An introduction to manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2008
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 360 S. graph. Darst. |
ISBN: | 9780387480985 0387480986 9780387481012 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023012373 | ||
003 | DE-604 | ||
005 | 20090304 | ||
007 | t | ||
008 | 071120s2008 d||| |||| 00||| eng d | ||
016 | 7 | |a 981335470 |2 DE-101 | |
020 | |a 9780387480985 |9 978-0-387-48098-5 | ||
020 | |a 0387480986 |9 0-387-48098-6 | ||
020 | |a 9780387481012 |9 978-0-387-48101-2 | ||
024 | 3 | |a 9780387480985 | |
028 | 5 | 2 | |a 11732365 |
035 | |a (OCoLC)186358733 | ||
035 | |a (DE-599)BVBBV023012373 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T |a DE-355 |a DE-19 |a DE-20 |a DE-11 | ||
050 | 0 | |a QA613 | |
082 | 0 | |a 514.34 |2 22 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Tu, Loring W. |d 1952- |e Verfasser |0 (DE-588)110090322 |4 aut | |
245 | 1 | 0 | |a An introduction to manifolds |c Loring W. Tu |
264 | 1 | |a New York, NY |b Springer |c 2008 | |
300 | |a XV, 360 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 0 | 7 | |a Differentialform |0 (DE-588)4149772-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tangentialraum |0 (DE-588)4792364-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorfeld |0 (DE-588)4139571-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Differentialform |0 (DE-588)4149772-7 |D s |
689 | 0 | 1 | |a Tangentialraum |0 (DE-588)4792364-7 |D s |
689 | 0 | 2 | |a Vektorfeld |0 (DE-588)4139571-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 1 | 1 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016216574&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016216574 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137227533418496 |
---|---|
adam_text | Contents
Preface
.........................................................
vii
0
A
Brief
Introduction
.......................................... 1
Parti
Euclidean
Spaces
1
Smooth Functions on a Euclidean Space
......................... 5
1.1
C°° Versus Analytic Functions
............................... 5
1.2
Taylor s Theorem with Remainder
............................ 7
Problems
...................................................... 9
2
Tangent Vectors in R as Derivations
............................ 11
2.1
The Directional Derivative
................................... 12
2.2
Germs of Functions
......................................... 13
2.3
Derivations at a Point
....................................... 14
2.4
Vector Fields
.............................................. 15
2.5
Vector Fields as Derivations
.................................. 17
Problems
...................................................... 18
3
Alternating ^-Linear Functions
................................. 19
3.1
Dual Space
................................................ 19
3.2
Permutations
.............................................. 20
3.3
Multilinear Functions
....................................... 22
3.4
Permutation Action on
£
-Linear Functions
...................... 23
3.5
The Symmetrizing and Alternating Operators
................... 24
3.6
The Tensor Product
......................................... 25
3.7
The Wedge Product
......................................... 25
3.8
Anticommutativity of the Wedge Product
....................... 27
3.9
Associativity of the Wedge Product
............................ 28
3.10 ABasis
for fc-Covectors
..................................... 30
Problems
...................................................... 31
χ
Contents
4 Differential
Forms
on M
...................................... 33
4.1
Differential 1-Forms and the Differential of a Function
........... 33
4.2
Differential fc-Forms
........................................ 35
4.3
Differential Forms as Multilinear Functions on Vector Fields
...... 36
4.4
The Exterior Derivative
..................................... 36
4.5
Closed Forms and Exact Forms
............................... 39
4.6
Applications to Vector Calculus
............................... 39
4.7
Convention on Subscripts and Superscripts
..................... 42
Problems
...................................................... 42
Partii
Manifolds
5
Manifolds
................................................... 47
5.1
Topological Manifolds
...................................... 47
5.2
Compatible Charts
.......................................... 48
5.3
Smooth Manifolds
.......................................... 50
5.4
Examples of Smooth Manifolds
.............................. 51
Problems
...................................................... 53
6
Smooth Maps on a Manifold
................................... 57
6.1
Smooth Functions and Maps
................................. 57
6.2
Partial Derivatives
.......................................... 60
6.3
The Inverse Function Theorem
............................... 60
Problems
...................................................... 62
7
Quotients
................................................... 63
7.1
The Quotient Topology
...................................... 63
7.2
Continuity of a Map on a Quotient
............................ 64
7.3
Identification of a Subset to a Point
............................ 65
7.4
A Necessary Condition for a Hausdorff Quotient
