Recombination and meiosis: crossing-over and disjunction
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Medienkombination Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
2008
|
Schriftenreihe: | Genome dynamics and stability
2 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 365 S. 24 schw.-w. Ill., 14 farb. Ill., 4 schw.-w. Fotos, 4 farb. Fotos, 20 schw.-w. graph. Darst., 10 farb. graph. Darst. 235 mm x 155 mm |
ISBN: | 9783540753711 3540753710 |
Internformat
MARC
LEADER | 00000nom a2200000 cb4500 | ||
---|---|---|---|
001 | BV023020862 | ||
003 | DE-604 | ||
005 | 20080318 | ||
008 | 071126s2008 gw ||| 0| bneng d | ||
015 | |a 07,N41,0551 |2 dnb | ||
016 | 7 | |a 985757655 |2 DE-101 | |
020 | |a 9783540753711 |c : ca. EUR 192.55 (freier Pr.), ca. sfr 313.50 (freier Pr.) |9 978-3-540-75371-1 | ||
020 | |a 3540753710 |c : ca. EUR 192.55 (freier Pr.), ca. sfr 313.50 (freier Pr.) |9 3-540-75371-0 | ||
024 | 3 | |a 9783540753711 | |
028 | 5 | 2 | |a 11690771 |
035 | |a (OCoLC)633747319 | ||
035 | |a (DE-599)DNB985757655 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-11 | ||
082 | 0 | |a 571.845 |2 22/ger | |
082 | 0 | |a 572.87 |2 22/ger | |
084 | |a WG 2900 |0 (DE-625)148528: |2 rvk | ||
084 | |a WG 3540 |0 (DE-625)148552: |2 rvk | ||
084 | |a 570 |2 sdnb | ||
245 | 1 | 0 | |a Recombination and meiosis |b crossing-over and disjunction |c vol. ed.: Richard Egel ... |
264 | 1 | |a Berlin |b Springer |c 2008 | |
300 | |a XIV, 365 S. |b 24 schw.-w. Ill., 14 farb. Ill., 4 schw.-w. Fotos, 4 farb. Fotos, 20 schw.-w. graph. Darst., 10 farb. graph. Darst. |c 235 mm x 155 mm | ||
490 | 1 | |a Genome dynamics and stability |v 2 | |
650 | 0 | 7 | |a Rekombination |0 (DE-588)4049338-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Genetik |0 (DE-588)4071711-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Meiose |0 (DE-588)4169347-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Meiose |0 (DE-588)4169347-4 |D s |
689 | 0 | 1 | |a Rekombination |0 (DE-588)4049338-6 |D s |
689 | 0 | 2 | |a Genetik |0 (DE-588)4071711-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Egel, Richard |4 edt | |
830 | 0 | |a Genome dynamics and stability |v 2 |w (DE-604)BV022200036 |9 2 | |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016224927&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016224927 |
