Computational many particle physics:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Medienkombination Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Schriftenreihe: | Lecture notes in physics
739 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 780 S. Ill. |
ISBN: | 9783540746850 3540746854 |
Internformat
MARC
LEADER | 00000nom a2200000 cb4500 | ||
---|---|---|---|
001 | BV023014573 | ||
003 | DE-604 | ||
005 | 20080211 | ||
008 | 071121s2008 gw ||| 0| bneng d | ||
015 | |a 07,N34,0595 |2 dnb | ||
016 | 7 | |a 98519989X |2 DE-101 | |
020 | |a 9783540746850 |c : ca. EUR 106.95 (freier Pr.), ca. sfr 174.00 (freier Pr.) |9 978-3-540-74685-0 | ||
020 | |a 3540746854 |c : ca. EUR 106.95 (freier Pr.), ca. sfr 174.00 (freier Pr.) |9 3-540-74685-4 | ||
024 | 3 | |a 9783540746850 | |
028 | 5 | 2 | |a 11808855 |
035 | |a (OCoLC)633672129 | ||
035 | |a (DE-599)DNB98519989X | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-384 |a DE-355 |a DE-20 |a DE-11 |a DE-188 |a DE-19 | ||
082 | 0 | |a 530.1 |2 22/ger | |
084 | |a UD 8220 |0 (DE-625)145543: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
245 | 1 | 0 | |a Computational many particle physics |c H. Fehske ... (eds.) |
246 | 1 | 3 | |a Computational many-particle physics |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XV, 780 S. |b Ill. | ||
490 | 1 | |a Lecture notes in physics |v 739 | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielteilchensystem |0 (DE-588)4063491-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vielteilchensystem |0 (DE-588)4063491-7 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Vielteilchensystem |0 (DE-588)4063491-7 |D s |
689 | 1 | 1 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 1 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Fehske, Holger |d 1956- |0 (DE-588)110967542 |4 edt | |
830 | 0 | |a Lecture notes in physics |v 739 |w (DE-604)BV000003166 |9 739 | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016218755&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016218755 |
Datensatz im Suchindex
_version_ | 1804137230801829888 |
---|---|
adam_text | Contents
Part I Molecular Dynamics
1
Introduction to Molecular Dynamics
Ralf
Schneider,
Amit
Raj Sharma, and Abha
Rai
........................ 3
1.1
Basic Approach
............................................... 3
1.2
Macroscopic Parameters
........................................ 6
1.3
Inter-Atomic Potentials
......................................... 8
1.4
Numerical Integration Techniques
................................ 14
1.5
Analysis of MD Runs
.......................................... 18
1.6
From Classical to Quantum-Mechanical MD
....................... 23
1.7 Ab Initio
MD
................................................. 24
1.8
Car-Parrinello Molecular Dynamics
.............................. 25
1.9
Potential Energy Surface
....................................... 28
1.10
Advanced Numerical Methods
................................... 29
References
......................................................... 37
2
Wigner Function Quantum Molecular Dynamics
V. S. Filinov, M. Bonitz, A. Filinov, and V. O. Golubnychiy
................ 41
2.1
Quantum Distribution Functions
................................. 41
2.2
Semiclassical Molecular Dynamics
............................... 43
2.3
Quantum Dynamics
............................................. 50
2.4
Time Correlation Functions in the Canonical Ensemble
.............. 54
2.5
Discussion
................................................... 58
References
......................................................... 59
Part II Classical Monte Carlo
3
The Monte Carlo Method, an Introduction
Detlev Reiter.................................................... 63
3.1
What is a Monte Carlo Calculation?