................ 65
7.5
Open Equivalence Relations
................................. 66
7.6
The Real Projective Space
................................... 68
7.7
The Standard C°° Atlas on a Real Projective Space
.............. 71
Problems
...................................................... 73
Partili
The Tangent Space
8
The Tangent Space
........................................... 77
8.1
The Tangent Space at a Point
................................. 77
8.2
The Differential of a Map
.................................... 78
8.3
The Chain Rule
............................................ 79
8.4
Bases for the Tangent Space at a Point
......................... 80
8.5
Local Expression for the Differential
.......................... 82
8.6
Curves in a Manifold
....................................... 83
Contents xi
8.7 Computing
the
Differential
Using Curves
...................... 85
8.8
Rank, Critical and Regular Points
............................. 86
Problems
...................................................... 87
9
Submanifolds
................................................ 91
9.1
Submanifolds
.............................................. 91
9.2
The Zero Set of a Function
................................... 94
9.3
The Regular Level Set Theorem
.............................. 95
9.4
Examples of Regular Submanifolds
........................... 97
Problems
...................................................... 98
10
Categories and Functors
...................................... 101
10.1
Categories
................................................ 101
10.2
Functors
.................................................. 102
10.3
Dual Maps
................................................ 103
Problems
...................................................... 104
11
The Rank of a Smooth Map
.................................... 105
11.1
Constant Rank Theorem
..................................... 106
11.2
Immersions and Submersions
................................ 107
11.3
Images of Smooth Maps
..................................... 109
11.4
Smooth Maps into a Submanifold
............................. 113
11.5
The Tangent Plane to a Surface in M3
.......................... 115
Problems
...................................................... 116
12
The Tangent Bundle
.......................................... 119
12.1
The Topology ofthe Tangent Bundle
.......................... 119
12.2
The Manifold Structure on the Tangent Bundle
.................. 121
12.3
Vector Bundles
............................................. 121
12.4
Smooth Sections
........................................... 123
12.5
Smooth Frames
............................................ 125
Problems
...................................................... 126
13
Bump Functions and Partitions of Unity
......................... 127
13.1
C°° Bump Functions
........................................ 127
13.2
Partitions of Unity
.......................................... 131
13.3
Existence of aPartition of Unity
.............................. 132
Problems
...................................................... 134
14
Vector Fields
................................................ 135
14.1
Smoothness of a Vector Field
................................. 135
14.2
Integral Curves
............................................ 136
14.3
Local Flows
............................................... 138
14.4
The Lie Bracket
............................................ 141
14.5
Related Vector Fields
....................................... 143
14.6
The Push-Forward of a Vector Field
........................... 144
Problems
...................................................... 144
Contents
Part IV Lie Groups and Lie Algebras
15
Lie Groups
.................................................. 149
15.1
Examples of Lie Groups
..................................... 149
15.2
Lie Subgroups
............................................. 152
15.3
The Matrix Exponential
..................................... 153
15.4
The Trace of
a Matrix....................................... 155
15.5
The Differential of
det
at the Identity
.......................... 157
Problems
...................................................... 157
16
Lie Algebras
................................................. 161
16.1
Tangent Space at the Identity of a Lie Group
.................... 161
16.2
The Tangent Space to SL(n, R) at I
........................... 161
16.3
The Tangent Space to O(n) at
ƒ .............................. 162
16.4
Left-Invariant Vector Fields on a Lie Group
.................... 163
16.5
The Lie Algebra of a Lie Group
............................... 165
16.6
The Lie Bracket on gl(n,
Ж)
.................................. 166
16.7
The Push-Forward of a Left-Invariant Vector Field
............... 167
16.8
The Differential as a Lie Algebra Homomorphism
............... 168
Problems
...................................................... 170
PartV Differential Forms
17
Differential 1-Forms
.......................................... 175
17.1
The Differential of a Function
................................ 175
17.2
Local Expression for a Differential 1-Form
..................... 176
17.3
The Cotangent Bundle
...................................... 177
17.4
Characterization of C°° 1-Forms
.............................. 177
