Group theory: application to the physics of condensed matter
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XV, 582 Seiten Illustrationen |
ISBN: | 9783540328971 9783642069451 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023028435 | ||
003 | DE-604 | ||
005 | 20180606 | ||
007 | t | ||
008 | 071129s2008 a||| |||| 00||| eng d | ||
020 | |a 9783540328971 |9 978-3-540-32897-1 | ||
020 | |a 9783642069451 |9 978-3-642-06945-1 | ||
020 | |z 9783540328998 |9 978-3-540-32899-8 | ||
035 | |a (OCoLC)255239464 | ||
035 | |a (DE-599)HEB181779145 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-29T |a DE-703 |a DE-355 |a DE-19 |a DE-91G |a DE-83 |a DE-11 |a DE-188 |a DE-384 |a DE-634 | ||
082 | 0 | |a 530.1522 | |
084 | |a UP 1200 |0 (DE-625)146345: |2 rvk | ||
084 | |a PHY 602f |2 stub | ||
084 | |a PHY 012f |2 stub | ||
100 | 1 | |a Dresselhaus, Mildred S. |d 1930-2017 |e Verfasser |0 (DE-588)13388371X |4 aut | |
245 | 1 | 0 | |a Group theory |b application to the physics of condensed matter |c M. S. Dresselhaus, G. Dresselhaus, A. Jorio |
264 | 1 | |a Berlin |b Springer |c 2008 | |
300 | |a XV, 582 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörperphysik |0 (DE-588)4016921-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Festkörperphysik |0 (DE-588)4016921-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Dresselhaus, Gene |d 1929- |e Verfasser |0 (DE-588)13415603X |4 aut | |
700 | 1 | |a Jorio, Ado |e Verfasser |0 (DE-588)134156048 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-32899-8 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016232365&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016232365 |
Datensatz im Suchindex
_version_ | 1804137251737698304 |
---|---|
adam_text | Contents
Part I Basic Mathematics
1
Basic Mathematical Background: Introduction
............. 3
1.1
Definition of a Group
.................................... 3
1.2
Simple Example of a Group
.............................. 3
1.3
Basic Definitions
........................................ 6
1.4
Rearrangement Theorem
................................. 7
1.5
Cosets
................................................. 7
1.6
Conjugation and Class
................................... 9
1.7
Factor Groups
.......................................... 11
1.8
Group Theory and Quantum Mechanics
................... 11
2
Representation Theory and Basic Theorems
............... 15
2.1
Important Definitions
................................... 15
2.2
Matrices
............................................... 16
2.3
Irreducible Representations
.............................. 17
2.4
The Unitarity of Representations
......................... 19
2.5 Schurs
Lemma (Part
1) ................................. 21
2.6 Schur
s Lemma (Part
2) ................................. 23
2.7
Wonderful Orthogonality Theorem
........................ 25
2.8
Representations and Vector Spaces
........................ 28
3
Character of a Representation
............................. 29
3.1
Definition of Character
.................................. 29
3.2
Characters and Class
.................................... 30
3.3
Wonderful Orthogonality Theorem for Character
............ 31
3.4
Reducible Representations
............................... 33
3.5
The Number of Irreducible Representations
................ 35
3.6
Second Orthogonality Relation for Characters
.............. 36
3.7
Regular Representation
.................................. 37
3.8
Setting up Character Tables
.............................. 40
X Contents
3.9
Schoenflies Symmetry Notation
........................... 44
3.10
The Herniann-Mauguin Symmetry Notation
............... 46
3.11
Symmetry Relations and Point Group Classifications
........ 48
4
Basis Functions
............................................ 57
4.1
Symmetry Operations and Basis Functions
................. 57
4.2
Basis Functions for Irreducible Representations
............. 58
4.3
Projection Operators P^f 1
.............................. 64
4.4
Derivation of an Explicit Expression for Pj.e
.............. 64
4.5
The Effect of Projection Operations on an Arbitrary Function
65
4.6
Linear Combinations of Atomic
Orbitals
for Three
Equivalent Atoms at the Corners of an Equilateral Triangle
. . 67
4.7
The Application of Group Theory to Quantum Mechanics
.... 70
