Nanosilicon:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Beschreibung für Leser Inhaltsverzeichnis |
Beschreibung: | XVI, 368 S. Ill., graph. Darst. |
ISBN: | 0080445284 9780080445281 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023027515 | ||
003 | DE-604 | ||
005 | 20080826 | ||
007 | t | ||
008 | 071129s2008 ad|| |||| 00||| eng d | ||
015 | |a GBA733826 |2 dnb | ||
020 | |a 0080445284 |c (hbk.) : £115.00 |9 0-08-044528-4 | ||
020 | |a 9780080445281 |9 978-0-08-044528-1 | ||
035 | |a (OCoLC)173498101 | ||
035 | |a (DE-599)HBZHT015322835 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91G |a DE-634 | ||
050 | 0 | |a QD181.S6 | |
082 | 0 | |a 620.193 |2 22 | |
084 | |a UP 3100 |0 (DE-625)146372: |2 rvk | ||
084 | |a PHY 690f |2 stub | ||
084 | |a PHY 697f |2 stub | ||
245 | 1 | 0 | |a Nanosilicon |c ed. by Vijay Kumar |
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2008 | |
300 | |a XVI, 368 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Nanostructured materials | |
650 | 4 | |a Silicon | |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Silicium |0 (DE-588)4077445-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanopartikel |0 (DE-588)4333369-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Silicium |0 (DE-588)4077445-4 |D s |
689 | 0 | 1 | |a Nanopartikel |0 (DE-588)4333369-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Silicium |0 (DE-588)4077445-4 |D s |
689 | 1 | 1 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Kumar, Vijay |e Sonstige |4 oth | |
856 | 4 | |u http://www.gbv.de/dms/ilmenau/toc/561517517.PDF |3 Inhaltsverzeichnis | |
856 | 4 | |u http://catdir.loc.gov/catdir/enhancements/fy0806/2007926933-d.html |3 Beschreibung für Leser | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016231459&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016231459 |
Datensatz im Suchindex
_version_ | 1804137250336800768 |
---|---|
adam_text | NANOSILICON EDITED BY VIJAY KUMAR DR. VIJAY KUMAR FOUNDATION, CHENNAI,
INDIA AMSTERDAM * BOSTON * HEIDELBERG * LONDON * NEW YORK * OXFORD PARIS
* SAN DIEGO * SAN FRANCISCO * SINGAPORE * SYDNEY * TOKYO CONTENTS
PREFACE XV 1 SILICON NANOPARTICLES: NEW PHOTONIC AND ELECTRONIC MATERIAL
AT THE TRANSITION BETWEEN SOLID AND MOLECULE 1 MUNIR H. NAYFEH AND LUBOS
MITAS 1.1 INTRODUCTION 3 1.2 SYNTHESIS 3 1.2.1 PHYSICATTECHNIQUES 3
1.2.2 PHYSICO-CHEMICALTECHNIQUES 4 1.2.3 CHEMICAL TECHNIQUES 4 1.2.4
ELECTROCHEMICAL TECHNIQUES 4 1.2.5 DISCRETELY SIZED SI NANOPARTICLES 6
1.3 FUNCTIONALIZATION 8 1.3.1 INITIAL SURFACE CONDITION 9 1.3.2
ALKYLATED PARTICLES 11 1.3.2.1 ALCOHOL 11 1.3.2.2 ALKYLAMINE 13 1.3.2.3
ALKENE 14 1.3.2.4 CARBOXY 14 1.3.2.5 ALKYL AND ALKOXY 15 1.3.3
AGGREGATION AND SOLUBILITY 15 1.3.4 STABILITY IN ACID 17 1.4
SPECTROSCOPIC CHARACTERIZATION 17 1.4.1 FOURIER TRANSFORM INFRARED
SPECTROSCOPY 17 1.4.2 NUCLEAR MAGNETIC RESONANCE 19 1.4.3 GEL PERMISSION
CHROMOTOGRAPHY 20 1.4.4 X-RAY PHOTOSPECTROSCOPY 21 1.4.5 AUGER ELECTRON
SPECTROSCOPY 21 1.4.6 TRANSMISSION ELECTRON MICROSCOPY 21 1.5 OPTICAL
PROPERTIES 22 1.5.1 PL AND DETECTION OF SINGLE NANOPARTICLES 22 1.5.2 PL
LIFETIME 26 1.5.3 CATHODOLUMINESCENCE AND ELECTROLUMINESCENCE 27 1.5.4