17.5
Pullback of 1-forms
......................................... 179
Problems
...................................................... 179
18
Differential ¿-Forms
.......................................... 181
18.1
Local Expression for
a ł-Form
............................... 182
18.2
The Bundle Point of View
................................... 183
18.3
C^/fc-Forms
.............................................. 183
18.4
Pullback of ¿-Forms
........................................ 184
18.5
The Wedge Product
......................................... 184
18.6
Invariant Forms on a Lie Group
............................... 186
Problems
...................................................... 186
Contents xiii
19
The Exterior Derivative
.......................................189
19.1
Exterior Derivative on a Coordinate Chart
...................... 190
19.2
Local Operators
............................................ 190
19.3
Extension of a Local Form to a Global Form
.................... 191
19.4
Existence of an Exterior Differentiation
........................ 192
19.5
Uniqueness of Exterior Differentiation
......................... 192
19.6
The Restriction of a fc-Form to a Submanifold
................... 193
19.7
A Nowhere-Vanishing 1-Form on the Circle
.................... 193
19.8
Exterior Differentiation Under a Pullback
...................... 195
Problems
...................................................... 196
Part VI Integration
20
Orientations
.................................................201
20.1
Orientations on a Vector Space
............................... 201
20.2
Orientations and
и
-Covectors
................................
203
20.3
Orientations on a Manifold
................................... 204
20.4
Orientations and Atlases
..................................... 206
Problems
...................................................... 208
21
Manifolds with Boundary
.....................................211
21.1
Invariance
of Domain
....................................... 211
21.2
Manifolds with Boundary
.................................... 213
21.3
The Boundary of a Manifold with Boundary
.................... 215
21.4
Tangent Vectors, Differential Forms, and Orientations
............ 215
21.5
Boundary Orientation for Manifolds of Dimension Greater
than One
.................................................. 216
21.6
Boundary Orientation for One-Dimensional Manifolds
........... 218
Problems
...................................................... 219
22
Integration on a Manifold
.....................................221
22.1
The Riemann Integral of a Function on K
..................... 221
22.2
Integrability Conditions
..................................... 223
22.3
The Integral of an
η
-Form on
W
.............................. 224
22.4
The Integral of a Differential Form on a Manifold
............... 225
22.5
Stokes Theorem
........................................... 228
22.6
Line Integrals and Green s Theorem
........................... 230
Problems
...................................................... 231
Part
VII De Rham
Theory
23
De Rham
Cohomology
........................................235
23.1
De Rham
Cohomology
...................................... 235
23.2
Examples of
de Rham
Cohomology
........................... 237
23.3
Diffeomorphism
Invariance
.................................. 239
23.4
The Ring Structure on
de Rham
Cohomology
................... 240
Problems
...................................................... 242
xiv Contents
24
The Long Exact Sequence in Cohomology
........................243
24.1
Exact Sequences
........................................... 243
24.2
Cohomology of Cochain Complexes
.......................... 245
24.3
The Connecting Homomorphism
.............................. 246
24.4
The Long Exact Sequence in Cohomology
..................... 247
Problems
...................................................... 248
25
The Mayer-Vietoris Sequence
..................................249
25.1
The Mayer-Vietoris Sequence
................................ 249
25.2
The Cohomology of the Circle
................................ 253
25.3
The
Euler
Characteristic
..................................... 254
Problems
...................................................... 255
26
Homotopy
Invariance
.........................................257
26.1
Smooth Homotopy
......................................... 257
26.2
Homotopy Type
............................................ 258
26.3
Deformation Retractions
..................................... 260
26.4
The Homotopy Axiom for
de Rham
Cohomology
................ 261
Problems
...................................................... 262
27
Computation of
de Rham
Cohomology
..........................263
27.1
Cohomology Vector Space of a Torus
.......................... 263
27.2
The Cohomology Ring of a Torus
............................. 265
27.3
The Cohomology of a Surface of Genus
g
...................... 267
Problems
...................................................... 271
28
Proof of Homotopy
Invariance
.................................273
28.1
Reduction to Two Sections
................................... 274
28.2
Cochain Homotopies
........................................ 274
28.3
Differential Forms on
Μ χ
Ж................................
