Lie sphere geometry: with applications to submanifolds
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2008
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XII, 208 S. Ill., graph. Darst. 235 mm x 155 mm |
ISBN: | 9780387746555 0387746552 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023018274 | ||
003 | DE-604 | ||
005 | 20090515 | ||
007 | t | ||
008 | 071123s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 07,N34,0563 |2 dnb | ||
016 | 7 | |a 985166681 |2 DE-101 | |
020 | |a 9780387746555 |9 978-0-387-74655-5 | ||
020 | |a 0387746552 |9 0-387-74655-2 | ||
024 | 3 | |a 9780387746555 | |
028 | 5 | 2 | |a 11764540 |
035 | |a (OCoLC)173498965 | ||
035 | |a (DE-599)DNB985166681 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-384 |a DE-20 |a DE-355 |a DE-91G |a DE-11 | ||
050 | 0 | |a QA649 | |
082 | 0 | |a 516.3/6 |2 22 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 537f |2 stub | ||
100 | 1 | |a Cecil, Thomas E. |d 1945- |e Verfasser |0 (DE-588)102959354X |4 aut | |
245 | 1 | 0 | |a Lie sphere geometry |b with applications to submanifolds |c Thomas E. Cecil |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Springer |c 2008 | |
300 | |a XII, 208 S. |b Ill., graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
650 | 4 | |a Géométrie différentielle | |
650 | 4 | |a Sous-variétés (Mathématiques) | |
650 | 4 | |a Geometry, Differential | |
650 | 4 | |a Submanifolds | |
650 | 0 | 7 | |a Lie-Geometrie |0 (DE-588)4167647-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Geometrie |0 (DE-588)4167647-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2990411&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016222399&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016222399 |
Datensatz im Suchindex
_version_ | 1805089672677818368 |
---|---|
adam_text |
Contents
Preface
to the First Edition
.
vii
Preface to the Second Edition
. ix
1
Introduction
. 1
2
Lie Sphere Geometry
. 9
2.1
Preliminaries
. 9
2.2
Möbius
Geometry of Unoriented Spheres
. 11
2.3
Lie Geometry of Oriented Spheres
. 14
2.4
Geometry of Hyperspheres in S" and H"
. 16
2.5
Oriented Contact and Parabolic Pencils of Spheres
. 19
3
Lie Sphere Transformations
. 25
3.1
The Fundamental Theorem
. 25
3.2
Generation of the Lie Sphere Group by Inversions
. 30
3.3
Geometric Description of Inversions
. 34
3.4
Laguerre Geometry
. 37
3.5
Subgeometries of Lie Sphere Geometry
. 46
4
Legendre Submanifolds
. 51
4.1
Contact Structure on
Л2""1
. 51
4.2
Definition of Legendre Submanifolds
. 56
4.3
The Legendre Map
. 60
4.4
Curvature Spheres and Parallel Submanifolds
. 64
4.5
Lie Curvatures and Isoparametric Hypersurfaces
. 72
4.6
Lie
invariance
of Tautness
. 82
4.7
Isoparametric Hypersurfaces of FKM-type
. 95
4.8
Compact Proper
Dupin
Submanifolds
. 112
xii
Contents
5
Dupin
Submanifolds
. 125
5.1
Local Constructions
. 125
5.2
Reducible
Dupin
Submanifolds
. 127
5.3
Lie Sphere Geometric Criterion for Reducibility
. 141
5.4
Cyclides of
Dupin
. 148
5.5
Lie Frames
. 159
5.6
Covariant Differentiation
. 165
5.7
Dupin
Hypersurfaces in 4-Space
. 168
References
. 191
Index
. 201 |
adam_txt |
Contents
Preface
to the First Edition
.
vii
Preface to the Second Edition
. ix
1
Introduction
. 1
2
Lie Sphere Geometry
. 9
2.1
Preliminaries
. 9
2.2
Möbius
Geometry of Unoriented Spheres
. 11
2.3
Lie Geometry of Oriented Spheres
. 14
2.4
Geometry of Hyperspheres in S" and H"
. 16
2.5
Oriented Contact and Parabolic Pencils of Spheres
. 19
3
Lie Sphere Transformations
. 25
3.1
The Fundamental Theorem
. 25
3.2
Generation of the Lie Sphere Group by Inversions
. 30
3.3
Geometric Description of Inversions
. 34
3.4
Laguerre Geometry
. 37
3.5
Subgeometries of Lie Sphere Geometry
. 46
4
Legendre Submanifolds
. 51
4.1
Contact Structure on
Л2""1
. 51
4.2
Definition of Legendre Submanifolds
. 56
4.3
The Legendre Map
. 60
4.4
Curvature Spheres and Parallel Submanifolds
. 64
4.5
Lie Curvatures and Isoparametric Hypersurfaces
. 72
4.6
Lie
invariance
of Tautness
. 82
4.7
Isoparametric Hypersurfaces of FKM-type
. 95
4.8
Compact Proper
Dupin
Submanifolds
. 112
xii
Contents
5
Dupin
Submanifolds
. 125
5.1
Local Constructions
. 125
5.2
Reducible
Dupin
Submanifolds
. 127
5.3
Lie Sphere Geometric Criterion for Reducibility
. 141
5.4
Cyclides of
Dupin
. 148
5.5
Lie Frames
. 159
5.6
Covariant Differentiation
. 165
5.7
Dupin
Hypersurfaces in 4-Space
. 168
References
. 191
Index
. 201 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Cecil, Thomas E. 1945- |
author_GND | (DE-588)102959354X |
author_facet | Cecil, Thomas E. 1945- |
author_role | aut |
author_sort | Cecil, Thomas E. 1945- |
author_variant | t e c te tec |
building | Verbundindex |
bvnumber | BV023018274 |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 |
callnumber-search | QA649 |
callnumber-sort | QA 3649 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 SK 370 |
classification_tum | MAT 537f |
ctrlnum | (OCoLC)173498965 (DE-599)DNB985166681 |
dewey-full | 516.3/6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/6 |
dewey-search | 516.3/6 |
dewey-sort | 3516.3 16 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023018274</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090515</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071123s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N34,0563</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985166681</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387746555</subfield><subfield code="9">978-0-387-74655-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387746552</subfield><subfield code="9">0-387-74655-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387746555</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11764540</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)173498965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB985166681</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA649</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/6</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 537f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cecil, Thomas E.</subfield><subfield code="d">1945-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)102959354X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie sphere geometry</subfield><subfield code="b">with applications to submanifolds</subfield><subfield code="c">Thomas E. Cecil</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 208 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie différentielle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sous-variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Differential</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Submanifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Geometrie</subfield><subfield code="0">(DE-588)4167647-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Geometrie</subfield><subfield code="0">(DE-588)4167647-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2990411&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016222399&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016222399</subfield></datafield></record></collection> |
id | DE-604.BV023018274 |
illustrated | Illustrated |
index_date | 2024-07-02T19:12:02Z |
indexdate | 2024-07-20T09:27:38Z |
institution | BVB |
isbn | 9780387746555 0387746552 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016222399 |
oclc_num | 173498965 |
open_access_boolean | |
owner | DE-384 DE-20 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-11 |
owner_facet | DE-384 DE-20 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-11 |
physical | XII, 208 S. Ill., graph. Darst. 235 mm x 155 mm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Cecil, Thomas E. 1945- Verfasser (DE-588)102959354X aut Lie sphere geometry with applications to submanifolds Thomas E. Cecil 2. ed. New York, NY Springer 2008 XII, 208 S. Ill., graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Universitext Géométrie différentielle Sous-variétés (Mathématiques) Geometry, Differential Submanifolds Lie-Geometrie (DE-588)4167647-6 gnd rswk-swf Lie-Geometrie (DE-588)4167647-6 s DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2990411&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016222399&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cecil, Thomas E. 1945- Lie sphere geometry with applications to submanifolds Géométrie différentielle Sous-variétés (Mathématiques) Geometry, Differential Submanifolds Lie-Geometrie (DE-588)4167647-6 gnd |
subject_GND | (DE-588)4167647-6 |
title | Lie sphere geometry with applications to submanifolds |
title_auth | Lie sphere geometry with applications to submanifolds |
title_exact_search | Lie sphere geometry with applications to submanifolds |
title_exact_search_txtP | Lie sphere geometry with applications to submanifolds |
title_full | Lie sphere geometry with applications to submanifolds Thomas E. Cecil |
title_fullStr | Lie sphere geometry with applications to submanifolds Thomas E. Cecil |
title_full_unstemmed | Lie sphere geometry with applications to submanifolds Thomas E. Cecil |
title_short | Lie sphere geometry |
title_sort | lie sphere geometry with applications to submanifolds |
title_sub | with applications to submanifolds |
topic | Géométrie différentielle Sous-variétés (Mathématiques) Geometry, Differential Submanifolds Lie-Geometrie (DE-588)4167647-6 gnd |
topic_facet | Géométrie différentielle Sous-variétés (Mathématiques) Geometry, Differential Submanifolds Lie-Geometrie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2990411&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016222399&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cecilthomase liespheregeometrywithapplicationstosubmanifolds |