PHOTOSTABILITY UNDER UV AND INFRARED RADIATION 29 1.6 RECONSTITUTION OF
PARTICLES IN FILMS 29 1.6.1 PRECIPITATION SPRAY 30 1.6.2
ELECTRODEPOSITION: COMPOSITE FILMS OF METAL AND NANOPARTICLES 31 VII
VIII CONTENTS 1.6.3 SILICON SHEET ROLL INTO TUBES 32 1.6.4 SELF-ASSEMBLY
33 1.7 NONLINEAR OPTICAL PROPERTIES 34 1.7.1 STIMULATED EMISSION 34
1.7.2 SECOND HARMONIE GENERATION 39 1.7.3 GAIN AND OPTICAL NONLINEARITY
39 1.8 EFFECT OF FUNCTIONALIZATION ON EMISSION 41 1.9 STRUCTURE OF
PARTICLES 41 1.9.1 LUMINESCENCE MODELS , 42 1.9.2 COMPUTATIONAL METHODS
FOR ELECTRONIC STRUCTURE OF NANOCLUSTERS 43 1.9.2.1 DFT METHODS 44
1.9.2.2 QUANTUM MONTE CARLO 45 1.9.2.3 VARIATIONAL MONTE CARLO 45
1.9.2.4 DIFFUSION MONTE CARLO 46 1.9.2.5 APPLICATIONS TO SI CLUSTERS 46
1.9.3 PROTOTYPE OF HYDROGENATED PARTICLES (SUPERMOLECULE) 49 1.9.4 H 2 0
2 EFFECT ON SURFACE RECONSTRUCTION 51 1.9.5 NOVEL SI*SI BONDS
(MOLECULAR-LIKE BEHAVIOUR) 52 1.9.6 STRUCTURALSTABILITYOFTHE PROTOTYPE
54 1.9.7 MATERIAL PROPERTIES: DIELECTRIC CONSTANT AND EFFECTIVE MASS 55
1.9.8 EXCITED STATES (MOLECULAR-LIKE BANDS) 57 1.9.9 COLLECTIVE
MOIECULAR SURFACE 57 1.9.10 PHONON STRUCTURE: COLLECTIVE MOIECULAR
VIBRATION MODES 59 1.9.11 MOLECULAR-LIKE EMISSION: DIRECT VERSUS
INDIRECT PROCESS 60 1.9.12 X-RAY FORM FACTORS 61 1.9.13 EFFECT
OFTERMINATION ONTHE BAND GAP 63 1.10 DEVICE APPLICATIONS 63 1.10.1
PHOTOELECTRIC CONVERSION/UV PHOTODETECTOR 64 1.10.2 METAL OXIDE SILICON
MEMORY DEVICES 66 1.10.3 BIOPHOTONIC IMAGING 68 1.10.4 AMPEROMETRIC
DETECTION 69 1.10.5 NANOSOLAR CELL 71 1.10.6 NANOINKPRINTING 72 1.10.7
SINGLE ELECTRON TRANSISTOR DEVICES 73 1.11 CONCLUSION 73
ACKNOWLEDGEMENTS 74 REFERENCES 74 2 CLUSTER ASSEMBLED SILICON NETWORKS
79 P. MELINON, X. BLASE, A. SAN MIGUEL AND A. PEREZ 2.1 INTRODUCTION 80
2.2 ISOLATED SILICON CLUSTERS 81 CONTENTS 2.2.1 SMALL SI W CLUSTERS (N
14) 81 2.2.2 MEDIUM-SIZED CLUSTERS (20 N 100): THE CASEOFSI 33 82
2.2.3 LARGE CLUSTERS (N 100) 82 2.3 SI-CLUSTER-ASSEMBLED MATERIALS 83
2.3.1 INTRODUCTION 83 2.3.2 SI-CLUSTER-ASSEMBLED FILMS 83 2.3.2.1
GAS-PHASE SYNTHESIS OF SI W CLUSTERS: EXPERIMENTAL METHODS 83 2.3.2.2
STRUCTURE AND MORPHOLOGY 86 2.3.2.3 ELECTRONIC STRUCTURE 90 2.3.2.4
VIBRATIONAL STRUCTURE 90 2.3.2.5 OPTICAL PROPERTIES 92 2.3.2.6 NEW
BONDING FOR SILICON 93 2.3.3 BULK SI-CLUSTER-ASSEMBLED MATERIALS FROM
FULLERENES: CLATHRATE PHASES 97 2.3.3.1 SILICON CLATHRATE STRUCTURES 98
2.3.3.2 SYNTHESIS METHODS 100 2.3.3.3 ELECTRONIC PROPERTIES OF EMPTY
SILICON CLATHRATES 100 2.3.3.4 VIBRATIONAL PROPERTIES 101 2.3.3.5
COHESIVE ENERGY AND STABILITY UNDER PRESSURE OF SI-34 103 2.3.3.6
ENDOHEDRAL DOPING IN CLATHRATES 104 2.4 CONCLUSION 110 ACKNOWLEDGEMENTS
110 REFERENCES 111 METAL ENCAPSULATED CLUSTERS OF SILICON: SILICON
FULLERENES AND OTHER POLYHEDRAL FORMS 114 VIJAY KUMAR 3.1 INTRODUCTION
115 3.2 CLUSTERS OF ELEMENTAL SILICON 118 3.3 METAL ENCAPSULATION: A NEW
PARADIGM 121 3.3.1 SILICON FULLERENES 121 3.3.2 METAL SIZE DEPENDENT
ENCAPSULATED SILICON STRUCTURES 122 3.3.3 THE ELECTRONIC FACTOR AND THE
ISOLATED RHOMBUS RULE 124 3.3.4 REACTIVITY AS A PROBE OF METAL
ENCAPSULATION 137 3.3.5 VIBRATIONAL PROPERTIES 137 3.3.6 EMPTY AND
ENDOHEDRAL HYDROGENATED FULLERENE CAGESOF SILICON 139 3.3.7 ABSORPTION