Part II Introductory Application to Quantum Systems
5
Splitting of Atomic
Orbitals
in a Crystal Potential
......... 79
5.1
Introduction
........................................... 79
5.2
Characters for the Full Rotation Group
.................... 81
5.3
Cubic Crystal Field Environment
for a Paramagnetic Transition Metal Ion
................... 85
5.4
Comments on Basis Functions
............................ 90
5.5
Comments on the Form of Crystal Fields
.................. 92
6
Application to Selection Rules and Direct Products
....... 97
6.1
The Electromagnetic Interaction as a Perturbation
.......... 97
6.2
Orthogonality of Basis Functions
.......................... 99
6.3
Direct Product of Two Groups
...........................100
6.4
Direct Product of Two Irreducible Representations
..........101
6.5
Characters for the Direct Product
.........................103
6.6
Selection Rule Concept in Group Theoretical Terms
.........105
6.7
Example of Selection Rules
...............................106
Part III Molecular Systems
7
Electronic States of Molecules and Directed Valence
.......113
7.1
Introduction
...........................................113
7.2
General Concept of Equivalence
..........................115
7.3
Directed Valence Bonding
................................117
7.4
Diatomic Molecules
.....................................118
7.4.1
Homonuclear Diatomic Molecules
...................118
7.4.2
Heterogeneous Diatomic Molecules
..................120
Contents
XI
7.5 Electronic Orbitals
for Mułtiatomic
Molecules
..............124
7.5.1
The NH3 Molecule
................................124
7.5.2
The CH4 Molecule
................................125
7.5.3
The Hypothetical SH6 Molecule
....................129
7.5.4
The Octahedral SF6 Molecule
......................133
7.6
σ-
and
тг
-Bonds
.........................................
134
7.7 Jahn-Teller
Effect
......................................141
Molecular Vibrations, Infrared, and Raman Activity
.......147
8.1
Molecular Vibrations: Background
........................147
8.2
Application of Group Theory to Molecular Vibrations
.......149
8.3
Finding the Vibrational Normal Modes
....................152
8.4
Molecular Vibrations in H2O
.............................154
8.5
Overtones and Combination Modes
.......................156
8.6
Infrared Activity
........................................157
8.7
Raman Effect
..........................................159
8.8
Vibrations for Specific Molecules
..........................161
8.8.1
The Linear Molecules
.............................161
8.8.2
Vibrations of the NH3 Molecule
....................166
8.8.3
Vibrations of the CH4 Molecule
....................168
8.9
Rotational Energy Levels
................................170
8.9.1
The Rigid Rotator
................................170
8.9.2
Wigner
-Eckart
Theorem
...........................172
8.9.3
Vibrational-Rotational Interaction
..................174
Part IV Application to Periodic Lattices
9
Space Groups in Real Space
...............................183
9.1
Mathematical Background for Space Groups
...............184
9.1.1
Space Groups Symmetry Operations
................184
9.1.2
Compound Space Group Operations
................186
9.1.3
Translation Subgroup
.............................188
9.1.4
Symmorphic and Nonsymmorphic Space Groups
......189
9.2
Bravais
Lattices and Space Groups
........................190
9.2.1
Examples of Symmorphic Space Groups
.............192
9.2.2
Cubic Space Groups
and the Equivalence Transformation
................194
9.2.3
Examples of Nonsynimorphic Space Groups
..........196
9.3
Two-Dimensional Space Group.s
..........................198
9.3.1
2D Oblique Space Groups
..........................200
9.3.2
2D Rectangular Space Groups
......................201
9.3.3
2D Square Space Group
...........................203
9.3.4
2D Hexagonal Space Groups
.......................203
9.4
Line Groups
............................................204
XII Contents
9.5
The Determination of Crystal Structure and Space Group
.... 205
9.5.1
Determination of the Crystal Structure
..............206
9.5.2
Determination of the Space Group
..................206
10
Space Groups in Reciprocal Space and Representations
.... 209
10.1
Reciprocal Space
........................................210
10.2
Translation Subgroup