275
28.4
A Cochain Homotopy Between
ΐζ
and ij1
....................... 276
28.5
Verification of Cochain Homotopy
............................ 276
Part
VIII
Appendices
A Point-Set Topology
........................................... 281
A.
1
Topological Spaces
......................................... 281
A.2 Subspace Topology
......................................... 283
A.3 Bases
..................................................... 284
A.4 Second Countability
........................................ 285
A.5 Separation Axioms
......................................... 286
A.6 The Product Topology
....................................... 287
A.7 Continuity
................................................ 289
A.8 Compactness
.............................................. 290
Contents xv
A.9
Connectedness
............................................. 293
АЛО
Connected Components
..................................... 294
АЛ
1
Closure
................................................... 295
АЛ2
Convergence
.............................................. 296
Problems
...................................................... 297
В
The Inverse Function Theorem on
Ш
and Related Results
..........299
ВЛ
The Inverse Function Theorem
............................... 299
B.2 The Implicit Function Theorem
............................... 300
B.3 Constant Rank Theorem
..................................... 303
Problems
...................................................... 304
С
Existence of a Partition of Unity in General
......................307
D
Linear Algebra
..............................................311
D.
1
Linear Transformations
...................................... 311
D.2 Quotient Vector Spaces
...................................... 312
Solutions to Selected Exercises Within the Text
.......................315
Hints and Solutions to Selected End-of-Chapter Problems
..............319
List of Symbols
..................................................339
References
......................................................347
Index
...........................................................349
|
adam_txt |
Contents
Preface
.
vii
0
A
Brief
Introduction
. 1
Parti
Euclidean
Spaces
1
Smooth Functions on a Euclidean Space
. 5
1.1
C°° Versus Analytic Functions
. 5
1.2
Taylor's Theorem with Remainder
. 7
Problems
. 9
2
Tangent Vectors in R" as Derivations
. 11
2.1
The Directional Derivative
. 12
2.2
Germs of Functions
. 13
2.3
Derivations at a Point
. 14
2.4
Vector Fields
. 15
2.5
Vector Fields as Derivations
. 17
Problems
. 18
3
Alternating ^-Linear Functions
. 19
3.1
Dual Space
. 19
3.2
Permutations
. 20
3.3
Multilinear Functions
. 22
3.4
Permutation Action on
£
-Linear Functions
. 23
3.5
The Symmetrizing and Alternating Operators
. 24
3.6
The Tensor Product
. 25
3.7
The Wedge Product
. 25
3.8
Anticommutativity of the Wedge Product
. 27
3.9
Associativity of the Wedge Product
. 28
3.10 ABasis
for fc-Covectors
. 30
Problems
. 31
χ
Contents
4 Differential
Forms
on M"
. 33
4.1
Differential 1-Forms and the Differential of a Function
. 33
4.2
Differential fc-Forms
. 35
4.3
Differential Forms as Multilinear Functions on Vector Fields
. 36
4.4
The Exterior Derivative
. 36
4.5
Closed Forms and Exact Forms
. 39
4.6
Applications to Vector Calculus
. 39
4.7
Convention on Subscripts and Superscripts
. 42
Problems
. 42
Partii
Manifolds
5
Manifolds
. 47
5.1
Topological Manifolds
. 47
5.2
Compatible Charts
. 48
5.3
Smooth Manifolds
. 50
5.4
Examples of Smooth Manifolds
. 51
Problems
. 53
6
Smooth Maps on a Manifold
. 57
6.1
Smooth Functions and Maps
. 57
6.2
Partial Derivatives
. 60
6.3
The Inverse Function Theorem
. 60
Problems
. 62
7