SPECTRA 142 3.3.8 MAGNETIC CLUSTERS OF SILICON 142 3.4 SUMMARY 144
ACKNOWLEDGMENTS 145 REFERENCES 145 CONTENTS 4 POROUS SILICON - SENSORS
AND FUTURE APPLICATIONS 149 JAMES L. GOLE AND STEPHEN E. LEWIS 4.1
INTRODUCTION 150 4.2 KINDS OF PS 151 4.2.1 PORE STRUCTURE IN PS 151
4.2.2 PLFROMPS 153 4.2.2.1 PHOTOLUMINESCENT ENHANCEMENT AND
STABILIZATION 155 4.2.2.2 PL-INDUCED METALLIZATION 155 4.3 PS SENSORS
157 4.3.1 PS HUMIDITY SENSORS 157 4.3.2 PS CHEMICAL SENSORS 161 4.3.3 PS
GAS SENSORS 161 4.3.3.1 N0 2 SENSORS 162 4.3.3.2 HYDROCARBON SENSORS 164
4.3.3.3 LOW-COST MULTI-APPLICATION GAS SENSORS 164 4.4 FUTURE TECHNOLOGY
168 4.4.1 NANOPARTICLE PHOTOCATALYTIC COATING OF PS 168 4.4.2 LITHIUM
ELECTROLYTE-BASED PS MICROBATTERY ELECTRODES 170 4.5 CONCLUSIONS 172
REFERENCES 172 5 SILICON NANOWIRES AND NANOWIRE HETEROSTRUCTURES 176
ZHAOHUI ZHONG, CHEN YANG AND CHARLES M. LIEBER 5.1 INTRODUCTION 177 5.2
SILICON NANOWIRES 177 5.2.1 RATIONAL SYNTHESIS AND STRUCTURAL
CHARACTERIZATION OF SINW 177 5.2.1.1 OVERVIEW OF SINW 1D GROWTH 178
5.2.1.2 STRUCTURAL CHARACTERIZATION OFSINWS 180 5.2.1.3 RATIONAL
CONTROLOF SINW DIAMETERS 182 5.2.2 ELECTRONIC PROPERTIESOFSINWS 182
5.2.2.1 ROOMTEMPERATURE ELECTRONIC PROPERTIESOFSINWS 183 5.2.2.2
FUNDAMENTAL TRANSPORT STUDIESOFSINWS 186 5.2.3 SINWS FOR NANOELECTRONICS
190 5.2.3.1 CROSSED NANOWIRE STRUCTURES AND DEVICES 191 5.2.3.2 CROSSED
NANOWIRE-BASED LOGIC GATES 191 5.2.3.3 NANOWIRE CROSSBAR ARRAYS AS
ADDRESS DECODERS 193 5.2.3.4 SINW ELECTRONICS ON NON-CONVENTIONAL
SUBSTRATES 194 5.2.4 LARGE-SCALE HIERARCHICAL ORGANIZATION OF SINW
ARRAYS 195 5.2.4.1 LANGMUIR-BLODGETT-BASED ASSEMBLY OF NANOWIRES 196
5.2.4.2 SCALABLE INTEGRATION OF NANOWIRE DEVICES 197 5.2.4.3
HIGH-FREQUENCY NANOWIRE CIRCUITS 199 CONTENTS XI 5.2.5 SINWS AS
NANOSCALE SENSORS 200 5.2.5.1 NANOWIRE FIELD-EFFECT SENSORS 201 5.2.5.2
SINGLE VIRUS DETECTION 202 5.2.5.3 MULTIPLEXED DETECTION AT THE SINGLE
VIRUS LEVEL 203 5.3 SINW HETEROSTRUCTURES 204 5.3.1 NISI/SINW
HETEROSTRUCTURES 204 5.3.2 MODULATION DOPED SINWS 204 5.3.2.1 SYNTHESIS
AND CHARACTERIZATION OF MODULATION DOPED SINWS 205 5.3.2.2 NOVEL
APPLICATIONS OF MODULATION DOPED SINWS 208 5.3.3 BRANCHED AND
HYPER-BRANCHED SINWS 209 5.4 SUMMARY 213 REFERENCES 214 6 THEORETICAL
ADVANCES IN THE ELECTRONIC AND ATOMIC STRUCTURES OF SILICON NANOTUBES
AND NANOWIRES 217 ABHISHEK KUMAR SINGH, VIJAY KUMAR AND YOSHIYUKI
KAWAZOE 6.1 INTRODUCTION 218 6.2 COMPUTATIONALAPPROACH 220 6.3 SILICON
NANOTUBES 220 6.3.1 METAL ENCAPSULATED NANOTUBES OF SILICON 222 6.3.2
ELECTRONIC STRUCTURE AND BONDING NATURE 225 6.3.3 MAGNETISM IN METAL
ENCAPSULATED SINTS 228 6.4 GERMANIUM NANOTUBES 231 6.4.1 METALLIC AND
SEMICONDUCTING NANOTUBES OF GE 233 6.5 SILICON NANOWIRES 235 6.5.1
NON-CRYSTALLINE PRISTINE SINWS 237 6.5.2 CRYSTALLINE PRISTINE SINWS 238
6.5.3 BAND STRUCTURE OF SINWS 243 6.6 HYDROGENATED NANOWIRES 244 6.6.1
ELECTRONIC STRUCTURE OF HYDROGENATED SINWS 249 6.6.2 EFFECTS OF DOPING
AND H DEFECTS 251 6.7 NANOWIRE SUPERLATTICES 253 6.8 CONCLUSION AND
PERSPECTIVE REMARKS 254 ACKNOWLEDGEMENTS 255 REFERENCES 255 7 PHONONS IN
SILICON NANOWIRES 258 KOFI W. ADU, HUMBERTO R. GUTIERREZ AND PETER C.