...................................211
10.2.1
Representations for the Translation Group
...........211
10.2.2
Bloch s Theorem and the Basis
of the Translational Group
.........................212
10.3
Symmetry of
к
Vectors and the Group of the Wave Vector
. . . 214
10.3.1
Point Group Operation in r-space and fe-space
.......214
10.3.2
The Group of the Wave Vector Gk and the Star of
к
. . 215
10.3.3
Effect of Translations and Point Group Operations
on Bloch Functions
...............................215
10.4
Space Group Representations
.............................219
10.4.1
Symmorphic Group Representations
.................219
10.4.2
Nonsymmorphic Group Representations
and the Multiplier Algebra
.........................220
10.5
Characters for the Equivalence Representation
..............221
10.6
Common Cubic Lattices: Symmorphic Space Groups
........222
10.6.1
The
Г
Point
.....................................223
10.6.2
Points with
к
φ
0.................................224
10.7
Compatibility Relations
.................................227
10.8
The Diamond Structure: Nonsymmorphic Space Group
......230
10.8.1
Factor Group and the
Γ
Point
......................231
10.8.2
Points with
к
Φ
0.................................232
10.9
Finding Character Tables for all Groups of the Wave Vector
. . 235
Part V Electron and Phonon Dispersion Relation
11
Applications to Lattice Vibrations
.........................241
11.1
Introduction
...........................................241
11.2
Lattice Modes and Molecular Vibrations
...................244
11.3
Zone Center Phonon Modes
..............................246
11.3.1
The NaCl Structure
...............................246
11.3.2
The Perovskite Structure
..........................247
11.3.3
Phonons in the Nonsymmorphic Diamond Lattice
.....250
11.3.4
Phonons in the Zinc Blende Structure
...............252
11.4
Lattice Modes Away from fc
= 0..........................253
11.4.1
Phonons in NaCl at the X Point A-
=
(тг/о)(100)
......254
11.4.2
Phonons in BaTiO3 at the X Point
.................256
11.4.3
Phonons at the
К
Point in Two-Dimensional Graphite.
258
Contents XIII
11.5 Phonons in
Te
and
α
-Quartz
Nonsymmorphic
Structures
.....262
11.5.1 Phonons in
Tellurium.............................
262
11.5.2 Phonons in
the
α
-Quartz
Structure
.................268
11.6
Effect of Axial Stress on Phonons
.........................272
12
Electronic Energy Levels in a Cubic Crystals
..............279
12.1
Introduction
...........................................279
12.2
Plane Wave Solutions at
к
= 0 ...........................282
12.3
Symmetrized Plane Solution Waves along the
Zi-
Axis
........286
12.4
Plane Wave Solutions at the X Point
......................288
12.5
Effect of Glide Planes and Screw Axes
.....................294
13
Energy Band Models Based on Symmetry
.................305
13.1
Introduction
...........................................305
13.2
к
■
ρ
Perturbation Theory
................................307
13.3
Example of
к
■
ρ
Perturbation Theory
for
a Nondegenerate
Г^
Band
............................308
13.4
Two Band Model:
Degenerate First-Order Perturbation Theory
...............311
13.5
Degenerate second-order
к
■
ρ
Perturbation Theory
..........316
13.6
Nondegenerate
к
■
ρ
Perturbation Theory at
a
Δ
Point
......324
13.7
Use of
к
■
ρ
Perturbation Theory
to Interpret Optical Experiments
.........................326
13.8
Application of Group Theory to Valley-Orbit Interactions
in Semiconductors
......................................327
13.8.1
Background
......................................328
13.8.2
Impurities in Multivalley Semiconductors
............330
13.8.3
The Valley-Orbit Interaction
.......................331
14
Spin-Orbit Interaction in Solids and Double Groups
.......337
14.1
Introduction
...........................................337
14.2
Crystal Double Groups
..................................341
14.3
Double Group Properties
................................343
14.4
Crystal Field Splitting Including Spin-Orbit Coupling
.......349
14.5
Basis Functions for Double Group Representations
..........353
14.6
Some Explicit Basis Functions
............................355
14.7
Basis Functions for Other
Г8+
States
......................358
14.8
Comments on Double Group Character Tables
..............359
14.9