Quotients
. 63
7.1
The Quotient Topology
. 63
7.2
Continuity of a Map on a Quotient
. 64
7.3
Identification of a Subset to a Point
. 65
7.4
A Necessary Condition for a Hausdorff Quotient
. 65
7.5
Open Equivalence Relations
. 66
7.6
The Real Projective Space
. 68
7.7
The Standard C°° Atlas on a Real Projective Space
. 71
Problems
. 73
Partili
The Tangent Space
8
The Tangent Space
. 77
8.1
The Tangent Space at a Point
. 77
8.2
The Differential of a Map
. 78
8.3
The Chain Rule
. 79
8.4
Bases for the Tangent Space at a Point
. 80
8.5
Local Expression for the Differential
. 82
8.6
Curves in a Manifold
. 83
Contents xi
8.7 Computing
the
Differential
Using Curves
. 85
8.8
Rank, Critical and Regular Points
. 86
Problems
. 87
9
Submanifolds
. 91
9.1
Submanifolds
. 91
9.2
The Zero Set of a Function
. 94
9.3
The Regular Level Set Theorem
. 95
9.4
Examples of Regular Submanifolds
. 97
Problems
. 98
10
Categories and Functors
. 101
10.1
Categories
. 101
10.2
Functors
. 102
10.3
Dual Maps
. 103
Problems
. 104
11
The Rank of a Smooth Map
. 105
11.1
Constant Rank Theorem
. 106
11.2
Immersions and Submersions
. 107
11.3
Images of Smooth Maps
. 109
11.4
Smooth Maps into a Submanifold
. 113
11.5
The Tangent Plane to a Surface in M3
. 115
Problems
. 116
12
The Tangent Bundle
. 119
12.1
The Topology ofthe Tangent Bundle
. 119
12.2
The Manifold Structure on the Tangent Bundle
. 121
12.3
Vector Bundles
. 121
12.4
Smooth Sections
. 123
12.5
Smooth Frames
. 125
Problems
. 126
13
Bump Functions and Partitions of Unity
. 127
13.1
C°° Bump Functions
. 127
13.2
Partitions of Unity
. 131
13.3
Existence of aPartition of Unity
. 132
Problems
. 134
14
Vector Fields
. 135
14.1
Smoothness of a Vector Field
. 135
14.2
Integral Curves
. 136
14.3
Local Flows
. 138
14.4
The Lie Bracket
. 141
14.5
Related Vector Fields
. 143
14.6
The Push-Forward of a Vector Field
. 144
Problems
. 144
Contents
Part IV Lie Groups and Lie Algebras
15
Lie Groups
. 149
15.1
Examples of Lie Groups
. 149
15.2
Lie Subgroups
. 152
15.3
The Matrix Exponential
. 153
15.4
The Trace of
a Matrix. 155
15.5
The Differential of
det
at the Identity
. 157
Problems
. 157
16
Lie Algebras
. 161
16.1
Tangent Space at the Identity of a Lie Group
. 161
16.2
The Tangent Space to SL(n, R) at I
. 161
16.3
The Tangent Space to O(n) at
ƒ . 162
16.4
Left-Invariant Vector Fields on a Lie Group
. 163
16.5
The Lie Algebra of a Lie Group
. 165
16.6
The Lie Bracket on gl(n,
Ж)
. 166
16.7
The Push-Forward of a Left-Invariant Vector Field
. 167
16.8
The Differential as a Lie Algebra Homomorphism
. 168
Problems
. 170
PartV Differential Forms
17
Differential 1-Forms
. 175
17.1
The Differential of a Function
. 175
17.2
Local Expression for a Differential 1-Form
. 176
17.3
The Cotangent Bundle
. 177
17.4
Characterization of C°° 1-Forms
. 177
17.5
Pullback of 1-forms
. 179
Problems
. 179
18
Differential ¿-Forms
. 181
18.1
Local Expression for
a ł-Form
. 182
18.2
The Bundle Point of View
. 183
18.3
C^/fc-Forms
. 183
18.4
Pullback of ¿-Forms
. 184
18.5
The Wedge Product
. 184
18.6
Invariant Forms on a Lie Group
. 186
Problems
. 186
Contents xiii
19
The Exterior Derivative
.189
19.1
Exterior Derivative on a Coordinate Chart
. 190
19.2
Local Operators
. 190
19.3
Extension of a Local Form to a Global Form
. 191
19.4
Existence of an Exterior Differentiation
. 192
19.5
Uniqueness of Exterior Differentiation
. 192
19.6
The Restriction of a fc-Form to a Submanifold
. 193
19.7
A Nowhere-Vanishing 1-Form on the Circle
. 193
19.8
Exterior Differentiation Under a Pullback
. 195
Problems
. 196
Part VI Integration
20
Orientations
.201
20.1
Orientations on a Vector Space
. 201
20.2
Orientations and
и
-Covectors
.
203
20.3
Orientations on a Manifold
. 204
20.4
Orientations and Atlases
. 206
Problems
. 208
21
Manifolds with Boundary
.211
21.1
Invariance
of Domain
. 211
21.2
Manifolds with Boundary
. 213
21.3
The Boundary of a Manifold with Boundary
. 215
21.4
Tangent Vectors, Differential Forms, and Orientations
. 215
21.5
Boundary Orientation for Manifolds of Dimension Greater
than One
. 216
21.6
Boundary Orientation for One-Dimensional Manifolds
. 218
Problems
. 219
22
Integration on a Manifold
.221
22.1
The Riemann Integral of a Function on K"
. 221
22.2
Integrability Conditions
. 223
22.3
The Integral of an
η
-Form on
W
. 224
22.4
The Integral of a Differential Form on a Manifold
. 225
22.5
Stokes' Theorem
. 228
22.6
Line Integrals and Green's Theorem
. 230
Problems
. 231
Part
VII De Rham
Theory
23
De Rham
Cohomology
.235
23.1
De Rham
Cohomology
. 235
23.2
Examples of
de Rham
Cohomology
. 237
23.3
Diffeomorphism
Invariance
. 239
23.4
The Ring Structure on
de Rham
Cohomology
. 240
Problems
. 242
xiv Contents
24
The Long Exact Sequence in Cohomology
.243
24.1
Exact Sequences
. 243
24.2
Cohomology of Cochain Complexes
. 245
24.3
The Connecting Homomorphism
. 246
24.4
The Long Exact Sequence in Cohomology
. 247
Problems
. 248
25
The Mayer-Vietoris Sequence
.249
25.1
The Mayer-Vietoris Sequence
. 249
25.2
The Cohomology of the Circle
. 253
25.3
The
Euler
Characteristic
. 254
Problems
. 255
26
Homotopy
Invariance
.257
26.1
Smooth Homotopy
. 257
26.2
Homotopy Type
. 258
26.3
Deformation Retractions
. 260
26.4
The Homotopy Axiom for
de Rham
Cohomology
. 261
Problems
. 262
27
Computation of
de Rham
Cohomology
.263
27.1
Cohomology Vector Space of a Torus
. 263
27.2
The Cohomology Ring of a Torus
. 265
27.3
The Cohomology of a Surface of Genus
g
. 267
Problems
. 271
28
Proof of Homotopy
Invariance
.273
28.1
Reduction to Two Sections
. 274
28.2
Cochain Homotopies
. 274
28.3
Differential Forms on
Μ χ
Ж.
275
28.4
A Cochain Homotopy Between
ΐζ
and ij1
. 276
28.5
Verification of Cochain Homotopy
. 276
Part
VIII
Appendices
A Point-Set Topology
. 281
A.
1
Topological Spaces
. 281
A.2 Subspace Topology
. 283
A.3 Bases
. 284
A.4 Second Countability
. 285
A.5 Separation Axioms
. 286
A.6 The Product Topology
. 287
A.7 Continuity
. 289
A.8 Compactness
. 290
Contents xv
A.9
Connectedness
. 293
АЛО
Connected Components
. 294
АЛ
1
Closure
. 295
АЛ2
Convergence
. 296
Problems
. 297
В
The Inverse Function Theorem on
Ш"
and Related Results
.299
ВЛ
The Inverse Function Theorem
. 299
B.2 The Implicit Function Theorem
. 300
B.3 Constant Rank Theorem
. 303
Problems
. 304
С
Existence of a Partition of Unity in General
.307
D
Linear Algebra
.311
D.