.............................. 63
3.2
Random Number Generation
.................................... 67
3.3
Integration by Monte Carlo
..................................... 71
3.4
Summary
.................................................... 77
References
......................................................... 78
X
Contents
4 Monte Carlo
Methods in Classical Statistical Physics
Wolfltard Janke
.................................................. 79
4.1
Introduction
.................................................. 79
4.2
Statistical Physics Primer
....................................... 80
4.3
The Monte Carlo Method
....................................... 85
4.4
Cluster Algorithms
............................................ 93
4.5
Statistical Analysis of Monte Carlo Data
.......................... 99
4.6
Reweighting Techniques
........................................108
4.7
Finite-Size Scaling Analysis
....................................114
4.8
Generalized Ensemble Methods
..................................129
4.9
Concluding Remarks
...........................................135
References
.........................................................135
5
The Monte Carlo Method for Particle Transport Problems
Detlev Reiter....................................................141
5.1
Transport Problems and Stochastic Processes
......................141
5.2
The Transport Equation:
Fredholm
Integral
Equation of Second Kind
.......................................143
5.3
The Boltzmann Equation
.......................................144
5.4
The Linear Integral Equation for the Collision Density
..............147
5.5
Monte Carlo Solution
..........................................150
5.6
Some Special Sampling Techniques
..............................154
5.7
An Illustrative Example
........................................156
References
.........................................................158
Part III Kinetic Modelling
6
The Particle-in-Cell Method
David Tskhakaya
.................................................161
6.1
General Remarks
..............................................161
6.2
Integration of Equations of Particle Motion
........................163
6.3
Plasma Source and Boundary Effects
.............................166
6.4
Calculation of Plasma Parameters and Fields
Acting on Particles
............................................170
6.5
Solution of Maxwell s Equations
.................................175
6.6
Particle Collisions
.............................................183
6.7
Final Remarks
................................................188
References
.........................................................188
7
Gyrokinetic and Gyrofluid Theory and Simulation
of Magnetized Plasmas
Richard D, Sydora
................................................ 191
7.1
Introduction
..................................................191
7.2
Single Particle Dynamics
.......................................193
7.3
Continuum Gyrokinetics
........................................200
Contents
XI
7.4
Gyrofluid Model
..............................................204
7.5
Gyrokinetic Particle Simulation Model
............................207
7.6
Gyrokinetic Particle Simulation Model Applications
................210
7.7
Summary
....................................................217
References
.........................................................218
Part IV Semiclassical Approaches
8
Boltzmann Transport in Condensed Matter
Franz Xaver Bronold..............................................223
8.1
Boltzmann Equation for Quasiparticles
...........................223
8.2
Techniques for the Solution of the Boltzmann Equation
..............230
8.3
Conclusions
.................................................. 252
References
.........................................................253
9
Semiclassical Description of Quantum Many-Particle Dynamics
in Strong Laser Fields
Thomas Fennel and
Jörg Köhn......................................255
9.1
Semiclassical Many-Particle Dynamics
in Mean-Field Approximation
...................................255
9.2
Semiclassical Ground State
.....................................261
9.3
Application to Simple-Metal Clusters
.............................265
References
.........................................................272
Part V Quantum Monte Carlo
10
World-line and Determinantal Quantum Monte Carlo Methods
for Spins, Phonons and Electrons
F.F.