Plane Wave Basis Functions
for Double Group Representations
........................360
14.10
Group of the Wave Vector
for
Nonsymmorphic
Double Groups
.......................362
XIV Contents
15
Application
of Double Groups to Energy Bands with Spin
. 367
15.1
Introduction
...........................................367
15.2
E(k) for the Empty Lattice Including Spin-Orbit Interaction
. 368
15.3
The
к
■
ρ
Perturbation with Spin-Orbit Interaction
.........369
15.4
E
(к)
for
a Nondegenerate
Band Including
Spin-Orbit Interaction
..................................372
15.5
E
(к)
for Degenerate Bands Including Spin-Orbit Interaction
. 374
15.6
Effective ¿/-Factor
.......................................378
15.7
Fourier Expansion of Energy Bands: Slater-Koster Method
.. . 389
15.7.1
Contributions at
d
= 0 ............................396
15.7.2
Contributions at
d
= 1 ............................396
15.7.3
Contributions at
d
= 2 ............................397
15.7.4
Summing Contributions through d = 2
..............397
15.7.5
Other Degenerate Levels
...........................397
Part VI Other Symmetries
16
Time Reversal Symmetry
..................................403
16.1
The Time Reversal Operator
.............................403
16.2
Properties of the Time Reversal Operator
..................404
16.3
The Effect of
Τ
on E{k), Neglecting Spin
..................407
16.4
The Effect of
Ť
on E{k), Including
the Spin-Orbit Interaction
...............................411
16.5
Magnetic
Groups
.......................................416
16.5.1
Introduction
.....................................418
16.5.2
Types of Elements
................................418
16.5.3
Types of Magnetic Point Groups
....................419
16.5.4
Properties of the
58
Magnetic Point Groups
{A¡.Mk}
.419
16.5.5
Exanrples of Magnetic Structures
...................423
16.5.6
Effect of Symmetry on the Spin Hamiltonian
for the
32
Ordinary Point. Groups
...................426
17
Permutation Groups and Many-Electron States
............431
17.1
Introduction
...........................................432
17.2
Classes and Irreducible Representations
of Permutation Groups
..................................434
17.3
Basis Functions of Permutation Groups
....................437
17.4 Pauli
Principle in Atomic Spectra
.........................440
17.4.1
Two-Electron States
..............................440
17.4.2
Three-Electron States
.............................443
17.4.3
Four-Electron States
..............................448
17.4.4
Five-Electron States
...............................451
17.4.5
General Comments on Manv-Electron States
.........451
Contents XV
18
Symmetry Properties of Tensors
...........................455
18.1
Introduction
...........................................455
18.2
Independent Components of Tensors
Under Permutation Group Symmetry
......................458
18.3
Independent Components of Tensors:
Point Symmetry Groups
.................................462
18.4
Independent Components of Tensors
Under Full Rotational Symmetry
.........................463
18.5
Tensors in Nonlinear Optics
..............................463
18.5.1
Cubic Symmetry: 0h
..............................464
18.5.2
Tetrahedral Symmetry: T</
.........................466
18.5.3
Hexagonal Symmetry: D^h
.........................466
18.6
Elastic Modulus Tensor
..................................467
18.6.1
Full Rotational Symmetry:
3D
Lsotropy
..............469
18.6.2
Icosahedral Symmetry
.............................472
18.6.3
Cubic Symmetry
..................................472
18.6.4
Other Symmetry Groups
..........................474
A Point Group Character Tables
.............................479
В
Two-Dimensional Space Groups
...........................489
С
Tables for
3D
Space Groups
...............................499
C.I Real Space
.............................................499
C.2 Reciprocal Space
........................................503
D
Tables for Double Groups
.................................521
E
Group Theory Aspects of Carbon Nanotubes
..............533
E.I Nanotube Geometry and the
(».
m) Indices
................534
E.2 Lattice Vectors in Real Space
.............................534
E.3 Lattice Vectors in Reciprocal Space
.......................535
E.4 Compound Operations and Tube
Helicity
..................536
E.