1
Linear Transformations
. 311
D.2 Quotient Vector Spaces
. 312
Solutions to Selected Exercises Within the Text
.315
Hints and Solutions to Selected End-of-Chapter Problems
.319
List of Symbols
.339
References
.347
Index
.349 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Tu, Loring W. 1952- |
author_GND | (DE-588)110090322 |
author_facet | Tu, Loring W. 1952- |
author_role | aut |
author_sort | Tu, Loring W. 1952- |
author_variant | l w t lw lwt |
building | Verbundindex |
bvnumber | BV023012373 |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613 |
callnumber-search | QA613 |
callnumber-sort | QA 3613 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 SK 370 |
ctrlnum | (OCoLC)186358733 (DE-599)BVBBV023012373 |
dewey-full | 514.34 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.34 |
dewey-search | 514.34 |
dewey-sort | 3514.34 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02320nam a2200589 c 4500</leader><controlfield tag="001">BV023012373</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090304 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071120s2008 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">981335470</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387480985</subfield><subfield code="9">978-0-387-48098-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387480986</subfield><subfield code="9">0-387-48098-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387481012</subfield><subfield code="9">978-0-387-48101-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387480985</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11732365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)186358733</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023012373</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA613</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.34</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tu, Loring W.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110090322</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to manifolds</subfield><subfield code="c">Loring W. Tu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 360 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tangentialraum</subfield><subfield code="0">(DE-588)4792364-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tangentialraum</subfield><subfield code="0">(DE-588)4792364-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016216574&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016216574</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV023012373 |
illustrated | Illustrated |
index_date | 2024-07-02T19:09:59Z |
indexdate | 2024-07-09T21:08:57Z |
institution | BVB |
isbn | 9780387480985 0387480986 9780387481012 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016216574 |
oclc_num | 186358733 |
open_access_boolean | |
owner | DE-703 DE-29T DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-20 DE-11 |
owner_facet | DE-703 DE-29T DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-20 DE-11 |
physical | XV, 360 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Tu, Loring W. 1952- Verfasser (DE-588)110090322 aut An introduction to manifolds Loring W. Tu New York, NY Springer 2008 XV, 360 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Universitext Manifolds (Mathematics) Differentialform (DE-588)4149772-7 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Tangentialraum (DE-588)4792364-7 gnd rswk-swf Vektorfeld (DE-588)4139571-2 gnd rswk-swf Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content (DE-588)4123623-3 Lehrbuch gnd-content Differentialform (DE-588)4149772-7 s Tangentialraum (DE-588)4792364-7 s Vektorfeld (DE-588)4139571-2 s DE-604 Mannigfaltigkeit (DE-588)4037379-4 s Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s 1\p DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016216574&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tu, Loring W. 1952- An introduction to manifolds Manifolds (Mathematics) Differentialform (DE-588)4149772-7 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Tangentialraum (DE-588)4792364-7 gnd Vektorfeld (DE-588)4139571-2 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd |
subject_GND | (DE-588)4149772-7 (DE-588)4037379-4 (DE-588)4792364-7 (DE-588)4139571-2 (DE-588)4012269-4 (DE-588)4151278-9 (DE-588)4123623-3 |
title | An introduction to manifolds |
title_auth | An introduction to manifolds |
title_exact_search | An introduction to manifolds |
title_exact_search_txtP | An introduction to manifolds |
title_full | An introduction to manifolds Loring W. Tu |
title_fullStr | An introduction to manifolds Loring W. Tu |
title_full_unstemmed | An introduction to manifolds Loring W. Tu |
title_short | An introduction to manifolds |
title_sort | an introduction to manifolds |
topic | Manifolds (Mathematics) Differentialform (DE-588)4149772-7 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Tangentialraum (DE-588)4792364-7 gnd Vektorfeld (DE-588)4139571-2 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd |
topic_facet | Manifolds (Mathematics) Differentialform Mannigfaltigkeit Tangentialraum Vektorfeld Differenzierbare Mannigfaltigkeit Einführung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016216574&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tuloringw anintroductiontomanifolds |