Datensatz im Suchindex
_version_ | 1804137240518983680 |
---|---|
adam_text | IMAGE 1
CONTENTS
EVOLUTION OF MODELS OFHOMOLOGOUS RECOMBINATION JAMES E. HABER *..** * *
* . * . . 1
1 INTRODUCTION 1
1.1 PRELUDE. . . . . . . . . . . . . . . . . . . 2
1.2 THE FIRST MOLECULAR MODELS OFRECOMBINATION 5
2 ROBIN HOLLIDAY S REMARKABLE MODEL. . . . . . 7
2.1 STRAND EXCHANGE BY SINGLE-STRAND ANNEALING . . 9
2.2 EVIDENCE FAVORING HOLLIDAY S MODEL: HOTSPOTS AND GRADIENTS OF GENE
CONVERSION 9
2.3 CHALLENGES TO THE HOLLIDAY MODEL . . 11
2.4 THE 5 : 3 PARADOX . . . . . . . . . . . 11
2.5 AN ABSENCE OF DOUBLE-CROSSOVERS . 12
2.6 ALLELESTHAT SHOWA HIGH PMS FALL TO SHOWA HIGH PROPORTION OF ABERRANT
4 : 4 ASCI 12 3 MOLECULAR MODELS BASED ON A SINGLEINITIATING DNALESION
13 4 THE MESELSON-RADDING MODEL (1975) . . . . . . . . . . . .. 15
4.1 A TRANSITION FROM 5 : 3 TO AB4 : 4 TETRADS: BRANCH MIGRATION OF A
HOLLIDAY [UNCTION CAN PRODUCE SYMMETRIE HETERODUPLEX. . . . . . . . 17
4.2 EVIDENCE SUPPORTING THE MESELSON-RADDING MODEL: ONE OR TWO
HETERODUPLEX REGIONS WITHIN A GENE .. 18 4.3 MORE EVIDENCE: A LARGE
HETEROLOGY APPARENTLY BLOCKS BRANCH MIGRATION 18
5 PROBLEMS WITH THE MESELSON-RADDING MODEL. . . . . 19
5.1 WHERE ARE THE CROSSOVERS? . . . . . . . . . . . . . . . 19
5.2 HOTSPOTS APPEAR TO BE ELIMINATED BY GENE CONVERTED 20
6 ALTERNATIVE WAYS TO INITIATE RECOMBINATION . 20
6.1 SEVERAL PROVOCATIVE SUGGESTIONS 20
6.2 THE FIRST RECOMBINATION MODEL BASED ON DOUBLE-STRAND BREAKS . . . ..
22
6.3 A KEYEXPERIMENTAL TRANSITION: STUDYING RECOMBINATION IN MITOTIC
RATHER THAN MEIOTIC CELLS . . . . . . . . . . 24
7 THE DOUBLE HOLLIDAY DSBREPAIR MODEL OF SZOSTAK, ORR-WEAVER, ROTHSTEIN
AND STAHL . . . . . . . . . . . 25
IMAGE 2
XIV CONTENTS
7.1 PROCESSING OF DOUBLE-STRAND BREAK ENDS . . . . . . . . . 26
7.2 THE DOUBLE HOLLIDAY [UNCTION . . . . . . . . . . . . . . . 28
8 IDENTIFICATION OF DNAINTERMEDIATES OF REEOMBINATION 28
8.1 PHYSICAL MONITORING OF MEIOTIE AND MITOTIE REEOMBINATION 28 8.2
EVIDENCE OF 5 TO 3 RESEETION 30
8.3 STRAND INVASION AND 3 1 END PRIMER EXTENSION. . . . . . . 31
8.4 PHYSICAL ANALYSIS OFDOUBLE HOLLIDAY[UNCTIONS . . . . . . 31
8.5 CONTROL OF CROSSING-OVER IN MEIOSISBY STABILIZING DHJS . 32 8.6
IDENTIFICATION OF A HJ RESOLVASE . . . . . 33
9 MULTIPLE PATHWAYS MEIOTIC REEOMBINATION . . . . . . 35
9.1 MEIOTIC RECOMBINATION IN MANY ORGANISMS DEPENDS ON A SECOND STRAND
EXCHANGE PROTEIN . . . . . 37
10 SINGLE-STRAND ANNEALING CAUSES PRIMARILY INTRACHROMOSOMAL DELETIONS
38
11 SYNTHESIS-DEPENDENT STRAND ANNEALING AEEOUNTS FOR MOST MITOTIE
RECOMBINATION AND NONCROSSOVERS IN MEIOSIS . . . . . . . . . . . 39
12 EVOLUTION OFGENE CONVERSION MODELS IN THE PRESENT . 45
13 ANOTHER MAJOR SOURCE OF CREATIVE THINKING: NONRECIPROCAL
REEOMBINATION IN PHAGE A * 48
14 RE-EMERGENCE OF OLD IDEAS IN NEWGUISES: BREAK-INDUCED REPLIEATION . .
. 49
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . 52
SEARCHING FOR HOMOLOGY BY FILAMENTS OF RECA-LIKE PROTEINS CHANTAL
PREVOST * . . * . * . * . . * . * * . . . . . * * . .
1 RECA-LIKE PROTEINS AND HOMOLOGOUS RECOMBINATION . 1.1 THE UNIVERSAL
FUNCTION OFHOMOLOGOUS RECOMBINATION 1.2 NUCLEOPROTEIN FILAMENTS, THE
ACTIVEFORM OF RECOMBINASES . 1.3 PROTEIN/DNA INTERACTIONS INSIDE THE
FILAMENT
1.4 CHARACTERISTICS OF SEQUENCE RECOGNITION IN HOMOLOGOUS RECOMBINATION
... . . . . .
2 SEQUENCE EFFECTS IN HOMOLOGOUS REEOMBINATION . 2.1 A NON-SPECIFIC
REACTIONI .
2.2 SEQUENEE EFFECTS IN RECOMBINASE-DNA ASSOCIATION 2.3 TOLERANCE FOR
HETEROLOGY IN RECA-CATALYZED DNA REEOGNITION AND STRAND EXCHANGE 3
HOMOLOGYSEARCH IN THE CELL . . . . . . . . . . . . .
4 MODELS OFHOMOLOGY SEARCH AT THE MOLECULAR LEVEL .... 4.1 DYNAMIC MONTE
CARLO APPROACH: A NUMERICAL MODEL OF RECOGNITION AT THE MOLEEULAR LEVEL
. 4.2 ROLE OF ATP HYDROLYSIS IN RECOGNITION
AND STRAND EXCHANGE . . . . . . .
4.3 THE KINETICS OF HOMOLOGY SEARCH . . . . .
65 65 65 66
70
71 72 72 72
73 74 76
76
77 79
IMAGE 3
CONTENTS
5 HOMOLOGY RECOGNITION AT THE ATOMIC LEVEL . 5.1 HYPOTHESIS .
5.2 LOOKING FOR REACTION INTERMEDIATES . 6 CONCLUSION
REFERENCES. . . . . . . . . . . . . . . . . . . .
BIOCHEMISTRY OF MEIOTIC RECOMBINATION: FORMATION, PROCESSING, AND
RESOLUTION OF RECOMBINATION INTERMEDIATES KIRK T. EHMSEN, WOLF-DIETRICH
HEYER ..**.
1 INTRODUCTION .
2 BIOCHEMISTRY OF MEIOTIC REEOMBINATION 2.1 DSB FORMATION: SPO11 AND ITS
CONTROL 2.2 RESECTION . . . . . . . . . . . . . . . . .
2.3 RAD51/DMC1 FILAMENT FORMATION . . . . .
2.4 FORMATION OFHETERODUPLEX DNABYRAD51 AND DME1: COFILAMENTS OR
ASYMMETRY. . . . . . . . . . . . . .
2.5 ROLES OF THE RAD54 AND RDHS4-TID1 MOTOR PROTEINS IN PRESYNAPSIS,
SYNAPSIS AND POSTSYNAPSIS . . . . . 2.6 DNA SYNTHESIS:INVOLVEMENT OF THE
PCNA/RFC-DEPENDENT POLO AND POSSIBLY POLA . . . . . . . . . . . . . . .
.
2.7 D-LOOP DISSOLUTION AND STRAND ANNEALING IN SDSA 2.8 SECOND END
CAPTURE IN DSBR . 2.9 BRANCH MIGRATION IN D-LOOPS AND DOUBLE HOLLIDAY
IUNCTIONS .
2.10 MEIOTIC MMR . . . . . . . . . .
2.11 DOUBLE HOLLIDAY IUNCTION PROCESSING: ROADS TO CROSSOVER AND
NON-CROSSOVER . 2.12 OTHER IUNCTIONS AND ALTERNATIVE MECHANISMS FOR
CROSSOVER FORMATION:
POSSIBLE ROLES OFMUS81-MMS4 AND XPF 3 CONCLUSIONS AND OUTLOOK .
REFERENEES. . . . . . . . . . . . . . . . . . . . . . .
MEIOTIC CHROMATIN: THE SUBSTRATE FOR RECOMBINATION INITIATION MICHAEL
LICHTEN * . * . * * * * * * . . . . . . * . . * . .
1 INTRODUCTION .
2 DOUBLE-STRAND BREAKS AND CHROMATIN STRUCTURE IN SACCHAROMYCES
CEREVISIAE .
2.1 DSBS FORM IN OPEN CHROMATIN . . . . . . . . .
2.2 CHROMATIN STRUCTURE AND POSTINITIATION EVENTS . 2.3 A MEIOTIC
CHROMATIN TRANSITION AT ACTIVE DSB SITES 2.4 OTHER FACTORS THAT
INFLUENEE DSBPATTERNS 2.5 AREAS FOR FUTURE STUDY . . . . . . . . . . . .
. . . .