5
Character Tables for Carbon Nanotubes
...................538
F
Permutation Group Character Tables
......................543
References
.....................................................549
Index
..........................................................553
|
adam_txt |
Contents
Part I Basic Mathematics
1
Basic Mathematical Background: Introduction
. 3
1.1
Definition of a Group
. 3
1.2
Simple Example of a Group
. 3
1.3
Basic Definitions
. 6
1.4
Rearrangement Theorem
. 7
1.5
Cosets
. 7
1.6
Conjugation and Class
. 9
1.7
Factor Groups
. 11
1.8
Group Theory and Quantum Mechanics
. 11
2
Representation Theory and Basic Theorems
. 15
2.1
Important Definitions
. 15
2.2
Matrices
. 16
2.3
Irreducible Representations
. 17
2.4
The Unitarity of Representations
. 19
2.5 Schurs
Lemma (Part
1) . 21
2.6 Schur
"s Lemma (Part
2) . 23
2.7
Wonderful Orthogonality Theorem
. 25
2.8
Representations and Vector Spaces
. 28
3
Character of a Representation
. 29
3.1
Definition of Character
. 29
3.2
Characters and Class
. 30
3.3
Wonderful Orthogonality Theorem for Character
. 31
3.4
Reducible Representations
. 33
3.5
The Number of Irreducible Representations
. 35
3.6
Second Orthogonality Relation for Characters
. 36
3.7
Regular Representation
. 37
3.8
Setting up Character Tables
. 40
X Contents
3.9
Schoenflies Symmetry Notation
. 44
3.10
The Herniann-Mauguin Symmetry Notation
. 46
3.11
Symmetry Relations and Point Group Classifications
. 48
4
Basis Functions
. 57
4.1
Symmetry Operations and Basis Functions
. 57
4.2
Basis Functions for Irreducible Representations
. 58
4.3
Projection Operators P^f"1
. 64
4.4
Derivation of an Explicit Expression for Pj.e
"'. 64
4.5
The Effect of Projection Operations on an Arbitrary Function
65
4.6
Linear Combinations of Atomic
Orbitals
for Three
Equivalent Atoms at the Corners of an Equilateral Triangle
. . 67
4.7
The Application of Group Theory to Quantum Mechanics
. 70
Part II Introductory Application to Quantum Systems
5
Splitting of Atomic
Orbitals
in a Crystal Potential
. 79
5.1
Introduction
. 79
5.2
Characters for the Full Rotation Group
. 81
5.3
Cubic Crystal Field Environment
for a Paramagnetic Transition Metal Ion
. 85
5.4
Comments on Basis Functions
. 90
5.5
Comments on the Form of Crystal Fields
. 92
6
Application to Selection Rules and Direct Products
. 97
6.1
The Electromagnetic Interaction as a Perturbation
. 97
6.2
Orthogonality of Basis Functions
. 99
6.3
Direct Product of Two Groups
.100
6.4
Direct Product of Two Irreducible Representations
.101
6.5
Characters for the Direct Product
.103
6.6
Selection Rule Concept in Group Theoretical Terms
.105
6.7
Example of Selection Rules
.106
Part III Molecular Systems
7
Electronic States of Molecules and Directed Valence
.113
7.1
Introduction
.113
7.2
General Concept of Equivalence
.115
7.3
Directed Valence Bonding
.117
7.4
Diatomic Molecules
.118
7.4.1
Homonuclear Diatomic Molecules
.118
7.4.2
Heterogeneous Diatomic Molecules
.120
Contents
XI
7.5 Electronic Orbitals
for Mułtiatomic
Molecules
.124
7.5.1
The NH3 Molecule
.124
7.5.2
The CH4 Molecule
.125
7.5.3
The Hypothetical SH6 Molecule
.129
7.5.4
The Octahedral SF6 Molecule
.133
7.6
σ-
and
тг
-Bonds
.
134
7.7 Jahn-Teller
Effect
.141
Molecular Vibrations, Infrared, and Raman Activity
.147
8.1
Molecular Vibrations: Background
.147
8.2
Application of Group Theory to Molecular Vibrations
.149
8.3
Finding the Vibrational Normal Modes
.152
8.4
Molecular Vibrations in H2O
.154
8.5
Overtones and Combination Modes
.156
8.6
Infrared Activity
.157
8.7
Raman Effect
.159
8.8
Vibrations for Specific Molecules
.161