EKLUND 7.1 INTRODUCTION 259 7.2 THEORETICAL MODELS FOR CONFINED PHONONS
261 7.2.1 LATTICE DYNAMICS OFSI NANOWIRES 261 XII CONTENTS 7.2.2 THE
RICHTER MODEL FOR RAMAN SCATTERING FROM CONFINED PHONONS 267 7.3
EXPERIMENTAL EVIDENCE OF CONFINED PHONONS IN SILICON 269 7.3.1 ACOUSTIC
PHONONS 269 7.3.2 OPTICAL PHONONS 273 7.3.3 THERMAL CONDUCTIVITY 275 7.4
EFFECTS OF INHOMOGENEOUS LASER HEATING ON RAMAN LINESHAPE 278 7.4.1
STOKES-ANTISTOKES RATIO AS A PROBE OF LASER HEATING OFSI NANOWIRES 279
7.4.2 EVOLUTION OF THE RAMAN BAND ASYMMETRY WITH LASER FLUX 280 7.4.3
MODIFICATION OF RICHTER S LINESHAPE FUNCTION TO INCLUDE INHOMOGENEOUS
HEATING 282 7.5 SUMMARY AND CONCLUSIONS 285 ACKNOWLEDGEMENTS 285
REFERENCES 286 8 QUASI-ONE-DIMENSIONAL SILICON NANOSTRUCTURES 289 YU
LIN, NEVILL GONZALEZ SZWACKI AND BORIS I. YAKOBSON 8.1 INTRODUCTION 290
8.2 SILICON NANOWIRES 290 8.2.1 PENTAGONAL SILICON WIRES 290 8.2.1.1
WULLFS CONSTRUCTION GENERALIZED 291 8.2.1.2 PENTAGONAL SHAPE SINW 291
8.2.1.3 GROUND STATE OFTHETHINNEST SINW 292 8.2.1.4 KINETICADVANTAGESOF
P|| SINW 296 8.2.2 HYDROGEN-PASSIVATED SILICON WIRES 297 8.3 METAL
SILICIDE 300 8.3.1 ENDOHEDRAL SILICON NANOTUBES 301 8.3.2 YTTRIUM
SILICIDE NW 307 8.3.3 ENERGY DECOMPOSITION 308 ACKNOWLEDGEMENTS 311
REFERENCES 312 9 LOW-DIMENSIONAL SILICON AS A PHOTONIC MATERIAL 314 N.
DALDOSSO AND L. PAVESI 9.1 THE NEED OF A SILICON-BASED PHOTONICS 314 9.2
VARIOUS APPROACHES TO A SILICON LIGHT SOURCE 316 9.2.1 SILICON RAMAN
LASER 317 9.2.2 BULK SILICON LIGHT EMITTING DIODES 319 9.3 OPTICAL GAIN
IN SILICON NANOCRYSTALS 321 9.3.1 CW AND TR MEASUREMENTS 322 9.3.2 GAIN
MODEL: FOUR-LEVEL SYSTEM 325 CONTENTS XIII 9.3.3 OTHER KEY INGREDIENTS
327 9.4 ER COUPLED SI NANOCRYSTALOPTICALAMPLIFIERS 328 9.4.1 ER 3+
INTERNAL TRANSITION 329 9.4.2 ER 3+ AND SI-NC INTERACTIONS 330 9.4.3 ER
3+ CROSS SECTIONS 330 9.5 CONCLUSIONS 332 ACKNOWLEDGEMENTS 333
REFERENCES 333 10 NANOSILICON SINGLE-ELECTRON TRANSISTORS AND MEMORY 335
Z. A. K. DURRANI AND H. AHMED 10.1 INTRODUCTION 335 10.1.1
SINGLE-ELECTRON AND QUANTUM CONFINEMENT EFFECTS 337 10.2 NANOSILICON
SETS 341 10.2.1 CONDUCTION IN CONTINUOUS NANOCRYSTALLINE SILICON FILMS
341 10.2.2 SILICON NANOWIRE SETS 343 10.2.3 POINT-CONTACT SETS:
ROOMTEMPERATURE OPERATION 346 10.2.4 GRAIN-BOUNDARY ENGINEERING 350
10.2.5 SINGLE-ELECTRON TRANSISTORS USING SILICON NANOCRYSTALS 351 10.2.6
COMPARISON WITH CRYSTALLINE SILICON SETS 352 10.3 ELECTRON COUPLING
EFFECTS IN NANOSILICON 352 10.3.1 ELECTROSTATIC COUPLING EFFECTS 354
10.3.2 ELECTRON WAVEFUNCTION COUPLING EFFECTS 354 10.4 NANOSILICON
MEMORY 356 REFERENCES 358 INDEX 361
|
adam_txt |
NANOSILICON EDITED BY VIJAY KUMAR DR. VIJAY KUMAR FOUNDATION, CHENNAI,
INDIA AMSTERDAM * BOSTON * HEIDELBERG * LONDON * NEW YORK * OXFORD PARIS
* SAN DIEGO * SAN FRANCISCO * SINGAPORE * SYDNEY * TOKYO CONTENTS
PREFACE XV 1 SILICON NANOPARTICLES: NEW PHOTONIC AND ELECTRONIC MATERIAL