XV
80 80 81 84
84
91 92 95 98 100
105
115
116
122 123 125
126 133
136
143 148 150
165 165
167 167 170 171
172 176
IMAGE 4
MEIOTIC RECOMBINATION IN SCHIZOSACCHAROMYCESPOMBE: APARADIGM FOR GENETIC
AND MOLECULAR ANALYSIS GARETH CROMIE, GERALD R. SMITH . . . . . . . .
195
1 S. POMBE: AN EXEELLENT MODEL ORGANISM FOR STUDYING MEIOTIC
REEOMBINATION .. 196
2 OVERVIEW: A PATHWAY FOR S. POMBE MEIOTIC RECOMBINATION . 197 3 NUCLEAR
MOVEMENT PROMOTES CHROMOSOME ALIGNMENT: BOUQUET AND HORSETAIL
FORMATION. . . . 199
4 MEIOSIS-SPECIFIE SISTER CHROMATID COHESINS: BEHAVIOR CHANGE . . . . .
. . . . . . . . . . 202
5 DSB FORMATION BY REE12: PREPARATION AND PARTNERSHIP 202
5.1 S. POMBE:
A SEEOND EUKARYOTE WITH DIRECTLY OBSERVED MEIOTIC DSBS.. 203 5.2
MODIFICATION OF SISTER CHROMATID COHESION: A FOUNDATION FOR
MEIOSIS-SPECIFIC DSB FORMATION . . . 203 5.3 FORMATION OF LINEAR
ELEMENTS:
STRUETURES REMINISCENT OF THE SYNAPTONEMAL COMPLEX . 204 5.4 REEL2: THE
ACTIVE SITE PROTEIN FOR DSB FORMATION 205
5.5 OTHER PROTEINS ESSENTIAL FOR DSB FORMATION: POTENTIAL REEL2 PARTNERS
AND REGULATORS .. 205
6 DSB HOTSPOTS AND COLDSPOTS: REGULATING WHERE REEOMBINATION OCEURS .
208
6.1 M26: A EUKARYOTIC SEQUENEE-SPECIFIC HOTSPOT 208
6.2 HOTSPOTS IN LARGE INTERGENIE REGIONS: ANOTHER ROLE FOR IUNK DNA? .
. . . . . . 209
6.3 REGION-SPECIFIC ACTIVATION BY COHESINS: MEGABASE-SCALE CONTROL OFDSB
FORMATION 210
6.4 RECOMBINATION IN DSB-POOR INTERVALS: ACTION AT A DISTANEE OR NOVEL
LESIONS? . . . 210
XVI
3 RECOMBINATION HOTSPOTS AND CHROMATIN STRUCTURE IN
SCHIZOSACCHAROMYCESPOMBE . . . . . . 3.1 M26, A TRANSCRIPTION
FACTOR-ASSOCIATED RECOMBINATION HOTSPOT ..... . . . .
3.2 OTHER RECOMBINATION/DSB HOTSPOTS .. 3.3 RECOMBINATION REPRESSION BY
HETEROCHROMATIN 3.4 AREAS FOR FUTURE STUDY . . . . . . . .
4 HINTS FROM MULTICELLULAR ORGANISMS . 4.1 RECOMBINATION DESERTS . . . .
. . . .
4.2 RECOMBINATION SUPPRESSION BY DNAMETHYLATION IN FILAMENTOUS FUNGI 4.3
RECOMBINATION HOTSPOTS . 4.4 AREAS FOR FUTURE RESEARCH
REFERENCES. . . . . . . . . . . . . . .
CONTENTS
177
177 179 180 181 182
182
183 184 185 186
IMAGE 5
CONTENTS XVII
6.5 COLDSPOTS: FORBIDDEN REGIONS FOR RECOMBINATION .. . . .. 211
7 PROCESSING OF REEL2-GENERATED DSBS: CONVERTING ALESION INTO A
RECOMBINOGENIC DNA-PROTEIN COMPLEX . . . . . . . . . . . . 211
7.1 THE MRN COMPLEX IS NEEDED FOR REMOVING REEL2 FROM DSBS BUT NOT FOR
DSB FORMATION 214
7.2 LOADING STRAND-EXCHANGE PROTEINS: MANY ACTORS WITH OVERLAPPING ROLES
.. 214
8 STRAND INVASION AND PARTNER CHOICE . . . 215
8.1 THE DMEL AND RADSL STRAND EXCHANGE PROTEINS: FINDING A HOMOLOGOUS
PARTNER FOR RECOMBINATION . 215 8.2 THE RHP54 AND RDH54 PROTEINS:
ENABLING STRAND EXCHANGE IN A CHROMATIN CONTEXT? 216
8.3 INTERSISTER VS. INTERHOMOLOG RECOMBINATION: ANY PARTNER WILL DO? . .
. 216
9 JOINT MOLEEULE RESOLUTION 217
9.1 SINGLE HOLLIDAY [UNCTIONS: AN UNEXPECTED RECOMBINATION INTERMEDIATE
. 218
9.2 MUS81-EME1: THE MEIOTIC HOLLIDAY IUNCTION RESOLVASE OF S. POMBE ....
. . . . . . . . . . . . . . . . 218
10 MISMATCH CORRECTION . . . . . . . . . . . . . . . 219
11 RELATION OF GENE CONVERSION AND CROSSING-OVER 220
12 SPECIES-SPECIFICSTRATEGIES FOR ENSURING, WITH OR WITHOUT
INTERFERENCE, THE CROSSOVERS REQUIRED FOR CHROMOSOME SEGREGATION 221 13
DIFFERENCES BETWEEN S. POMBE
AND S. CEREVISIAE MEIOTIC RECOMBINATION: AREPRISE 222 REFERENCES. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 224
NUCLEAR MOVEMENT ENFORCING CHROMOSOME ALIGNMENT IN FISSION YEAST-MEIOSIS
WITHOUT HOMOLOG SYNAPSIS DA-QIAO DING, YASUSHI HIRAOKA . . . . . . . . .