8.8.1
The Linear Molecules
.161
8.8.2
Vibrations of the NH3 Molecule
.166
8.8.3
Vibrations of the CH4 Molecule
.168
8.9
Rotational Energy Levels
.170
8.9.1
The Rigid Rotator
.170
8.9.2
Wigner
-Eckart
Theorem
.172
8.9.3
Vibrational-Rotational Interaction
.174
Part IV Application to Periodic Lattices
9
Space Groups in Real Space
.183
9.1
Mathematical Background for Space Groups
.184
9.1.1
Space Groups Symmetry Operations
.184
9.1.2
Compound Space Group Operations
.186
9.1.3
Translation Subgroup
.188
9.1.4
Symmorphic and Nonsymmorphic Space Groups
.189
9.2
Bravais
Lattices and Space Groups
.190
9.2.1
Examples of Symmorphic Space Groups
.192
9.2.2
Cubic Space Groups
and the Equivalence Transformation
.194
9.2.3
Examples of Nonsynimorphic Space Groups
.196
9.3
Two-Dimensional Space Group.s
.198
9.3.1
2D Oblique Space Groups
.200
9.3.2
2D Rectangular Space Groups
.201
9.3.3
2D Square Space Group
.203
9.3.4
2D Hexagonal Space Groups
.203
9.4
Line Groups
.204
XII Contents
9.5
The Determination of Crystal Structure and Space Group
. 205
9.5.1
Determination of the Crystal Structure
.206
9.5.2
Determination of the Space Group
.206
10
Space Groups in Reciprocal Space and Representations
. 209
10.1
Reciprocal Space
.210
10.2
Translation Subgroup
.211
10.2.1
Representations for the Translation Group
.211
10.2.2
Bloch's Theorem and the Basis
of the Translational Group
.212
10.3
Symmetry of
к
Vectors and the Group of the Wave Vector
. . . 214
10.3.1
Point Group Operation in r-space and fe-space
.214
10.3.2
The Group of the Wave Vector Gk and the Star of
к
. . 215
10.3.3
Effect of Translations and Point Group Operations
on Bloch Functions
.215
10.4
Space Group Representations
.219
10.4.1
Symmorphic Group Representations
.219
10.4.2
Nonsymmorphic Group Representations
and the Multiplier Algebra
.220
10.5
Characters for the Equivalence Representation
.221
10.6
Common Cubic Lattices: Symmorphic Space Groups
.222
10.6.1
The
Г
Point
.223
10.6.2
Points with
к
φ
0.224
10.7
Compatibility Relations
.227
10.8
The Diamond Structure: Nonsymmorphic Space Group
.230
10.8.1
Factor Group and the
Γ
Point
.231
10.8.2
Points with
к
Φ
0.232
10.9
Finding Character Tables for all Groups of the Wave Vector
. . 235
Part V Electron and Phonon Dispersion Relation
11
Applications to Lattice Vibrations
.241
11.1
Introduction
.241
11.2
Lattice Modes and Molecular Vibrations
.244
11.3
Zone Center Phonon Modes
.246
11.3.1
The NaCl Structure
.246
11.3.2
The Perovskite Structure
.247
11.3.3
Phonons in the Nonsymmorphic Diamond Lattice
.250
11.3.4
Phonons in the Zinc Blende Structure
.252
11.4
Lattice Modes Away from fc
= 0.253
11.4.1
Phonons in NaCl at the X Point A-
=
(тг/о)(100)
.254
11.4.2
Phonons in BaTiO3 at the X Point
.256
11.4.3
Phonons at the
К
Point in Two-Dimensional Graphite.
258
Contents XIII
11.5 Phonons in
Te
and
α
-Quartz
Nonsymmorphic
Structures
.262
11.5.1 Phonons in
Tellurium.
262
11.5.2 Phonons in
the
α
-Quartz
Structure
.268
11.6
Effect of Axial Stress on Phonons
.272
12
Electronic Energy Levels in a Cubic Crystals
.279
12.1
Introduction
.279
12.2
Plane Wave Solutions at
к
= 0 .282
12.3
Symmetrized Plane Solution Waves along the
Zi-
Axis
.286
12.4
Plane Wave Solutions at the X Point
.288
12.5
Effect of Glide Planes and Screw Axes
.294
13
Energy Band Models Based on Symmetry
.305
13.1
Introduction
.305
13.2
к
■
ρ
Perturbation Theory
.307
13.3
Example of
к
■
ρ
Perturbation Theory
for
a Nondegenerate
Г^
Band
.308
13.4
Two Band Model:
Degenerate First-Order Perturbation Theory
.311
13.5
Degenerate second-order
к
■
ρ
Perturbation Theory
.316
13.6
Nondegenerate
к
■
ρ
Perturbation Theory at
a
Δ
Point
.324
13.7
Use of
к
■
ρ
Perturbation Theory
to Interpret Optical Experiments
.326
13.8
Application of Group Theory to Valley-Orbit Interactions
in Semiconductors
.327
13.8.1
Background
.328
13.8.2
Impurities in Multivalley Semiconductors
.330
13.8.3
The Valley-Orbit Interaction
.331
14
Spin-Orbit Interaction in Solids and Double Groups
.337
14.1
Introduction
.337
14.2
Crystal Double Groups
.341
14.3
Double Group Properties
.343
14.4
Crystal Field Splitting Including Spin-Orbit Coupling
.349
14.5
Basis Functions for Double Group Representations
.353
14.6
Some Explicit Basis Functions
.355
14.7
Basis Functions for Other
Г8+
States
.358
14.8
Comments on Double Group Character Tables
.359
14.9
Plane Wave Basis Functions
for Double Group Representations
.360
14.10
Group of the Wave Vector
for
Nonsymmorphic
Double Groups
.362
XIV Contents
15
Application
of Double Groups to Energy Bands with Spin
. 367
15.1
Introduction
.367
15.2
E(k) for the Empty Lattice Including Spin-Orbit Interaction
. 368
15.3
The
к
■
ρ
Perturbation with Spin-Orbit Interaction
.369
15.4
E
(к)
for
a Nondegenerate
Band Including
Spin-Orbit Interaction
.372
15.5
E
(к)
for Degenerate Bands Including Spin-Orbit Interaction
. 374
15.6
Effective ¿/-Factor
.378
15.7
Fourier Expansion of Energy Bands: Slater-Koster Method
. . 389
15.7.1
Contributions at
d
= 0 .396
15.7.2
Contributions at
d
= 1 .396
15.7.3
Contributions at
d
= 2 .397
15.7.4
Summing Contributions through d = 2
.397
15.7.5
Other Degenerate Levels
.397
Part VI Other Symmetries
16
Time Reversal Symmetry
.403
16.1
The Time Reversal Operator
.403
16.2
Properties of the Time Reversal Operator
.404
16.3
The Effect of
Τ
on E{k), Neglecting Spin
.407
16.4
The Effect of
Ť
on E{k), Including
the Spin-Orbit Interaction
.411
16.5
Magnetic
Groups
.416
16.5.1
Introduction
.418
16.5.2
Types of Elements
.418
16.5.3
Types of Magnetic Point Groups
.419
16.5.4
Properties of the
58
Magnetic Point Groups
{A¡.Mk}
.419
16.5.5
Exanrples of Magnetic Structures
.423
16.5.6
Effect of Symmetry on the Spin Hamiltonian
for the
32
Ordinary Point. Groups
.426
17
Permutation Groups and Many-Electron States
.431
17.1
Introduction
.432
17.2
Classes and Irreducible Representations
of Permutation Groups
.434
17.3
Basis Functions of Permutation Groups
.437
17.4 Pauli
Principle in Atomic Spectra
.440
17.4.1
Two-Electron States
.440
17.4.2
Three-Electron States
.443
17.4.3
Four-Electron States
.448
17.4.4
Five-Electron States
.451
17.4.5
General Comments on Manv-Electron States
.451
Contents XV
18
Symmetry Properties of Tensors
.455
18.1
Introduction
.455
18.2
Independent Components of Tensors
Under Permutation Group Symmetry
.458
18.3
Independent Components of Tensors:
Point Symmetry Groups
.462
18.4
Independent Components of Tensors
Under Full Rotational Symmetry
.463
18.5
Tensors in Nonlinear Optics
.463
18.5.1
Cubic Symmetry: 0h
.464
18.5.2
Tetrahedral Symmetry: T</
.466
18.5.3
Hexagonal Symmetry: D^h
.466
18.6
Elastic Modulus Tensor
.467
18.6.1
Full Rotational Symmetry:
3D
Lsotropy
.469
18.6.2
Icosahedral Symmetry
.472
18.6.3
Cubic Symmetry
.472
18.6.4
Other Symmetry Groups
.474
A Point Group Character Tables
.479
В
Two-Dimensional Space Groups
.489
С
Tables for
3D
Space Groups
.499
C.I Real Space
.499
C.2 Reciprocal Space
.503
D
Tables for Double Groups
.521
E
Group Theory Aspects of Carbon Nanotubes
.533
E.I Nanotube Geometry and the
(».
m) Indices
.534
E.2 Lattice Vectors in Real Space
.534
E.3 Lattice Vectors in Reciprocal Space
.535
E.4 Compound Operations and Tube
Helicity
.536
E.