Assaad andH.G. Evertz
........................................277
10.1
Introduction
..................................................277
10.2
Discrete Imaginary Time World Lines
for the XXZ Spin Chain
........................................278
10.3
World-Line Representations without Discretization Error
............299
10.4
Loop Operator Representation
of the
Heisenberg
Model
.......................................303
10.5
Spin-Phonon Simulations
.......................................308
10.6
Auxiliary Field Quantum Monte Carlo Methods
....................312
10.7
Numerical Stabilization Schemes for Lattice Models
................325
10.8
The Hirsch-Fye Impurity Algorithm
..............................337
10.9
Selected Applications of the Auxiliary Field Method
................344
10.10
Conclusion
...................................................345
10.A The Trotter Decomposition
.....................................345
XII Contents
ÎO.B
The Hubbard-Stratonovich Decomposition
........................347
10.C Slater Determinants and their Properties
...........................349
References
.........................................................353
11
Autocorrelations in Quantum Monte Carlo Simulations
of Electron-Phonon Models
Martin Hohenadler and Thomas
С
Lang
..............................357
11.1
Introduction
..................................................357
11.2 Holstein
Model
...............................................358
11.3
Numerical Methods
............................................358
11.4
Problem of Autocorrelations
....................................360
11.5
Origin of Autocorrelations and Principal Components
...............363
11.6
Conclusions
..................................................365
References
.........................................................366
12
Diagrammatic Monte Carlo and Stochastic Optimization Methods
for Complex Composite Objects in Macroscopic Baths
A. S. Mishchenko
.................................................367
12.1
Introduction
..................................................367
12.2
Physical Properties of Interest
...................................372
12.3
The Diagrammatic Monte Carlo Method
..........................374
12.4
Stochastic Optimization Method
.................................391
12.5
Conclusions and Perspectives
...................................393
References
.........................................................394
13
Path Integral Monte Carlo Simulation of Charged Particles in Traps
Alexei Filinov, Jens Boning, and Michael Bonitz
........................397
13.1
Introduction
..................................................397
13.2
Idea of Path Integral Monte Carlo
................................397
13.3
Basic Numerical Issues of PIMC
.................................401
13.4
PIMC for Degenerate
Bose
Systems
..............................406
13.5
Discussion
...................................................410
References
.........................................................411
Part VI Ab-Initio Methods in Physics and Chemistry
14
Ab-Initio Approach to the Many-Electron Problem
Alexander
Quandi
................................................415
14.1
Introduction
..................................................415
14.2
An Orbital Approach to Chemistry
...............................419
14.3
Hartree-Fock Theory
...........................................427
14.4
Density Functional Theory
......................................432
References
.........................................................435
Contents
XIII
15
Ab-Initio Methods Applied to Structure Optimization
and Microscopic Modelling
Alexander
Quandi
................................................437
15.1
Exploring Energy Hypersurfaces
.................................437
15.2
Applied Theoretical Chemistry
..................................444
15.3
Model Hamiltonians
...........................................451
15.4
Summary and Outlook
.........................................465
15.
A Links to Popular
Ab Initio
Packages
..............................466
References
.........................................................467
Part
VII
Effective Field Approaches
16
Dynamical Mean-Field Approximation and Cluster Methods
for Correlated Electron Systems
Thomas Pruschke
................................................473
16.1
Introduction
..................................................473
16.2
Mean-Field Theory for Correlated Electron Systems
................475
16.3
Extending the DMFT: Effective Cluster Theories
...................492
16.4
Conclusions
..................................................499
References
.........................................................501
17
Local Distribution Approach
Andreas Alvermann and
Holger
Fehske
...............................505
17.1
Introduction
..................................................505
17.2
Applications of the LD Approach
................................514
17.3
Summary
....................................................525
References
.........................................................526
Part
VIII
Iterative Methods for Sparse Eigenvalue Problems
18
Exact Diagonalization Techniques
Alexander
Weiße
and
Holger
Fehske
.................................529
18.1
Basis Construction
.............................................529
18.2
Eigenstates of Sparse Matrices
...................................539
References
.........................................................543
19
Chebyshev Expansion Techniques
Alexander
Weiße
and
Holger
Fehske
.................................545
19.1
Chebyshev Expansion and Kernel Polynomial Approximation
........545
19.2
Applications of the Kernel Polynomial Method
.....................554
19.3
KPM
in Relation to other Numerical Approaches
...................568
References
.........................................................575
XIV Contents
Part IX The Density Matrix
Renormalisation
Group:
Concepts and Applications
20
The Conceptual Background of Density-Matrix Renormalization
Ingo
Pescliel and Viktor Eisler
......................................581
20.1
Introduction
..................................................581
20.2
Entangled States
..............................................581
20.3
Reduced Density Matrices
......................................582
20.4
Solvable Models
..............................................583
20.5
Spectra
......................................................586
20.6
Entanglement Entropy
.........................................589
20.7
Matrix-Product States
..........................................593
20.8
Summary
....................................................594
References
.........................................................594
21
Density-Matrix Renormalization Group Algorithms
Eric Jeckelmann
.................................................597
21.1
Introduction
..................................................597
21.2
Matrix-Product States and (Super-)Blocks
.........................598
21.3
Numerical Renormalization Group
...............................600
21.4
Infinite-System DMRG Algorithm
...............................602
21.5
Finite-System DMRG Algorithm
................................607
21.6
Additive Quantum Numbers
.....................................611
21.7
Truncation Errors
..............................................613
21.8
Computational Cost and Optimization
............................616
21.9
Basic Extensions
..............................................617
References
.........................................................618
22
Dynamical Density-Matrix Renormalization Group
Eric Jeckelmann and
Holger
Benthien
................................621
22.1
Introduction
..................................................621
22.2
Methods for Simple Discrete Spectra
.............................623
22.3
Dynamical DMRG
............................................626
22.4
Finite-Size Scaling
............................................630
22.5
Momentum-Dependent Quantities
................................631
22.6
Application: Spectral Function of the Hubbard Model
...............632
References
.........................................................634
23
Studying Time-Dependent Quantum Phenomena
with the Density-Matrix Renormalization Group
Reinhard
M.
Noack,
Salvatore
R.
Manmana, Stefan Wessel,
and Alejandro Muramatsu
.........................................637
23.1
Time Dependence in Interacting
Quantum Systems
.................637
23.2
Sudden Quench of Interacting
Fermions
...........................643
23.3
Discussion
....................................................650
References
.........................................................651
Contents
XV
24
Applications of Quantum Information in the Density-Matrix
Renormalization Group
O. Legeza, R.M. Noack, J.
Sólyom,
and
L. Tincani
.......................653
24.1
Basic Concepts of Quantum Information Theory
...................653
24.2
Entropie
Analysis of Quantum Phase Transitions
...................657
24.3
Discussion and Outlook
........................................662
References
.........................................................663
25
Density-Matrix Renormalization Group for Transfer Matrices:
Static and Dynamical Properties of ID Quantum Systems
at Finite Temperature
Stefan
Glocke,
Andreas Kliimper, and Jesko Sirker
......................665
25.1
Introduction
..................................................665
25.2
Quantum Transfer Matrix Theory
................................666
25.3
The Method
-
DMRG Algorithm for the QTM
.....................669
25.4
An Example: The Spin-
1/2 Heisenberg
Chain with Staggered and
Uniform Magnetic Fields
.......................................671
25.5
Impurity and Boundary Contributions
.............................672
25.6
Real-Time Dynamics
..........................................673
References
.........................................................676
Part X Concepts of High Performance Computing
26
Architecture and Performance Characteristics of Modern High
Performance Computers
Georg Hager
and Gerhard Wellein
...................................681
26.1
Microprocessors
..............................................682
26.2
Parallel Computing
............................................701
26.3
Conclusion and Outlook
........................................729
References
.........................................................729
27
Optimization Techniques for Modern High Performance Computers
Georg Hager
and Gerhard Wellein
...................................731
27.1
Optimizing Serial Code
........................................732
27.2
Shared-Memory Parallelization
..................................755
27.3
Conclusion and Outlook
........................................766
References
.........................................................767
Appendix: Abbreviations
............................................769
Index
..............................................................773
|
adam_txt |
Contents
Part I Molecular Dynamics
1
Introduction to Molecular Dynamics
Ralf
Schneider,
Amit
Raj Sharma, and Abha
Rai
. 3
1.1
Basic Approach
. 3
1.2
Macroscopic Parameters
. 6
1.3
Inter-Atomic Potentials
. 8
1.4
Numerical Integration Techniques
. 14
1.5
Analysis of MD Runs
. 18
1.6
From Classical to Quantum-Mechanical MD
. 23
1.7 Ab Initio
MD
. 24
1.8
Car-Parrinello Molecular Dynamics
. 25
1.9
Potential Energy Surface
. 28
1.10
Advanced Numerical Methods
. 29
References
. 37
2
Wigner Function Quantum Molecular Dynamics
V. S. Filinov, M. Bonitz, A. Filinov, and V. O. Golubnychiy
. 41
2.1
Quantum Distribution Functions
. 41
2.2
Semiclassical Molecular Dynamics
. 43
2.3
Quantum Dynamics
. 50
2.4
Time Correlation Functions in the Canonical Ensemble
. 54
2.5
Discussion
. 58
References
. 59
Part II Classical Monte Carlo
3
The Monte Carlo Method, an Introduction
Detlev Reiter. 63
3.1
What is a Monte Carlo Calculation?
. 63
3.2
Random Number Generation
. 67
3.3
Integration by Monte Carlo
. 71
3.4
Summary
. 77
References
. 78
X
Contents
4 Monte Carlo
Methods in Classical Statistical Physics
Wolfltard Janke
. 79
4.1
Introduction
. 79
4.2
Statistical Physics Primer
. 80
4.3
The Monte Carlo Method
. 85
4.4
Cluster Algorithms
. 93
4.5
Statistical Analysis of Monte Carlo Data
. 99
4.6
Reweighting Techniques
.108
4.7
Finite-Size Scaling Analysis
.114
4.8
Generalized Ensemble Methods
.129
4.9
Concluding Remarks
.135
References
.135
5
The Monte Carlo Method for Particle Transport Problems
Detlev Reiter.141
5.1
Transport Problems and Stochastic Processes
.141
5.2
The Transport Equation:
Fredholm
Integral
Equation of Second Kind
.143
5.3
The Boltzmann Equation
.144
5.4
The Linear Integral Equation for the Collision Density
.147
5.5
Monte Carlo Solution
.150
5.6
Some Special Sampling Techniques
.154
5.7
An Illustrative Example
.156
References
.158
Part III Kinetic Modelling
6
The Particle-in-Cell Method
David Tskhakaya
.161
6.1
General Remarks
.161
6.2
Integration of Equations of Particle Motion
.163
6.3
Plasma Source and Boundary Effects
.166
6.4
Calculation of Plasma Parameters and Fields
Acting on Particles
.170
6.5
Solution of Maxwell's Equations
.175
6.6
Particle Collisions
.183
6.7
Final Remarks
.188
References
.188
7
Gyrokinetic and Gyrofluid Theory and Simulation
of Magnetized Plasmas
Richard D, Sydora
. 191
7.1
Introduction
.191
7.2
Single Particle Dynamics
.193
7.3
Continuum Gyrokinetics
.200
Contents
XI
7.4
Gyrofluid Model
.204
7.5
Gyrokinetic Particle Simulation Model
.207
7.6
Gyrokinetic Particle Simulation Model Applications
.210
7.7
Summary
.217
References
.218
Part IV Semiclassical Approaches
8
Boltzmann Transport in Condensed Matter
Franz Xaver Bronold.223
8.1
Boltzmann Equation for Quasiparticles
.223
8.2
Techniques for the Solution of the Boltzmann Equation
.230
8.3
Conclusions
. 252
References
.253
9
Semiclassical Description of Quantum Many-Particle Dynamics
in Strong Laser Fields
Thomas Fennel and
Jörg Köhn.255
9.1
Semiclassical Many-Particle Dynamics
in Mean-Field Approximation
.255
9.2
Semiclassical Ground State
.261
9.3
Application to Simple-Metal Clusters
.265
References
.272
Part V Quantum Monte Carlo
10
World-line and Determinantal Quantum Monte Carlo Methods
for Spins, Phonons and Electrons
F.F.
Assaad andH.G. Evertz
.277
10.1
Introduction
.277
10.2
Discrete Imaginary Time World Lines
for the XXZ Spin Chain
.278
10.3
World-Line Representations without Discretization Error
.299
10.4
Loop Operator Representation
of the
Heisenberg
Model
.303
10.5
Spin-Phonon Simulations
.308
10.6
Auxiliary Field Quantum Monte Carlo Methods
.312
10.7
Numerical Stabilization Schemes for Lattice Models
.325
10.8
The Hirsch-Fye Impurity Algorithm
.337
10.9
Selected Applications of the Auxiliary Field Method
.344
10.10
Conclusion
.345
10.A The Trotter Decomposition
.345
XII Contents
ÎO.B
The Hubbard-Stratonovich Decomposition
.347
10.C Slater Determinants and their Properties
.349
References
.353
11
Autocorrelations in Quantum Monte Carlo Simulations
of Electron-Phonon Models
Martin Hohenadler and Thomas
С
Lang
.357
11.1
Introduction
.357
11.2 Holstein
Model
.358
11.3
Numerical Methods
.358
11.4
Problem of Autocorrelations
.360
11.5
Origin of Autocorrelations and Principal Components
.363
11.6
Conclusions
.365
References
.366
12
Diagrammatic Monte Carlo and Stochastic Optimization Methods
for Complex Composite Objects in Macroscopic Baths
A. S. Mishchenko
.367
12.1
Introduction
.367
12.2
Physical Properties of Interest
.372
12.3
The Diagrammatic Monte Carlo Method
.374
12.4
Stochastic Optimization Method
.391
12.5
Conclusions and Perspectives
.393
References
.394
13
Path Integral Monte Carlo Simulation of Charged Particles in Traps
Alexei Filinov, Jens Boning, and Michael Bonitz
.397
13.1
Introduction
.397
13.2
Idea of Path Integral Monte Carlo
.397
13.3
Basic Numerical Issues of PIMC
.401
13.4
PIMC for Degenerate
Bose
Systems
.406
13.5
Discussion
.410
References
.411
Part VI Ab-Initio Methods in Physics and Chemistry
14
Ab-Initio Approach to the Many-Electron Problem
Alexander
Quandi
.415
14.1
Introduction
.415
14.2
An Orbital Approach to Chemistry
.419
14.3
Hartree-Fock Theory
.427
14.4
Density Functional Theory
.432
References
.435
Contents
XIII
15
Ab-Initio Methods Applied to Structure Optimization
and Microscopic Modelling
Alexander
Quandi
.437
15.1
Exploring Energy Hypersurfaces
.437
15.2
Applied Theoretical Chemistry
.444
15.3
Model Hamiltonians
.451
15.4
Summary and Outlook
.465
15.
A Links to Popular
Ab Initio
Packages
.466
References
.467
Part
VII
Effective Field Approaches
16
Dynamical Mean-Field Approximation and Cluster Methods
for Correlated Electron Systems
Thomas Pruschke
.473
16.1
Introduction
.473
16.2
Mean-Field Theory for Correlated Electron Systems
.475
16.3
Extending the DMFT: Effective Cluster Theories
.492
16.4
Conclusions
.499
References
.501
17
Local Distribution Approach
Andreas Alvermann and
Holger
Fehske
.505
17.1
Introduction
.505
17.2
Applications of the LD Approach
.514
17.3
Summary
.525
References
.526
Part
VIII
Iterative Methods for Sparse Eigenvalue Problems
18
Exact Diagonalization Techniques
Alexander
Weiße
and
Holger
Fehske
.529
18.1
Basis Construction
.529
18.2
Eigenstates of Sparse Matrices
.539
References
.543
19
Chebyshev Expansion Techniques
Alexander
Weiße
and
Holger
Fehske
.545
19.1
Chebyshev Expansion and Kernel Polynomial Approximation
.545
19.2
Applications of the Kernel Polynomial Method
.554
19.3
KPM
in Relation to other Numerical Approaches
.568
References
.575
XIV Contents
Part IX The Density Matrix
Renormalisation
Group:
Concepts and Applications
20
The Conceptual Background of Density-Matrix Renormalization
Ingo
Pescliel and Viktor Eisler
.581
20.1
Introduction
.581
20.2
Entangled States
.581
20.3
Reduced Density Matrices
.582
20.4
Solvable Models
.583
20.5
Spectra
.586
20.6
Entanglement Entropy
.589
20.7
Matrix-Product States
.593
20.8
Summary
.594
References
.594
21
Density-Matrix Renormalization Group Algorithms
Eric Jeckelmann
.597
21.1
Introduction
.597
21.2
Matrix-Product States and (Super-)Blocks
.598
21.3
Numerical Renormalization Group
.600
21.4
Infinite-System DMRG Algorithm
.602
21.5
Finite-System DMRG Algorithm
.607
21.6
Additive Quantum Numbers
.611
21.7
Truncation Errors
.613
21.8
Computational Cost and Optimization
.616
21.9
Basic Extensions
.617
References
.618
22
Dynamical Density-Matrix Renormalization Group
Eric Jeckelmann and
Holger
Benthien
.621
22.1
Introduction
.621
22.2
Methods for Simple Discrete Spectra
.623
22.3
Dynamical DMRG
.626
22.4
Finite-Size Scaling
.630
22.5
Momentum-Dependent Quantities
.631
22.6
Application: Spectral Function of the Hubbard Model
.632
References
.634
23
Studying Time-Dependent Quantum Phenomena
with the Density-Matrix Renormalization Group
Reinhard
M.
Noack,
Salvatore
R.
Manmana, Stefan Wessel,
and Alejandro Muramatsu
.637
23.1
Time Dependence in Interacting
Quantum Systems
.637
23.2
Sudden Quench of Interacting
Fermions
.643
23.3
Discussion
.650
References
.651
Contents
XV
24
Applications of Quantum Information in the Density-Matrix
Renormalization Group
O. Legeza, R.M. Noack, J.
Sólyom,
and
L. Tincani
.653
24.1
Basic Concepts of Quantum Information Theory
.653
24.2
Entropie
Analysis of Quantum Phase Transitions
.657
24.3
Discussion and Outlook
.662
References
.663
25
Density-Matrix Renormalization Group for Transfer Matrices:
Static and Dynamical Properties of ID Quantum Systems
at Finite Temperature
Stefan
Glocke,
Andreas Kliimper, and Jesko Sirker
.665
25.1
Introduction
.665
25.2
Quantum Transfer Matrix Theory
.666
25.3
The Method
-
DMRG Algorithm for the QTM
.669
25.4
An Example: The Spin-
1/2 Heisenberg
Chain with Staggered and
Uniform Magnetic Fields
.671
25.5
Impurity and Boundary Contributions
.672
25.6
Real-Time Dynamics
.673
References
.676
Part X Concepts of High Performance Computing
26
Architecture and Performance Characteristics of Modern High
Performance Computers
Georg Hager
and Gerhard Wellein
.681
26.1
Microprocessors
.682
26.2
Parallel Computing
.701
26.3
Conclusion and Outlook
.729
References
.729
27
Optimization Techniques for Modern High Performance Computers
Georg Hager
and Gerhard Wellein
.731
27.1
Optimizing Serial Code
.732
27.2
Shared-Memory Parallelization
.755
27.3
Conclusion and Outlook
.766
References
.767
Appendix: Abbreviations
.769
Index
.773 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Fehske, Holger 1956- |
author2_role | edt |
author2_variant | h f hf |
author_GND | (DE-588)110967542 |
author_facet | Fehske, Holger 1956- |
building | Verbundindex |
bvnumber | BV023014573 |
classification_rvk | UD 8220 |
ctrlnum | (OCoLC)633672129 (DE-599)DNB98519989X |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