AT THE TRANSITION BETWEEN SOLID AND MOLECULE 1 MUNIR H. NAYFEH AND LUBOS
MITAS 1.1 INTRODUCTION 3 1.2 SYNTHESIS 3 1.2.1 PHYSICATTECHNIQUES 3
1.2.2 PHYSICO-CHEMICALTECHNIQUES 4 1.2.3 CHEMICAL TECHNIQUES 4 1.2.4
ELECTROCHEMICAL TECHNIQUES 4 1.2.5 DISCRETELY SIZED SI NANOPARTICLES 6
1.3 FUNCTIONALIZATION 8 1.3.1 INITIAL SURFACE CONDITION 9 1.3.2
ALKYLATED PARTICLES 11 1.3.2.1 ALCOHOL 11 1.3.2.2 ALKYLAMINE 13 1.3.2.3
ALKENE 14 1.3.2.4 CARBOXY 14 1.3.2.5 ALKYL AND ALKOXY 15 1.3.3
AGGREGATION AND SOLUBILITY 15 1.3.4 STABILITY IN ACID 17 1.4
SPECTROSCOPIC CHARACTERIZATION 17 1.4.1 FOURIER TRANSFORM INFRARED
SPECTROSCOPY 17 1.4.2 NUCLEAR MAGNETIC RESONANCE 19 1.4.3 GEL PERMISSION
CHROMOTOGRAPHY 20 1.4.4 X-RAY PHOTOSPECTROSCOPY 21 1.4.5 AUGER ELECTRON
SPECTROSCOPY 21 1.4.6 TRANSMISSION ELECTRON MICROSCOPY 21 1.5 OPTICAL
PROPERTIES 22 1.5.1 PL AND DETECTION OF SINGLE NANOPARTICLES 22 1.5.2 PL
LIFETIME 26 1.5.3 CATHODOLUMINESCENCE AND ELECTROLUMINESCENCE 27 1.5.4
PHOTOSTABILITY UNDER UV AND INFRARED RADIATION 29 1.6 RECONSTITUTION OF
PARTICLES IN FILMS 29 1.6.1 PRECIPITATION SPRAY 30 1.6.2
ELECTRODEPOSITION: COMPOSITE FILMS OF METAL AND NANOPARTICLES 31 VII
VIII CONTENTS 1.6.3 SILICON SHEET ROLL INTO TUBES 32 1.6.4 SELF-ASSEMBLY
33 1.7 NONLINEAR OPTICAL PROPERTIES 34 1.7.1 STIMULATED EMISSION 34
1.7.2 SECOND HARMONIE GENERATION 39 1.7.3 GAIN AND OPTICAL NONLINEARITY
39 1.8 EFFECT OF FUNCTIONALIZATION ON EMISSION 41 1.9 STRUCTURE OF
PARTICLES 41 1.9.1 LUMINESCENCE MODELS , 42 1.9.2 COMPUTATIONAL METHODS
FOR ELECTRONIC STRUCTURE OF NANOCLUSTERS 43 1.9.2.1 DFT METHODS 44
1.9.2.2 QUANTUM MONTE CARLO 45 1.9.2.3 VARIATIONAL MONTE CARLO 45
1.9.2.4 DIFFUSION MONTE CARLO 46 1.9.2.5 APPLICATIONS TO SI CLUSTERS 46
1.9.3 PROTOTYPE OF HYDROGENATED PARTICLES (SUPERMOLECULE) 49 1.9.4 H 2 0
2 EFFECT ON SURFACE RECONSTRUCTION 51 1.9.5 NOVEL SI*SI BONDS
(MOLECULAR-LIKE BEHAVIOUR) 52 1.9.6 STRUCTURALSTABILITYOFTHE PROTOTYPE
54 1.9.7 MATERIAL PROPERTIES: DIELECTRIC CONSTANT AND EFFECTIVE MASS 55
1.9.8 EXCITED STATES (MOLECULAR-LIKE BANDS) 57 1.9.9 COLLECTIVE
MOIECULAR SURFACE 57 1.9.10 PHONON STRUCTURE: COLLECTIVE MOIECULAR
VIBRATION MODES 59 1.9.11 MOLECULAR-LIKE EMISSION: DIRECT VERSUS
INDIRECT PROCESS 60 1.9.12 X-RAY FORM FACTORS 61 1.9.13 EFFECT
OFTERMINATION ONTHE BAND GAP 63 1.10 DEVICE APPLICATIONS 63 1.10.1
PHOTOELECTRIC CONVERSION/UV PHOTODETECTOR 64 1.10.2 METAL OXIDE SILICON
MEMORY DEVICES 66 1.10.3 BIOPHOTONIC IMAGING 68 1.10.4 AMPEROMETRIC
DETECTION 69 1.10.5 NANOSOLAR CELL 71 1.10.6 NANOINKPRINTING 72 1.10.7
SINGLE ELECTRON TRANSISTOR DEVICES 73 1.11 CONCLUSION 73
ACKNOWLEDGEMENTS 74 REFERENCES 74 2 CLUSTER ASSEMBLED SILICON NETWORKS
79 P. MELINON, X. BLASE, A. SAN MIGUEL AND A. PEREZ 2.1 INTRODUCTION 80
2.2 ISOLATED SILICON CLUSTERS 81 CONTENTS 2.2.1 SMALL SI W CLUSTERS (N
14) 81 2.2.2 MEDIUM-SIZED CLUSTERS (20 N 100): THE CASEOFSI 33 82