5
Character Tables for Carbon Nanotubes
.538
F
Permutation Group Character Tables
.543
References
.549
Index
.553 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Dresselhaus, Mildred S. 1930-2017 Dresselhaus, Gene 1929- Jorio, Ado |
author_GND | (DE-588)13388371X (DE-588)13415603X (DE-588)134156048 |
author_facet | Dresselhaus, Mildred S. 1930-2017 Dresselhaus, Gene 1929- Jorio, Ado |
author_role | aut aut aut |
author_sort | Dresselhaus, Mildred S. 1930-2017 |
author_variant | m s d ms msd g d gd a j aj |
building | Verbundindex |
bvnumber | BV023028435 |
classification_rvk | UP 1200 |
classification_tum | PHY 602f PHY 012f |
ctrlnum | (OCoLC)255239464 (DE-599)HEB181779145 |
dewey-full | 530.1522 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1522 |
dewey-search | 530.1522 |
dewey-sort | 3530.1522 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01906nam a2200445 c 4500</leader><controlfield tag="001">BV023028435</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180606 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071129s2008 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540328971</subfield><subfield code="9">978-3-540-32897-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642069451</subfield><subfield code="9">978-3-642-06945-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783540328998</subfield><subfield code="9">978-3-540-32899-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255239464</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HEB181779145</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1522</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1200</subfield><subfield code="0">(DE-625)146345:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 602f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 012f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dresselhaus, Mildred S.</subfield><subfield code="d">1930-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13388371X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Group theory</subfield><subfield code="b">application to the physics of condensed matter</subfield><subfield code="c">M. S. Dresselhaus, G. Dresselhaus, A. Jorio</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 582 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dresselhaus, Gene</subfield><subfield code="d">1929-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13415603X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jorio, Ado</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134156048</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-32899-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016232365&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016232365</subfield></datafield></record></collection> |
id | DE-604.BV023028435 |
illustrated | Illustrated |
index_date | 2024-07-02T19:16:03Z |
indexdate | 2024-07-09T21:09:20Z |
institution | BVB |
isbn | 9783540328971 9783642069451 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016232365 |
oclc_num | 255239464 |
open_access_boolean | |
owner | DE-20 DE-29T DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-83 DE-11 DE-188 DE-384 DE-634 |
owner_facet | DE-20 DE-29T DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-83 DE-11 DE-188 DE-384 DE-634 |
physical | XV, 582 Seiten Illustrationen |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Dresselhaus, Mildred S. 1930-2017 Verfasser (DE-588)13388371X aut Group theory application to the physics of condensed matter M. S. Dresselhaus, G. Dresselhaus, A. Jorio Berlin Springer 2008 XV, 582 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Festkörperphysik (DE-588)4016921-2 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 s Festkörperphysik (DE-588)4016921-2 s DE-604 Dresselhaus, Gene 1929- Verfasser (DE-588)13415603X aut Jorio, Ado Verfasser (DE-588)134156048 aut Erscheint auch als Online-Ausgabe 978-3-540-32899-8 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016232365&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dresselhaus, Mildred S. 1930-2017 Dresselhaus, Gene 1929- Jorio, Ado Group theory application to the physics of condensed matter Gruppentheorie (DE-588)4072157-7 gnd Festkörperphysik (DE-588)4016921-2 gnd |
subject_GND | (DE-588)4072157-7 (DE-588)4016921-2 |
title | Group theory application to the physics of condensed matter |
title_auth | Group theory application to the physics of condensed matter |
title_exact_search | Group theory application to the physics of condensed matter |
title_exact_search_txtP | Group theory application to the physics of condensed matter |
title_full | Group theory application to the physics of condensed matter M. S. Dresselhaus, G. Dresselhaus, A. Jorio |
title_fullStr | Group theory application to the physics of condensed matter M. S. Dresselhaus, G. Dresselhaus, A. Jorio |
title_full_unstemmed | Group theory application to the physics of condensed matter M. S. Dresselhaus, G. Dresselhaus, A. Jorio |
title_short | Group theory |
title_sort | group theory application to the physics of condensed matter |
title_sub | application to the physics of condensed matter |
topic | Gruppentheorie (DE-588)4072157-7 gnd Festkörperphysik (DE-588)4016921-2 gnd |
topic_facet | Gruppentheorie Festkörperphysik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016232365&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dresselhausmildreds grouptheoryapplicationtothephysicsofcondensedmatter AT dresselhausgene grouptheoryapplicationtothephysicsofcondensedmatter AT jorioado grouptheoryapplicationtothephysicsofcondensedmatter |