. 231
1 INTRODUCTION 231
2 ALIGNMENT OF HOMOLOGOUS CHROMOSOMES 233
2.1 MEIOSIS IN S.POMBE . . . . . . . . . . 233
2.2 CONTRIBUTION OF TELOMERE CLUSTERING AND NUCLEAR MOVEMENT TO
HOMOLOGOUS CHROMOSOMEALIGNMENT 234
2.3 CHROMOSOME ARCHITECTURE IN THE ALIGNMENT OF HOMOLOGOUS CHROMOSOMES .
. . . . . . 236
3 REGULATION OF TELOMERE CLUSTERING . . . . . 237
3.1 MATING PHEROMONE, MAP KINASE AND MEI2 237
3.2 INTEGRITY OF THE TELOMERE . . . . . 239
3.3 INTEGRITY OF THE SPB . . . . . . . . . . . . . . 239
IMAGE 6
THE LEGACY OFTHE GERM LINE - MAINTAINING SEX AND LIFE IN METAZOANS:
COGNITIVE ROOTS OFTHE CONCEPT OFHIERARCHICAL SELECTION DIRK-HENNER
LANKENAU . . . . . * * * . 289
1 INTRODUCTION 289
2 THE LEGACY OFTHE GERM LINE . . 291
2.1 GERM LINE: DEFINITIONS . . . . . 291
2.2 THE CONTINUITY OF WEISMANN S GERM PLASM AND THE THEORY OF
INHERITANCE . . . . . . . 294
2.3 THE EMERGENCE OF MULTICELLULAR ORGANISMS DURING EVOLUTION AND THE
GERM LINE . . . 296
2.4 AMPHIMIXIS AND MEIOSIS . . . . . . . . . . . 299
2.5 ON THE VALUE OF THE VOLVOCINAE AS A LINE OF EVOLUTION TOWARDS
MULTICELLULARITY . . . . 302
2.6 CHROMATIN DIMINUTION: THE FIRST HINTS IN HISTORY TOWARDS
GERM-LINE/SOMASEGREGATION 303
ON THE ORIGIN OF MEIOSIS IN EUKARYOTIC EVOLUTION: COEVOLUTION OF MEIOSIS
AND MITOSIS FROM FEEBLE BEGINNINGS RICHARD EGEL) DAVID PENNY. * * . . *
* * * * . 249
1 INTRODUCTION 250
2 A CONSERVED CORE OF MEIOTIC PROTEINS . 252
3 THE COMPLEX EUKARYOTIC SIGNATURE 253
4 THE UNIVERSAL TRIFURCATION . . . . . . . 255
5 THE RNA WORLD SCENARIO . . . . . . . . 257
6 DYNAMIC IMPLICATIONS OF EIGEN S QUASI-SPECIES CONCEPT . 261 7 WOESE)S
PHASE SHIFT
AT DECREASING EVOLUTIONARY TEMPERATUREN . . . . . . . 263
8 EARLY TRAITS WITH PREADAPTIVE VALUE FOR MEIOSIS . . . . . 267
9 MEIOSIS VS. MITOSIS - ALTERNATIVE PROGRAMS RESPONDING TO DIFFERENT
SELECTIVE NEEDS 271
10 COEVOLUTION OFMEIOSIS AND MITOSIS . . . . . . . . . . . . 274
11 VARIATIONS ON THE MEIOTIC SYSTEM IN THE WORLD OF PROTISTS 277 11.1
FISSION YEAST AS A HAPLOID MODEL ORGANISM: ZYGOTIC MEIOSIS BEFORE
SPORULATION . . . . . . . . . . . . 277
11.2 AMOEBIC SLIME MOLDS: FORMATION OF CANNIBALISTIC ZYGOTES 279 12
CONCLUDING REMARKS 280
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .. 283
XVIII
3.4 DRAGGING TELOMERES TO THE SPB ..
4 REGULATION OF NUC1EAR MOVEMENT 4.1 DYNEIN AND DYNACTIN . . . . . . . .
4.2 CONCENTRATING THE MICROTUBULE BUNDLES AT THE SPB . . 5 CONCLUSION
AND OUTLOOK
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CONTENTS
239 241 241 243
243 244
IMAGE 7
&
CONTENTS XIX
2.7 BIODIVERSITY, GERM-LINE VERSUS SOMA SEGREGATION AND PREFORMATION
VERSUS EPIGENESIS . . . . . . . . . . . . .. 305
2.8 LINKING WEISMANN S TO CURRENT VIEWS ON THE GERM PLASM .. 309 3 THE
ALLMACHT OFSELECTION 312
3.1 DIFFERENT LEVELS OF SELECTION-KIN SELECTION 312
3.2 HAMILTON S RULE AND THE EVOLUTIONARY CRITERION OF ALTRUISTIC
BEHAVIOR . . . . . . 316
4 MAINTAINING SEX IN METAZOANS . 319
4.1 INTRODUCTION 319
4.2 EMERGENCE OF DIPLOIDY . . . . . 321
4.3 RECOMBINATION AS A MEANS TO FIX BENEFICIAL MUTATIONS. . 322 4.4
RECOMBINATION: QUANTUM DIMENSION VERSUS ECOLOGICALDIMENSION .... 325
4.5 RECOMBINATION AS A MEANS TO ELIMINATE DETRIMENTAL MUTATIONS 326
5 FINALE 329
REFERENCES. . . . . . . . . . . . . . . . . 333
LESSONS TO LEARN FROM ANCIENT ASEXUALS ISA SCHOEN, DUNJA K. LAMATSCH,
KOEN MARTENS . 341
1 THE PARADOX OF SEX . . . . . . . 341
2 WHAT IS AN ANCIENT ASEXUALI . . 345
2.1 CLASSICAL NON-GENETIC METHODS 348
2.2 CLASSICAL GENETIC TECHNIQUES . . 352
3 NOVEL GENETIC TESTS- MEIOSIS PROTEINS 363
4 CONC1USIONS . 365
REFERENCES. . . 367
SUBJECT INDEX. 377
|
adam_txt |
IMAGE 1
CONTENTS
EVOLUTION OF MODELS OFHOMOLOGOUS RECOMBINATION JAMES E. HABER *.** * *
* . * . . 1
1 INTRODUCTION 1
1.1 PRELUDE. . . . . . . . . . . . . . . . . . . 2
1.2 THE FIRST MOLECULAR MODELS OFRECOMBINATION 5
2 ROBIN HOLLIDAY'S REMARKABLE MODEL. . . . . . 7
2.1 STRAND EXCHANGE BY SINGLE-STRAND ANNEALING . . 9