2.2.3 LARGE CLUSTERS (N 100) 82 2.3 SI-CLUSTER-ASSEMBLED MATERIALS 83
2.3.1 INTRODUCTION 83 2.3.2 SI-CLUSTER-ASSEMBLED FILMS 83 2.3.2.1
GAS-PHASE SYNTHESIS OF SI W CLUSTERS: EXPERIMENTAL METHODS 83 2.3.2.2
STRUCTURE AND MORPHOLOGY 86 2.3.2.3 ELECTRONIC STRUCTURE 90 2.3.2.4
VIBRATIONAL STRUCTURE 90 2.3.2.5 OPTICAL PROPERTIES 92 2.3.2.6 NEW
BONDING FOR SILICON 93 2.3.3 BULK SI-CLUSTER-ASSEMBLED MATERIALS FROM
FULLERENES: CLATHRATE PHASES 97 2.3.3.1 SILICON CLATHRATE STRUCTURES 98
2.3.3.2 SYNTHESIS METHODS 100 2.3.3.3 ELECTRONIC PROPERTIES OF EMPTY
SILICON CLATHRATES 100 2.3.3.4 VIBRATIONAL PROPERTIES 101 2.3.3.5
COHESIVE ENERGY AND STABILITY UNDER PRESSURE OF SI-34 103 2.3.3.6
ENDOHEDRAL DOPING IN CLATHRATES 104 2.4 CONCLUSION 110 ACKNOWLEDGEMENTS
110 REFERENCES 111 METAL ENCAPSULATED CLUSTERS OF SILICON: SILICON
FULLERENES AND OTHER POLYHEDRAL FORMS 114 VIJAY KUMAR 3.1 INTRODUCTION
115 3.2 CLUSTERS OF ELEMENTAL SILICON 118 3.3 METAL ENCAPSULATION: A NEW
PARADIGM 121 3.3.1 SILICON FULLERENES 121 3.3.2 METAL SIZE DEPENDENT
ENCAPSULATED SILICON STRUCTURES 122 3.3.3 THE ELECTRONIC FACTOR AND THE
ISOLATED RHOMBUS RULE 124 3.3.4 REACTIVITY AS A PROBE OF METAL
ENCAPSULATION 137 3.3.5 VIBRATIONAL PROPERTIES 137 3.3.6 EMPTY AND
ENDOHEDRAL HYDROGENATED FULLERENE CAGESOF SILICON 139 3.3.7 ABSORPTION
SPECTRA 142 3.3.8 MAGNETIC CLUSTERS OF SILICON 142 3.4 SUMMARY 144
ACKNOWLEDGMENTS 145 REFERENCES 145 CONTENTS 4 POROUS SILICON - SENSORS
AND FUTURE APPLICATIONS 149 JAMES L. GOLE AND STEPHEN E. LEWIS 4.1
INTRODUCTION 150 4.2 KINDS OF PS 151 4.2.1 PORE STRUCTURE IN PS 151
4.2.2 PLFROMPS 153 4.2.2.1 PHOTOLUMINESCENT ENHANCEMENT AND
STABILIZATION 155 4.2.2.2 PL-INDUCED METALLIZATION 155 4.3 PS SENSORS
157 4.3.1 PS HUMIDITY SENSORS 157 4.3.2 PS CHEMICAL SENSORS 161 4.3.3 PS
GAS SENSORS 161 4.3.3.1 N0 2 SENSORS 162 4.3.3.2 HYDROCARBON SENSORS 164
4.3.3.3 LOW-COST MULTI-APPLICATION GAS SENSORS 164 4.4 FUTURE TECHNOLOGY
168 4.4.1 NANOPARTICLE PHOTOCATALYTIC COATING OF PS 168 4.4.2 LITHIUM
ELECTROLYTE-BASED PS MICROBATTERY ELECTRODES 170 4.5 CONCLUSIONS 172
REFERENCES 172 5 SILICON NANOWIRES AND NANOWIRE HETEROSTRUCTURES 176
ZHAOHUI ZHONG, CHEN YANG AND CHARLES M. LIEBER 5.1 INTRODUCTION 177 5.2
SILICON NANOWIRES 177 5.2.1 RATIONAL SYNTHESIS AND STRUCTURAL
CHARACTERIZATION OF SINW 177 5.2.1.1 OVERVIEW OF SINW 1D GROWTH 178
5.2.1.2 STRUCTURAL CHARACTERIZATION OFSINWS 180 5.2.1.3 RATIONAL
CONTROLOF SINW DIAMETERS 182 5.2.2 ELECTRONIC PROPERTIESOFSINWS 182
5.2.2.1 ROOMTEMPERATURE ELECTRONIC PROPERTIESOFSINWS 183 5.2.2.2
FUNDAMENTAL TRANSPORT STUDIESOFSINWS 186 5.2.3 SINWS FOR NANOELECTRONICS
190 5.2.3.1 CROSSED NANOWIRE STRUCTURES AND DEVICES 191 5.2.3.2 CROSSED
NANOWIRE-BASED LOGIC GATES 191 5.2.3.3 NANOWIRE CROSSBAR ARRAYS AS
ADDRESS DECODERS 193 5.2.3.4 SINW ELECTRONICS ON NON-CONVENTIONAL
SUBSTRATES 194 5.2.4 LARGE-SCALE HIERARCHICAL ORGANIZATION OF SINW
