317
10.4.2
Energy Density
.318
10.4.3
Energy-Current Density
.319
10.4.4
Energy Conservation
.320
10.4.5
The Strain-Momentum Density
.320
10.4.6
The Stress Tensor
.322
10.4.7
Conservation of the Strain Momentum
.323
Summary: Mechanics of
Continua
.324
A Physical Constants
.325
В
Scalars, Vectors, Tensors
.329
B.I Definitions and Simple Rules
.329
B.I.I Definitions
.329
B.1.2 Behavior Under Inversion
.330
B.2 Vectors
.330
B.2.1 Rules for Vectors
.330
B.2.2 Dyadic Product (Tensor Product) of Vectors
.331
B.2.3 Vector Product (Cross Product) of Vectors
.331
B.2.4 Triple Scalar Product of Vectors
.332
B.2.5 Multiple Products of Vectors
.332
xvi Contents
С
Rectangular
Coordinate
Systems
.333
Cl
Definitions
.333
С.
2
Cartesian Coordinates
.333
C.3 Spherical Polar Coordinates (Spherical Coordinates)
.334
C.4 Cylindrical Coordinates
.335
C.5 Plane Polar Coordinates
.335
C.6 Inverse Relations
.336
Problems
.336
D
Nabla (Del)
Operator and Laplace Operator
.339
D.I Representations of the
Nabla
and Laplace Operators
.339
D.2 Standard Relations
.340
D.3 Rules
.341
D.4 Integral Theorems
.342
D.4.1 The Theorem of
Gauß .342
D.4.2 Stokes' Theorem
.343
D.4.3 The Theorem of Green
.343
Problems
.344
E Variational
Method
.347
E.I Functions and Functionals
.347
E.2 Variational Problem and
Euler
Equation
.348
Problems
.350
F
Linear Differential Equations with Constant Coefficients
. 351
F.I Homogeneous Linear Differential Equations
.351
F.2 Inhomogeneous Linear Differential Equations
.352
F.3 Stability of Solutions
.353
G
Quadratic Matrices and Their
Eigen
Solutions
.355
G.I The
Eigen
Value Problem
.355
G.2 Definitions
.355
G.3 Properties of the
Eigen
Values
.357
G.4 Properties of the
Eigen
Vectors of Hermitian Matrices
.358
H
Dirac
б-
Function and Heaviside Step Function
.361
H.I Properties of the Dirac ¿-Function and of the Heaviside
Step Function
.361
H.2 Representation of the ¿-Function by Functional Sequences
. 362
H.3 Integral Representation of the ¿»-Function
.363
H.4 Periodic ¿-Function
.363
H.5 The ¿-Function in R3
.363
H.6 The ¿-Function as an Inhomogeneity of the
Poisson
Equation
. 364
Contents xvii
I Fourier Transformation
.365
1.1 The Transformation: Fourier Integral
.365
1.1.1
Examples and Applications
.366
1.1.2
Convolution Theorem
.370
1.1.3
Parsevaľs
Equation
.371
1.1.4
Uncertainty Relation
.372
1.2
Fourier Transformation in
IR4:
Plane Waves
.374
1.2.1
The Whole K3
.374
1.2.2
Normalization Volume V
.375
1.3
Fourier Series
.376
1.3.1
The Series
.376
1.3.2
Examples and Applications
.378
1.3.3
Convolution Theorem
.380
1.3.4
Parsevaľs
Equation
.382
1.3.5
Fourier Series in
Ж3:
Lattices
.382
1.3.6
Functions with Lattice Periodicity
.383
Summary: Fourier Integral and Fourier Series
.384
Problems
.385
J
Change of Variables: Legendre Transformation
.387
References
.389
Index
.391 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Strauch, Dieter |
author_facet | Strauch, Dieter |
author_role | aut |
author_sort | Strauch, Dieter |
author_variant | d s ds |
building | Verbundindex |
bvnumber | BV023030353 |
callnumber-first | Q - Science |
callnumber-label | QC125 |
callnumber-raw | QC125.5 |
callnumber-search | QC125.5 |
callnumber-sort | QC 3125.5 |
callnumber-subject | QC - Physics |
classification_rvk | UF 1000 |
ctrlnum | (OCoLC)174131496 (DE-599)DNB984785574 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01563nam a2200433 c 4500</leader><controlfield tag="001">BV023030353</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100507 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071203s2009 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N30,0971</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984785574</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540736158</subfield><subfield code="9">978-3-540-73615-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540736158</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11780212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)174131496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984785574</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC125.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1000</subfield><subfield code="0">(DE-625)145552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strauch, Dieter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical mechanics</subfield><subfield code="b">an introduction</subfield><subfield code="c">Dieter Strauch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 405 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Theoretische Mechanik</subfield><subfield code="0">(DE-588)4185100-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-73616-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016234250&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016234250</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV023030353 |
illustrated | Illustrated |
index_date | 2024-07-02T19:16:46Z |
indexdate | 2024-07-09T21:09:22Z |
institution | BVB |
isbn | 9783540736158 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016234250 |
oclc_num | 174131496 |
open_access_boolean | |
owner | DE-706 DE-20 DE-355 DE-BY-UBR DE-703 DE-634 DE-83 |
owner_facet | DE-706 DE-20 DE-355 DE-BY-UBR DE-703 DE-634 DE-83 |
physical | XXI, 405 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
spelling | Strauch, Dieter Verfasser aut Classical mechanics an introduction Dieter Strauch Berlin [u.a.] Springer 2009 XXI, 405 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mechanics Theoretische Mechanik (DE-588)4185100-6 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Theoretische Mechanik (DE-588)4185100-6 s DE-604 Erscheint auch als Online-Ausgabe 978-3-540-73616-5 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016234250&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Strauch, Dieter Classical mechanics an introduction Mechanics Theoretische Mechanik (DE-588)4185100-6 gnd |
subject_GND | (DE-588)4185100-6 (DE-588)4123623-3 |
title | Classical mechanics an introduction |
title_auth | Classical mechanics an introduction |
title_exact_search | Classical mechanics an introduction |
title_exact_search_txtP | Classical mechanics an introduction |
title_full | Classical mechanics an introduction Dieter Strauch |
title_fullStr | Classical mechanics an introduction Dieter Strauch |
title_full_unstemmed | Classical mechanics an introduction Dieter Strauch |
title_short | Classical mechanics |
title_sort | classical mechanics an introduction |
title_sub | an introduction |
topic | Mechanics Theoretische Mechanik (DE-588)4185100-6 gnd |
topic_facet | Mechanics Theoretische Mechanik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016234250&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT strauchdieter classicalmechanicsanintroduction |