format | Kit Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02064nom a2200481 cb4500</leader><controlfield tag="001">BV023014573</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080211 </controlfield><controlfield tag="008">071121s2008 gw ||| 0| bneng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N34,0595</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98519989X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540746850</subfield><subfield code="c">: ca. EUR 106.95 (freier Pr.), ca. sfr 174.00 (freier Pr.)</subfield><subfield code="9">978-3-540-74685-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540746854</subfield><subfield code="c">: ca. EUR 106.95 (freier Pr.), ca. sfr 174.00 (freier Pr.)</subfield><subfield code="9">3-540-74685-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540746850</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11808855</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633672129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB98519989X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UD 8220</subfield><subfield code="0">(DE-625)145543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational many particle physics</subfield><subfield code="c">H. Fehske ... (eds.)</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Computational many-particle physics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 780 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in physics</subfield><subfield code="v">739</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Vielteilchensystem</subfield><subfield code="0">(DE-588)4063491-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fehske, Holger</subfield><subfield code="d">1956-</subfield><subfield code="0">(DE-588)110967542</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield><subfield code="v">739</subfield><subfield code="w">(DE-604)BV000003166</subfield><subfield code="9">739</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016218755&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016218755</subfield></datafield></record></collection> |
id | DE-604.BV023014573 |
illustrated | Illustrated |
index_date | 2024-07-02T19:10:46Z |
indexdate | 2024-07-09T21:09:00Z |
institution | BVB |
isbn | 9783540746850 3540746854 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016218755 |
oclc_num | 633672129 |
open_access_boolean | |
owner | DE-703 DE-384 DE-355 DE-BY-UBR DE-20 DE-11 DE-188 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-384 DE-355 DE-BY-UBR DE-20 DE-11 DE-188 DE-19 DE-BY-UBM |
physical | XV, 780 S. Ill. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Lecture notes in physics |
series2 | Lecture notes in physics |
spelling | Computational many particle physics H. Fehske ... (eds.) Computational many-particle physics Berlin [u.a.] Springer 2008 XV, 780 S. Ill. Lecture notes in physics 739 Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Vielteilchensystem (DE-588)4063491-7 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 gnd rswk-swf Vielteilchensystem (DE-588)4063491-7 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 Quantenmechanisches System (DE-588)4300046-0 s Fehske, Holger 1956- (DE-588)110967542 edt Lecture notes in physics 739 (DE-604)BV000003166 739 Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016218755&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Computational many particle physics Lecture notes in physics Numerisches Verfahren (DE-588)4128130-5 gnd Vielteilchensystem (DE-588)4063491-7 gnd Quantenmechanisches System (DE-588)4300046-0 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4063491-7 (DE-588)4300046-0 |
title | Computational many particle physics |
title_alt | Computational many-particle physics |
title_auth | Computational many particle physics |
title_exact_search | Computational many particle physics |
title_exact_search_txtP | Computational many particle physics |
title_full | Computational many particle physics H. Fehske ... (eds.) |
title_fullStr | Computational many particle physics H. Fehske ... (eds.) |
title_full_unstemmed | Computational many particle physics H. Fehske ... (eds.) |
title_short | Computational many particle physics |
title_sort | computational many particle physics |
topic | Numerisches Verfahren (DE-588)4128130-5 gnd Vielteilchensystem (DE-588)4063491-7 gnd Quantenmechanisches System (DE-588)4300046-0 gnd |
topic_facet | Numerisches Verfahren Vielteilchensystem Quantenmechanisches System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016218755&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003166 |
work_keys_str_mv | AT fehskeholger computationalmanyparticlephysics |