ARRAYS 195 5.2.4.1 LANGMUIR-BLODGETT-BASED ASSEMBLY OF NANOWIRES 196
5.2.4.2 SCALABLE INTEGRATION OF NANOWIRE DEVICES 197 5.2.4.3
HIGH-FREQUENCY NANOWIRE CIRCUITS 199 CONTENTS XI 5.2.5 SINWS AS
NANOSCALE SENSORS 200 5.2.5.1 NANOWIRE FIELD-EFFECT SENSORS 201 5.2.5.2
SINGLE VIRUS DETECTION 202 5.2.5.3 MULTIPLEXED DETECTION AT THE SINGLE
VIRUS LEVEL 203 5.3 SINW HETEROSTRUCTURES 204 5.3.1 NISI/SINW
HETEROSTRUCTURES 204 5.3.2 MODULATION DOPED SINWS 204 5.3.2.1 SYNTHESIS
AND CHARACTERIZATION OF MODULATION DOPED SINWS 205 5.3.2.2 NOVEL
APPLICATIONS OF MODULATION DOPED SINWS 208 5.3.3 BRANCHED AND
HYPER-BRANCHED SINWS 209 5.4 SUMMARY 213 REFERENCES 214 6 THEORETICAL
ADVANCES IN THE ELECTRONIC AND ATOMIC STRUCTURES OF SILICON NANOTUBES
AND NANOWIRES 217 ABHISHEK KUMAR SINGH, VIJAY KUMAR AND YOSHIYUKI
KAWAZOE 6.1 INTRODUCTION 218 6.2 COMPUTATIONALAPPROACH 220 6.3 SILICON
NANOTUBES 220 6.3.1 METAL ENCAPSULATED NANOTUBES OF SILICON 222 6.3.2
ELECTRONIC STRUCTURE AND BONDING NATURE 225 6.3.3 MAGNETISM IN METAL
ENCAPSULATED SINTS 228 6.4 GERMANIUM NANOTUBES 231 6.4.1 METALLIC AND
SEMICONDUCTING NANOTUBES OF GE 233 6.5 SILICON NANOWIRES 235 6.5.1
NON-CRYSTALLINE PRISTINE SINWS 237 6.5.2 CRYSTALLINE PRISTINE SINWS 238
6.5.3 BAND STRUCTURE OF SINWS 243 6.6 HYDROGENATED NANOWIRES 244 6.6.1
ELECTRONIC STRUCTURE OF HYDROGENATED SINWS 249 6.6.2 EFFECTS OF DOPING
AND H DEFECTS 251 6.7 NANOWIRE SUPERLATTICES 253 6.8 CONCLUSION AND
PERSPECTIVE REMARKS 254 ACKNOWLEDGEMENTS 255 REFERENCES 255 7 PHONONS IN
SILICON NANOWIRES 258 KOFI W. ADU, HUMBERTO R. GUTIERREZ AND PETER C.
EKLUND 7.1 INTRODUCTION 259 7.2 THEORETICAL MODELS FOR CONFINED PHONONS
261 7.2.1 LATTICE DYNAMICS OFSI NANOWIRES 261 XII CONTENTS 7.2.2 THE
RICHTER MODEL FOR RAMAN SCATTERING FROM CONFINED PHONONS 267 7.3
EXPERIMENTAL EVIDENCE OF CONFINED PHONONS IN SILICON 269 7.3.1 ACOUSTIC
PHONONS 269 7.3.2 OPTICAL PHONONS 273 7.3.3 THERMAL CONDUCTIVITY 275 7.4
EFFECTS OF INHOMOGENEOUS LASER HEATING ON RAMAN LINESHAPE 278 7.4.1
STOKES-ANTISTOKES RATIO AS A PROBE OF LASER HEATING OFSI NANOWIRES 279
7.4.2 EVOLUTION OF THE RAMAN BAND ASYMMETRY WITH LASER FLUX 280 7.4.3
MODIFICATION OF RICHTER'S LINESHAPE FUNCTION TO INCLUDE INHOMOGENEOUS
HEATING 282 7.5 SUMMARY AND CONCLUSIONS 285 ACKNOWLEDGEMENTS 285
REFERENCES 286 8 QUASI-ONE-DIMENSIONAL SILICON NANOSTRUCTURES 289 YU
LIN, NEVILL GONZALEZ SZWACKI AND BORIS I. YAKOBSON 8.1 INTRODUCTION 290
8.2 SILICON NANOWIRES 290 8.2.1 PENTAGONAL SILICON WIRES 290 8.2.1.1
WULLFS CONSTRUCTION GENERALIZED 291 8.2.1.2 PENTAGONAL SHAPE SINW 291
8.2.1.3 GROUND STATE OFTHETHINNEST SINW 292 8.2.1.4 KINETICADVANTAGESOF
P|| SINW 296 8.2.2 HYDROGEN-PASSIVATED SILICON WIRES 297 8.3 METAL
SILICIDE 300 8.3.1 ENDOHEDRAL SILICON NANOTUBES 301 8.3.2 YTTRIUM
SILICIDE NW 307 8.3.3 ENERGY DECOMPOSITION 308 ACKNOWLEDGEMENTS 311
REFERENCES 312 9 LOW-DIMENSIONAL SILICON AS A PHOTONIC MATERIAL 314 N.