2.2 EVIDENCE FAVORING HOLLIDAY'S MODEL: HOTSPOTS AND GRADIENTS OF GENE
CONVERSION 9
2.3 CHALLENGES TO THE HOLLIDAY MODEL . . 11
2.4 THE 5 : 3 PARADOX . . . . . . . . . . . 11
2.5 AN ABSENCE OF DOUBLE-CROSSOVERS . 12
2.6 ALLELESTHAT SHOWA HIGH PMS FALL TO SHOWA HIGH PROPORTION OF ABERRANT
4 : 4 ASCI 12 3 MOLECULAR MODELS BASED ON A SINGLEINITIATING DNALESION
13 4 THE MESELSON-RADDING MODEL (1975) . . . . . . . . . . . . 15
4.1 A TRANSITION FROM 5 : 3 TO AB4 : 4 TETRADS: BRANCH MIGRATION OF A
HOLLIDAY [UNCTION CAN PRODUCE SYMMETRIE HETERODUPLEX. . . . . . . . 17
4.2 EVIDENCE SUPPORTING THE MESELSON-RADDING MODEL: ONE OR TWO
HETERODUPLEX REGIONS WITHIN A GENE . 18 4.3 MORE EVIDENCE: A LARGE
HETEROLOGY APPARENTLY BLOCKS BRANCH MIGRATION 18
5 PROBLEMS WITH THE MESELSON-RADDING MODEL. . . . . 19
5.1 WHERE ARE THE CROSSOVERS? . . . . . . . . . . . . . . . 19
5.2 HOTSPOTS APPEAR TO BE ELIMINATED BY GENE CONVERTED 20
6 ALTERNATIVE WAYS TO INITIATE RECOMBINATION . 20
6.1 SEVERAL PROVOCATIVE SUGGESTIONS 20
6.2 THE FIRST RECOMBINATION MODEL BASED ON DOUBLE-STRAND BREAKS . . . .
22
6.3 A KEYEXPERIMENTAL TRANSITION: STUDYING RECOMBINATION IN MITOTIC
RATHER THAN MEIOTIC CELLS . . . . . . . . . . 24
7 THE DOUBLE HOLLIDAY DSBREPAIR MODEL OF SZOSTAK, ORR-WEAVER, ROTHSTEIN
AND STAHL . . . . . . . . . . . 25
IMAGE 2
XIV CONTENTS
7.1 PROCESSING OF DOUBLE-STRAND BREAK ENDS . . . . . . . . . 26
7.2 THE DOUBLE HOLLIDAY [UNCTION . . . . . . . . . . . . . . . 28
8 IDENTIFICATION OF DNAINTERMEDIATES OF REEOMBINATION 28
8.1 PHYSICAL MONITORING OF MEIOTIE AND MITOTIE REEOMBINATION 28 8.2
EVIDENCE OF 5' TO 3' RESEETION 30
8.3 STRAND INVASION AND 3 1 END PRIMER EXTENSION. . . . . . . 31
8.4 PHYSICAL ANALYSIS OFDOUBLE HOLLIDAY[UNCTIONS . . . . . . 31
8.5 CONTROL OF CROSSING-OVER IN MEIOSISBY STABILIZING DHJS . 32 8.6
IDENTIFICATION OF A HJ RESOLVASE . . . . . 33
9 MULTIPLE PATHWAYS MEIOTIC REEOMBINATION . . . . . . 35
9.1 MEIOTIC RECOMBINATION IN MANY ORGANISMS DEPENDS ON A SECOND STRAND
EXCHANGE PROTEIN . . . . . 37
10 SINGLE-STRAND ANNEALING CAUSES PRIMARILY INTRACHROMOSOMAL DELETIONS
38
11 SYNTHESIS-DEPENDENT STRAND ANNEALING AEEOUNTS FOR MOST MITOTIE
RECOMBINATION AND NONCROSSOVERS IN MEIOSIS . . . . . . . . . . . 39
12 EVOLUTION OFGENE CONVERSION MODELS IN THE PRESENT . 45
13 ANOTHER MAJOR SOURCE OF CREATIVE THINKING: NONRECIPROCAL
REEOMBINATION IN PHAGE A * 48
14 RE-EMERGENCE OF OLD IDEAS IN NEWGUISES: BREAK-INDUCED REPLIEATION . .
. 49
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . 52
SEARCHING FOR HOMOLOGY BY FILAMENTS OF RECA-LIKE PROTEINS CHANTAL
PREVOST * . . * . * . * . . * . * * . . . . . * * . .
1 RECA-LIKE PROTEINS AND HOMOLOGOUS RECOMBINATION . 1.1 THE UNIVERSAL
FUNCTION OFHOMOLOGOUS RECOMBINATION 1.2 NUCLEOPROTEIN FILAMENTS, THE
ACTIVEFORM OF RECOMBINASES . 1.3 PROTEIN/DNA INTERACTIONS INSIDE THE
FILAMENT
1.4 CHARACTERISTICS OF SEQUENCE RECOGNITION IN HOMOLOGOUS RECOMBINATION
. . . . . .
2 SEQUENCE EFFECTS IN HOMOLOGOUS REEOMBINATION . 2.1 A NON-SPECIFIC
REACTIONI .
2.2 SEQUENEE EFFECTS IN RECOMBINASE-DNA ASSOCIATION 2.3 TOLERANCE FOR
HETEROLOGY IN RECA-CATALYZED DNA REEOGNITION AND STRAND EXCHANGE 3
HOMOLOGYSEARCH IN THE CELL . . . . . . . . . . . . .
4 MODELS OFHOMOLOGY SEARCH AT THE MOLECULAR LEVEL . 4.1 DYNAMIC MONTE
CARLO APPROACH: A NUMERICAL MODEL OF RECOGNITION AT THE MOLEEULAR LEVEL
. 4.2 ROLE OF ATP HYDROLYSIS IN RECOGNITION
AND STRAND EXCHANGE . . . . . . .
4.3 THE KINETICS OF HOMOLOGY SEARCH . . . . .
65 65 65 66
70
71 72 72 72
73 74 76
76
77 79
IMAGE 3
CONTENTS
5 HOMOLOGY RECOGNITION AT THE ATOMIC LEVEL . 5.1 HYPOTHESIS .
5.2 LOOKING FOR REACTION INTERMEDIATES . 6 CONCLUSION
REFERENCES. . . . . . . . . . . . . . . . . . . .
BIOCHEMISTRY OF MEIOTIC RECOMBINATION: FORMATION, PROCESSING, AND
RESOLUTION OF RECOMBINATION INTERMEDIATES KIRK T. EHMSEN, WOLF-DIETRICH
HEYER .**.
1 INTRODUCTION .
2 BIOCHEMISTRY OF MEIOTIC REEOMBINATION 2.1 DSB FORMATION: SPO11 AND ITS
CONTROL 2.2 RESECTION . . . . . . . . . . . . . . . . .
2.3 RAD51/DMC1 FILAMENT FORMATION . . . . .
2.4 FORMATION OFHETERODUPLEX DNABYRAD51 AND DME1: COFILAMENTS OR
ASYMMETRY. . . . . . . . . . . . . .
2.5 ROLES OF THE RAD54 AND RDHS4-TID1 MOTOR PROTEINS IN PRESYNAPSIS,
SYNAPSIS AND POSTSYNAPSIS . . . . . 2.6 DNA SYNTHESIS:INVOLVEMENT OF THE
PCNA/RFC-DEPENDENT POLO AND POSSIBLY POLA . . . . . . . . . . . . . . .
.
2.7 D-LOOP DISSOLUTION AND STRAND ANNEALING IN SDSA 2.8 SECOND END
CAPTURE IN DSBR . 2.9 BRANCH MIGRATION IN D-LOOPS AND DOUBLE HOLLIDAY
IUNCTIONS .
2.10 MEIOTIC MMR . . . . . . . . . .
2.11 DOUBLE HOLLIDAY IUNCTION PROCESSING: ROADS TO CROSSOVER AND
NON-CROSSOVER . 2.12 OTHER IUNCTIONS AND ALTERNATIVE MECHANISMS FOR
CROSSOVER FORMATION:
POSSIBLE ROLES OFMUS81-MMS4 AND XPF 3 CONCLUSIONS AND OUTLOOK .
REFERENEES. . . . . . . . . . . . . . . . . . . . . . .
MEIOTIC CHROMATIN: THE SUBSTRATE FOR RECOMBINATION INITIATION MICHAEL
LICHTEN * . * . * * * * * * . . . . . . * . . * . .
1 INTRODUCTION .
2 DOUBLE-STRAND BREAKS AND CHROMATIN STRUCTURE IN SACCHAROMYCES
CEREVISIAE .
2.1 DSBS FORM IN OPEN CHROMATIN . . . . . . . . .
2.2 CHROMATIN STRUCTURE AND POSTINITIATION EVENTS . 2.3 A MEIOTIC
CHROMATIN TRANSITION AT ACTIVE DSB SITES 2.4 OTHER FACTORS THAT
INFLUENEE DSBPATTERNS 2.5 AREAS FOR FUTURE STUDY . . . . . . . . . . . .
. . . .
XV
80 80 81 84
84
91 92 95 98 100
105
115
116
122 123 125
126 133
136
143 148 150
165 165
167 167 170 171
172 176
IMAGE 4
MEIOTIC RECOMBINATION IN SCHIZOSACCHAROMYCESPOMBE: APARADIGM FOR GENETIC
AND MOLECULAR ANALYSIS GARETH CROMIE, GERALD R. SMITH . . . . . . . .
195
1 S. POMBE: AN EXEELLENT MODEL ORGANISM FOR STUDYING MEIOTIC
REEOMBINATION . 196
2 OVERVIEW: A PATHWAY FOR S. POMBE MEIOTIC RECOMBINATION . 197 3 NUCLEAR
MOVEMENT PROMOTES CHROMOSOME ALIGNMENT: "BOUQUET" AND "HORSETAIL"
FORMATION. . . . 199
4 MEIOSIS-SPECIFIE SISTER CHROMATID COHESINS: BEHAVIOR CHANGE . . . . .
. . . . . . . . . . 202
5 DSB FORMATION BY REE12: PREPARATION AND PARTNERSHIP 202
5.1 S. POMBE:
A SEEOND EUKARYOTE WITH DIRECTLY OBSERVED MEIOTIC DSBS. 203 5.2
MODIFICATION OF SISTER CHROMATID COHESION: A FOUNDATION FOR
MEIOSIS-SPECIFIC DSB FORMATION . . . 203 5.3 FORMATION OF LINEAR
ELEMENTS:
STRUETURES REMINISCENT OF THE SYNAPTONEMAL COMPLEX . 204 5.4 REEL2: THE
ACTIVE SITE PROTEIN FOR DSB FORMATION 205
5.5 OTHER PROTEINS ESSENTIAL FOR DSB FORMATION: POTENTIAL REEL2 PARTNERS
AND REGULATORS . 205
6 DSB HOTSPOTS AND COLDSPOTS: REGULATING WHERE REEOMBINATION OCEURS .
208
6.1 M26: A EUKARYOTIC SEQUENEE-SPECIFIC HOTSPOT 208
6.2 HOTSPOTS IN LARGE INTERGENIE REGIONS: ANOTHER ROLE FOR "IUNK" DNA? .
. . . . . . 209
6.3 REGION-SPECIFIC ACTIVATION BY COHESINS: MEGABASE-SCALE CONTROL OFDSB
FORMATION 210
6.4 RECOMBINATION IN DSB-POOR INTERVALS: ACTION AT A DISTANEE OR NOVEL
LESIONS? . . . 210
XVI
3 RECOMBINATION HOTSPOTS AND CHROMATIN STRUCTURE IN
SCHIZOSACCHAROMYCESPOMBE . . . . . . 3.1 M26, A TRANSCRIPTION
FACTOR-ASSOCIATED RECOMBINATION HOTSPOT . . . . .
3.2 OTHER RECOMBINATION/DSB HOTSPOTS . 3.3 RECOMBINATION REPRESSION BY
HETEROCHROMATIN 3.4 AREAS FOR FUTURE STUDY . . . . . . . .
4 HINTS FROM MULTICELLULAR ORGANISMS . 4.1 RECOMBINATION DESERTS . . . .
. . . .
4.2 RECOMBINATION SUPPRESSION BY DNAMETHYLATION IN FILAMENTOUS FUNGI 4.3
RECOMBINATION HOTSPOTS . 4.4 AREAS FOR FUTURE RESEARCH
REFERENCES. . . . . . . . . . . . . . .
CONTENTS
177
177 179 180 181 182
182
183 184 185 186
IMAGE 5
CONTENTS XVII
6.5 COLDSPOTS: FORBIDDEN REGIONS FOR RECOMBINATION . . . . 211
7 PROCESSING OF REEL2-GENERATED DSBS: CONVERTING ALESION INTO A
RECOMBINOGENIC DNA-PROTEIN COMPLEX . . . . . . . . . . . . 211
7.1 THE MRN COMPLEX IS NEEDED FOR REMOVING REEL2 FROM DSBS BUT NOT FOR
DSB FORMATION 214
7.2 LOADING STRAND-EXCHANGE PROTEINS: MANY ACTORS WITH OVERLAPPING ROLES
. 214
8 STRAND INVASION AND PARTNER CHOICE . . . 215
8.1 THE DMEL AND RADSL STRAND EXCHANGE PROTEINS: FINDING A HOMOLOGOUS
PARTNER FOR RECOMBINATION . 215 8.2 THE RHP54 AND RDH54 PROTEINS:
ENABLING STRAND EXCHANGE IN A CHROMATIN CONTEXT? 216
8.3 INTERSISTER VS. INTERHOMOLOG RECOMBINATION: ANY PARTNER WILL DO? . .
. 216
9 JOINT MOLEEULE RESOLUTION 217
9.1 SINGLE HOLLIDAY [UNCTIONS: AN UNEXPECTED RECOMBINATION INTERMEDIATE
. 218
9.2 MUS81-EME1: THE MEIOTIC HOLLIDAY IUNCTION RESOLVASE OF S. POMBE .
. . . . . . . . . . . . . . . . 218
10 MISMATCH CORRECTION . . . . . . . . . . . . . . . 219
11 RELATION OF GENE CONVERSION AND CROSSING-OVER 220
12 SPECIES-SPECIFICSTRATEGIES FOR ENSURING, WITH OR WITHOUT
INTERFERENCE, THE CROSSOVERS REQUIRED FOR CHROMOSOME SEGREGATION 221 13
DIFFERENCES BETWEEN S. POMBE
AND S. CEREVISIAE MEIOTIC RECOMBINATION: AREPRISE 222 REFERENCES. . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . 224
NUCLEAR MOVEMENT ENFORCING CHROMOSOME ALIGNMENT IN FISSION YEAST-MEIOSIS
WITHOUT HOMOLOG SYNAPSIS DA-QIAO DING, YASUSHI HIRAOKA . . . . . . . . .
. 231
1 INTRODUCTION 231
2 ALIGNMENT OF HOMOLOGOUS CHROMOSOMES 233
2.1 MEIOSIS IN S.POMBE . . . . . . . . . . 233
2.2 CONTRIBUTION OF TELOMERE CLUSTERING AND NUCLEAR MOVEMENT TO
HOMOLOGOUS CHROMOSOMEALIGNMENT 234
2.3 CHROMOSOME ARCHITECTURE IN THE ALIGNMENT OF HOMOLOGOUS CHROMOSOMES .
. . . . . . 236
3 REGULATION OF TELOMERE CLUSTERING . . . . . 237
3.1 MATING PHEROMONE, MAP KINASE AND MEI2 237
3.2 INTEGRITY OF THE TELOMERE . . . . . 239
3.3 INTEGRITY OF THE SPB . . . . . . . . . . . . . . 239
IMAGE 6
THE LEGACY OFTHE GERM LINE - MAINTAINING SEX AND LIFE IN METAZOANS:
COGNITIVE ROOTS OFTHE CONCEPT OFHIERARCHICAL SELECTION DIRK-HENNER
LANKENAU . . . . . * * * . 289
1 INTRODUCTION 289
2 THE LEGACY OFTHE GERM LINE . . 291
2.1 GERM LINE: DEFINITIONS . . . . . 291
2.2 THE CONTINUITY OF WEISMANN'S GERM PLASM AND THE THEORY OF
INHERITANCE . . . . . . . 294
2.3 THE EMERGENCE OF MULTICELLULAR ORGANISMS DURING EVOLUTION AND THE
GERM LINE . . . 296
2.4 AMPHIMIXIS AND MEIOSIS . . . . . . . . . . . 299
2.5 ON THE VALUE OF THE VOLVOCINAE AS A LINE OF EVOLUTION TOWARDS
MULTICELLULARITY . . . . 302
2.6 CHROMATIN DIMINUTION: THE FIRST HINTS IN HISTORY TOWARDS
GERM-LINE/SOMASEGREGATION 303
ON THE ORIGIN OF MEIOSIS IN EUKARYOTIC EVOLUTION: COEVOLUTION OF MEIOSIS
AND MITOSIS FROM FEEBLE BEGINNINGS RICHARD EGEL) DAVID PENNY. * * . . *
* * * * . 249
1 INTRODUCTION 250
2 A CONSERVED CORE OF MEIOTIC PROTEINS . 252
3 THE COMPLEX EUKARYOTIC SIGNATURE 253
4 THE UNIVERSAL TRIFURCATION . . . . . . . 255
5 THE RNA WORLD SCENARIO . . . . . . . . 257
6 DYNAMIC IMPLICATIONS OF EIGEN'S QUASI-SPECIES CONCEPT . 261 7 WOESE)S
PHASE SHIFT
AT DECREASING "EVOLUTIONARY TEMPERATUREN . . . . . . . 263
8 EARLY TRAITS WITH PREADAPTIVE VALUE FOR MEIOSIS . . . . . 267
9 MEIOSIS VS. MITOSIS - ALTERNATIVE PROGRAMS RESPONDING TO DIFFERENT
SELECTIVE NEEDS 271
10 COEVOLUTION OFMEIOSIS AND MITOSIS . . . . . . . . . . . . 274
11 VARIATIONS ON THE MEIOTIC SYSTEM IN THE WORLD OF PROTISTS 277 11.1
FISSION YEAST AS A HAPLOID MODEL ORGANISM: ZYGOTIC MEIOSIS BEFORE
SPORULATION . . . . . . . . . . . . 277
11.2 AMOEBIC SLIME MOLDS: FORMATION OF CANNIBALISTIC ZYGOTES 279 12
CONCLUDING REMARKS 280
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 283
XVIII
3.4 DRAGGING TELOMERES TO THE SPB .
4 REGULATION OF NUC1EAR MOVEMENT 4.1 DYNEIN AND DYNACTIN . . . . . . . .
4.2 CONCENTRATING THE MICROTUBULE BUNDLES AT THE SPB . . 5 CONCLUSION
AND OUTLOOK
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CONTENTS
239 241 241 243
243 244
IMAGE 7
&
CONTENTS XIX
2.7 BIODIVERSITY, GERM-LINE VERSUS SOMA SEGREGATION AND PREFORMATION
VERSUS EPIGENESIS . . . . . . . . . . . . . 305
2.8 LINKING WEISMANN'S TO CURRENT VIEWS ON THE GERM PLASM . 309 3 THE
ALLMACHT OFSELECTION 312
3.1 DIFFERENT LEVELS OF SELECTION-KIN SELECTION 312
3.2 HAMILTON'S RULE AND THE EVOLUTIONARY CRITERION OF ALTRUISTIC
BEHAVIOR . . . . . . 316
4 MAINTAINING SEX IN METAZOANS . 319
4.1 INTRODUCTION 319
4.2 EMERGENCE OF DIPLOIDY . . . . . 321
4.3 RECOMBINATION AS A MEANS TO FIX BENEFICIAL MUTATIONS. . 322 4.4
RECOMBINATION: QUANTUM DIMENSION VERSUS ECOLOGICALDIMENSION . 325
4.5 RECOMBINATION AS A MEANS TO ELIMINATE DETRIMENTAL MUTATIONS 326
5 FINALE 329
REFERENCES. . . . . . . . . . . . . . . . . 333
LESSONS TO LEARN FROM ANCIENT ASEXUALS ISA SCHOEN, DUNJA K. LAMATSCH,
KOEN MARTENS . 341
1 THE PARADOX OF SEX . . . . . . . 341
2 WHAT IS AN ANCIENT ASEXUALI . . 345
2.1 CLASSICAL NON-GENETIC METHODS 348
2.2 CLASSICAL GENETIC TECHNIQUES . . 352
3 NOVEL GENETIC TESTS- MEIOSIS PROTEINS 363
4 CONC1USIONS . 365
REFERENCES. . . 367
SUBJECT INDEX. 377 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Egel, Richard |
author2_role | edt |
author2_variant | r e re |
author_facet | Egel, Richard |
building | Verbundindex |
bvnumber | BV023020862 |
classification_rvk | WG 2900 WG 3540 |
ctrlnum | (OCoLC)633747319 (DE-599)DNB985757655 |
dewey-full | 571.845 572.87 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects 572 - Biochemistry |
dewey-raw | 571.845 572.87 |
dewey-search | 571.845 572.87 |
dewey-sort | 3571.845 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Kit Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02017nom a2200469 cb4500</leader><controlfield tag="001">BV023020862</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080318 </controlfield><controlfield tag="008">071126s2008 gw ||| 0| bneng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N41,0551</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985757655</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540753711</subfield><subfield code="c">: ca. EUR 192.55 (freier Pr.), ca. sfr 313.50 (freier Pr.)</subfield><subfield code="9">978-3-540-75371-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540753710</subfield><subfield code="c">: ca. EUR 192.55 (freier Pr.), ca. sfr 313.50 (freier Pr.)</subfield><subfield code="9">3-540-75371-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540753711</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11690771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633747319</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB985757655</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.845</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.87</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 2900</subfield><subfield code="0">(DE-625)148528:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 3540</subfield><subfield code="0">(DE-625)148552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Recombination and meiosis</subfield><subfield code="b">crossing-over and disjunction</subfield><subfield code="c">vol. ed.: Richard Egel ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 365 S.</subfield><subfield code="b">24 schw.-w. Ill., 14 farb. Ill., 4 schw.-w. Fotos, 4 farb. Fotos, 20 schw.-w. graph. Darst., 10 farb. graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Genome dynamics and stability</subfield><subfield code="v">2</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rekombination</subfield><subfield code="0">(DE-588)4049338-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genetik</subfield><subfield code="0">(DE-588)4071711-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Meiose</subfield><subfield code="0">(DE-588)4169347-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Meiose</subfield><subfield code="0">(DE-588)4169347-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rekombination</subfield><subfield code="0">(DE-588)4049338-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Genetik</subfield><subfield code="0">(DE-588)4071711-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Egel, Richard</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Genome dynamics and stability</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV022200036</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016224927&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016224927</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV023020862 |
illustrated | Illustrated |
index_date | 2024-07-02T19:13:05Z |
indexdate | 2024-07-09T21:09:09Z |
institution | BVB |
isbn | 9783540753711 3540753710 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016224927 |
oclc_num | 633747319 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | XIV, 365 S. 24 schw.-w. Ill., 14 farb. Ill., 4 schw.-w. Fotos, 4 farb. Fotos, 20 schw.-w. graph. Darst., 10 farb. graph. Darst. 235 mm x 155 mm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Genome dynamics and stability |
series2 | Genome dynamics and stability |
spelling | Recombination and meiosis crossing-over and disjunction vol. ed.: Richard Egel ... Berlin Springer 2008 XIV, 365 S. 24 schw.-w. Ill., 14 farb. Ill., 4 schw.-w. Fotos, 4 farb. Fotos, 20 schw.-w. graph. Darst., 10 farb. graph. Darst. 235 mm x 155 mm Genome dynamics and stability 2 Rekombination (DE-588)4049338-6 gnd rswk-swf Genetik (DE-588)4071711-2 gnd rswk-swf Meiose (DE-588)4169347-4 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Meiose (DE-588)4169347-4 s Rekombination (DE-588)4049338-6 s Genetik (DE-588)4071711-2 s DE-604 Egel, Richard edt Genome dynamics and stability 2 (DE-604)BV022200036 2 OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016224927&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Recombination and meiosis crossing-over and disjunction Genome dynamics and stability Rekombination (DE-588)4049338-6 gnd Genetik (DE-588)4071711-2 gnd Meiose (DE-588)4169347-4 gnd |
subject_GND | (DE-588)4049338-6 (DE-588)4071711-2 (DE-588)4169347-4 (DE-588)4143413-4 |
title | Recombination and meiosis crossing-over and disjunction |
title_auth | Recombination and meiosis crossing-over and disjunction |
title_exact_search | Recombination and meiosis crossing-over and disjunction |
title_exact_search_txtP | Recombination and meiosis crossing-over and disjunction |
title_full | Recombination and meiosis crossing-over and disjunction vol. ed.: Richard Egel ... |
title_fullStr | Recombination and meiosis crossing-over and disjunction vol. ed.: Richard Egel ... |
title_full_unstemmed | Recombination and meiosis crossing-over and disjunction vol. ed.: Richard Egel ... |
title_short | Recombination and meiosis |
title_sort | recombination and meiosis crossing over and disjunction |
title_sub | crossing-over and disjunction |
topic | Rekombination (DE-588)4049338-6 gnd Genetik (DE-588)4071711-2 gnd Meiose (DE-588)4169347-4 gnd |
topic_facet | Rekombination Genetik Meiose Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016224927&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022200036 |
work_keys_str_mv | AT egelrichard recombinationandmeiosiscrossingoveranddisjunction |