DALDOSSO AND L. PAVESI 9.1 THE NEED OF A SILICON-BASED PHOTONICS 314 9.2
VARIOUS APPROACHES TO A SILICON LIGHT SOURCE 316 9.2.1 SILICON RAMAN
LASER 317 9.2.2 BULK SILICON LIGHT EMITTING DIODES 319 9.3 OPTICAL GAIN
IN SILICON NANOCRYSTALS 321 9.3.1 CW AND TR MEASUREMENTS 322 9.3.2 GAIN
MODEL: FOUR-LEVEL SYSTEM 325 CONTENTS XIII 9.3.3 OTHER KEY INGREDIENTS
327 9.4 ER COUPLED SI NANOCRYSTALOPTICALAMPLIFIERS 328 9.4.1 ER 3+
INTERNAL TRANSITION 329 9.4.2 ER 3+ AND SI-NC INTERACTIONS 330 9.4.3 ER
3+ CROSS SECTIONS 330 9.5 CONCLUSIONS 332 ACKNOWLEDGEMENTS 333
REFERENCES 333 10 NANOSILICON SINGLE-ELECTRON TRANSISTORS AND MEMORY 335
Z. A. K. DURRANI AND H. AHMED 10.1 INTRODUCTION 335 10.1.1
SINGLE-ELECTRON AND QUANTUM CONFINEMENT EFFECTS 337 10.2 NANOSILICON
SETS 341 10.2.1 CONDUCTION IN CONTINUOUS NANOCRYSTALLINE SILICON FILMS
341 10.2.2 SILICON NANOWIRE SETS 343 10.2.3 POINT-CONTACT SETS:
ROOMTEMPERATURE OPERATION 346 10.2.4 "GRAIN-BOUNDARY" ENGINEERING 350
10.2.5 SINGLE-ELECTRON TRANSISTORS USING SILICON NANOCRYSTALS 351 10.2.6
COMPARISON WITH CRYSTALLINE SILICON SETS 352 10.3 ELECTRON COUPLING
EFFECTS IN NANOSILICON 352 10.3.1 ELECTROSTATIC COUPLING EFFECTS 354
10.3.2 ELECTRON WAVEFUNCTION COUPLING EFFECTS 354 10.4 NANOSILICON
MEMORY 356 REFERENCES 358 INDEX 361 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023027515 |
callnumber-first | Q - Science |
callnumber-label | QD181 |
callnumber-raw | QD181.S6 |
callnumber-search | QD181.S6 |
callnumber-sort | QD 3181 S6 |
callnumber-subject | QD - Chemistry |
classification_rvk | UP 3100 |
classification_tum | PHY 690f PHY 697f |
ctrlnum | (OCoLC)173498101 (DE-599)HBZHT015322835 |
dewey-full | 620.193 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.193 |
dewey-search | 620.193 |
dewey-sort | 3620.193 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01925nam a2200505 c 4500</leader><controlfield tag="001">BV023027515</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080826 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071129s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA733826</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080445284</subfield><subfield code="c">(hbk.) : £115.00</subfield><subfield code="9">0-08-044528-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080445281</subfield><subfield code="9">978-0-08-044528-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)173498101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015322835</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD181.S6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.193</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3100</subfield><subfield code="0">(DE-625)146372:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 690f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 697f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanosilicon</subfield><subfield code="c">ed. by Vijay Kumar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 368 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silicon</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Silicium</subfield><subfield code="0">(DE-588)4077445-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanopartikel</subfield><subfield code="0">(DE-588)4333369-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Silicium</subfield><subfield code="0">(DE-588)4077445-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nanopartikel</subfield><subfield code="0">(DE-588)4333369-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Silicium</subfield><subfield code="0">(DE-588)4077445-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Vijay</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.gbv.de/dms/ilmenau/toc/561517517.PDF</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://catdir.loc.gov/catdir/enhancements/fy0806/2007926933-d.html</subfield><subfield code="3">Beschreibung für Leser</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016231459&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016231459</subfield></datafield></record></collection> |
id | DE-604.BV023027515 |
illustrated | Illustrated |
index_date | 2024-07-02T19:15:42Z |
indexdate | 2024-07-09T21:09:18Z |
institution | BVB |
isbn | 0080445284 9780080445281 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016231459 |
oclc_num | 173498101 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-634 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-634 |
physical | XVI, 368 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Elsevier |
record_format | marc |
spelling | Nanosilicon ed. by Vijay Kumar Amsterdam [u.a.] Elsevier 2008 XVI, 368 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanostructured materials Silicon Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Silicium (DE-588)4077445-4 gnd rswk-swf Nanopartikel (DE-588)4333369-2 gnd rswk-swf Silicium (DE-588)4077445-4 s Nanopartikel (DE-588)4333369-2 s DE-604 Nanostrukturiertes Material (DE-588)4342626-8 s Kumar, Vijay Sonstige oth http://www.gbv.de/dms/ilmenau/toc/561517517.PDF Inhaltsverzeichnis http://catdir.loc.gov/catdir/enhancements/fy0806/2007926933-d.html Beschreibung für Leser GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016231459&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nanosilicon Nanostructured materials Silicon Nanostrukturiertes Material (DE-588)4342626-8 gnd Silicium (DE-588)4077445-4 gnd Nanopartikel (DE-588)4333369-2 gnd |
subject_GND | (DE-588)4342626-8 (DE-588)4077445-4 (DE-588)4333369-2 |
title | Nanosilicon |
title_auth | Nanosilicon |
title_exact_search | Nanosilicon |
title_exact_search_txtP | Nanosilicon |
title_full | Nanosilicon ed. by Vijay Kumar |
title_fullStr | Nanosilicon ed. by Vijay Kumar |
title_full_unstemmed | Nanosilicon ed. by Vijay Kumar |
title_short | Nanosilicon |
title_sort | nanosilicon |
topic | Nanostructured materials Silicon Nanostrukturiertes Material (DE-588)4342626-8 gnd Silicium (DE-588)4077445-4 gnd Nanopartikel (DE-588)4333369-2 gnd |
topic_facet | Nanostructured materials Silicon Nanostrukturiertes Material Silicium Nanopartikel |
url | http://www.gbv.de/dms/ilmenau/toc/561517517.PDF http://catdir.loc.gov/catdir/enhancements/fy0806/2007926933-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016231459&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kumarvijay nanosilicon |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis