Basic electromagnetism and materials:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, N. Y.
Springer
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 430 S. graph. Darst. |
ISBN: | 0387302840 9780387302843 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022959346 | ||
003 | DE-604 | ||
005 | 20091102 | ||
007 | t | ||
008 | 071112s2007 xxud||| |||| 00||| eng d | ||
010 | |a 2005939183 | ||
020 | |a 0387302840 |9 0-387-30284-0 | ||
020 | |a 9780387302843 |9 978-0-387-30284-3 | ||
035 | |a (OCoLC)81892886 | ||
035 | |a (DE-599)BVBBV022959346 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-634 |a DE-384 |a DE-83 |a DE-11 | ||
050 | 0 | |a TA403.6 | |
082 | 0 | |a 620.1/1297 | |
084 | |a UH 1000 |0 (DE-625)145634: |2 rvk | ||
084 | |a UH 3000 |0 (DE-625)145643: |2 rvk | ||
084 | |a UP 6000 |0 (DE-625)146421: |2 rvk | ||
100 | 1 | |a Moliton, André |e Verfasser |0 (DE-588)124479383 |4 aut | |
245 | 1 | 0 | |a Basic electromagnetism and materials |c André Moliton |
264 | 1 | |a New York, N. Y. |b Springer |c 2007 | |
300 | |a XIX, 430 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Materials |x Electric properties | |
650 | 4 | |a Materials |x Magnetic properties | |
650 | 4 | |a Electromagnetism | |
650 | 0 | 7 | |a Werkstoff |0 (DE-588)4065579-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektromagnetische Eigenschaft |0 (DE-588)4624011-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektromagnetische Wechselwirkung |0 (DE-588)4014300-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Elektromagnetische Wechselwirkung |0 (DE-588)4014300-4 |D s |
689 | 0 | 1 | |a Werkstoff |0 (DE-588)4065579-9 |D s |
689 | 0 | 2 | |a Elektromagnetische Eigenschaft |0 (DE-588)4624011-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163732&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016163732 |
Datensatz im Suchindex
_version_ | 1804137205283684352 |
---|---|
adam_text | Contents
Chapter 1. Introduction to the fundamental equations of electrostatics
and magnetostatics in vacuums and conductors 1
1.1. Vectorial analysis 1
1.1.1. Operators /
1.1.2. Important formulae 4
1.1.3. Vectorial integrations 4
1.1.4. Terminology 7
1.2. Electrostatics and vacuums 8
1.2.1. Coulomb s law 8
1.2.2. The electric field: local properties and its integral 9
1.2.3. Gauss s theorem 10
1.2.4. The Laplace and Poisson equations 14
1.3. The current density vector: conducting media and electric
currents 16
1.3.1. The current density vector 16
1.3.2. Local charge conservation equation 17
1.3.3. Stationary regimes 17
1.3.4. Ohm s law and its limits 20
1.3.5. Relaxation of a conductor 23
1.3.6. Comment: definition of surface current (current sheet) 24
1.4. Magnetostatics 24
1.4.1. Magnetic field formed by a current 25
1.4.2. Vector potential 26
x Basic electromagnetism and materials
1.4.3. Local properties and the integral of B 26
1.4.4. Poisson s equation for the vector potential 26
1.4.5. Properties of the vector potential A 27
1.4.6. The Maxwell Ampere relation 28
1.5 Problems 31
1.5.1. Calculations 31
1.5.2. Field and potential generated inside and outside
of a charged sphere 33
Chapter 2. Electrostatics of dielectric materials 39
2.1. Introduction: dielectrics and their polarization 39
2.1.1. Definition of a dielectric and the nature of the charges 39
2.1.2. Characteristics ofdipoles 40
2.1.3. Dielectric in a condenser 42
2.1.4. The polarization vector 43
2.2. Polarization equivalent charges 44
2.2.1. Calculation for charges equivalent to the polarization 44
2.2.2. Physical characteristics of polarization and polarization
charge distribution 46
2.2.3. Important comment: under dynamic regimes the polarization
charges are the origin of polarization currents 50
2.3. Vectors (E) and an electric displacement (5):
characteristics at interfaces 5/
2.3.1. Vectors for an electric field (E) and an electric
displacement (D): electric potentials 5/
2.3.2. Gauss s theorem 52
2.3.3. Conditions under which E and D move between two
dielectrics 53
2.3.4. Refraction of field or induction lines 56
2.4. Relations between displacement and polarization vectors 56
2.4.1. Coulomb s theorem 56
2.4.2. Representation of the dielectric armature system 57
2.4.3. Linear, homogeneous and isotropic dielectrics 58
2.4.4. Comments 59
2.4.5. Linear, inhomogeneous and non isotropic dielectrics 60
Contents xi
2.5 Problems: Lorentz field 61
2.5.1. Dielectric sphere 61
2.5.2. Empty spherical cavity 62
2.6. The mechanism of dielectric polarization: response to a static
field 63
2.6.1. Induced polarization and orientation 63
2.6.2. Study of the polarization induced in a molecule 66
2.6.3. Study of polarization by orientation 67
2.7. Problems 72
2.7. /. Electric field in a small cubic cavity found within a dielectric 72
2.7.2. Polarization of a dielectric strip 75
2.7.3. Dielectric planes and charge distribution (electric images) 77
2.7.4. Atomicpolarizability using J.J. Thomson s model 81
2.7.5. The field in a molecular sized cavity 82
Chapter 3: Magnetic properties of materials 89
3.1. Magnetic moment 89
3.1.1. Preliminary remarks on how a magnetic field cannot be
derived from a uniform scalar potential 89
3.1.2. The vector potential and magnetic field at a long
distance from a closed circuit 89
3.1.3. The analogy of the magnetic moment to the electric moment..... 93
3.1.4. Characteristics of magnetic moments M = i JJdS 94
s
5.7.5. Magnetic moments in materials 97
3.1.6. Precession and magnetic moments 9*
3.2. Magnetic fields in materials 100
3.2.1. Magnetization intensity 100
3.2.2. Potential vector due to a piece of magnetic material 101
3.2.3. The Amperian currents 103
3.2.4. Definition of vectors B and H in materials 106
3.2.5. Conditions imposed on moving between two magnetic media.... 107
3.2.6. Linear, homogeneous and isotropic (l.h.i) magnetic media 109
3.2.7. Comment on the analogy between dielectric and magnetic
media 109
xii Basic electromagnetism and materials
3.3. Problems HI
3.3.1. Magnetic moment associated with a surface charged sphere
turning around its own axis Ill
3.3.2. Magnetic field in a cavity deposited in a magnetic medium 112
3.3.3. A cylinder carrying surface currents 114
3.3.4 Virtual current 116
Chapter 4: Dielectric and magnetic materials 119
4.1. Dielectrics 119
4.1.1. Definitions 119
4.1.2. Origins and types of breakdowns 120
4.1.3 Insulators 121
4.1.4 Electrets 123
4.1.5. Ferroelectrics 126
4.2. Magnetic materials 129
4.2.1. Introduction 129
4.2.2. Diamagnetism andLangevin s theory 131
4.2.3. Paramagnetism 132
4.2.4. Ferromagnetism 137
4.2.5. Antiferromagnetism andferrimagnetism 150
4.6. Problem 151
Dielectrics, electrets, magnets, and the gap in spherical armatures... 151
Chapter 5. Time Varying Electromagnetic Fields and Maxwell s
equations 757
5.1. Variable slow rates and the rate approximation of quasi static
states (RAQSS) 157
5.1.1. Definition 157
5.1.2. Propagation 157
5.1.3. Basics of electromagnetic induction 158
5.1.4. Electric circuit subject to a slowly varying rate 158
5.1.5. The Maxwell Faraday relation 159
Contents xiii
5.2. Systems under frequencies (div j ^ 0) and the Maxwell Ampere
relation 160
5.2.1. The shortfall ofrot H = je (first form of Ampere s theorem
for static regimes) 160
5.2.2. The Maxwell A mpere relation 161
5.2.3. Physical interpretation of the displacement currents 162
5.2.4. Conclusion 165
5.3. Maxwell s equations 767
5.3.1. Forms of div E and divB under varying regimes 167
5.3.2. Summary of Maxwell s equations 767
5.3.3. The Maxwell equations and conditions at the interface of two
media 168
5.4. Problem 770
Values for conduction and displacement currents in various media... 170
Chapter 6. General properties of electromagnetic waves and their
propagation through vacuums 775
6.1. Introduction: equations for wave propagation in vacuums 775
6.1.1. Maxwell s equations for vacuums: pt =0 and j ( =0 775
6.7.2. Equations of wave propagation 775
6.7.5. Solutions for wave propagation equations 774
6.2. Different wave types 176
6.2.7. Transverse and longitudinal waves 776
6.2.2. Planar waves 776
6.2.3. Spherical waves 777
6.2.4. Progressive waves 77*
6.2.5. Stationary waves 179
6.3. General properties of progressive planar electromagnetic
waves (PPEMW) in vacuums with pr=0andj/ =0 180
6.3.1. E and Bperpendicular to the propagation: TEM waves 181
6.3.2. The relation between Eand B 181
6.3.3. Breakdown of a planar progressive electromagnetic wave
(PPEMW) to a superposition of two planar progressive
EM waves polarized rectilinearly 7*5
6.3.4. Representation and spectral breakdown of rectilinearly
polarized PPEMWs 184
xiv Basic electromagnetism and materials
6.4. Properties of monochromatic planar progressive electromagnetic
waves (MPPEMW) 186
6.4.1. The polarization 186
6.4.2. Mathematical expression for a monochromatic planar wave.... 191
6.4.3. The speed of wave propagation and spatial periodicity 194
6.5. Jones s representation 195
6.5.1. Complex expression for a monochromatic planar wave 795
6.5.2. Representation by way of Jones s matrix 796
6.6. Problems 799
6.6.7. Breakdown in real notation of a rectilinear wave into 2
opposing circular waves 799
6.6.2. The particular case of an anisotropic medium and the
example of a phase retarding strip 200
6.6.3. Jones s matrix based representation of polarization 202
Chapter 7. Electromagnetic waves in absorbent and dispersing infinite
materials and the Poynting vector 205
7.1. Propagation of electromagnetic waves in an unlimited and
uncharged material for which p f = 0 and j l: =0. Expression
for the dispersion of electromagnetic waves 205
7.7.7. Aide memoir: the Maxwell equation for a material
where pf = 0 and )(: = 0 205
7.1.2. General equations for propagation 205
7.1.3. A monochromatic electromagnetic wave in a linear,
homogeneous and isotropic material 206
7.1.4. A case specific to monochromatic planar progressive
electromagnetic waves (or MPPEM wave for short) 208
7.2. The different types of media 210
7.2.1. Non absorbing media and indices 270
7.2.2. Absorbent media, and complex indices 272
7.3. The energy of an electromagnetic plane wave and the
Poynting vector 275
7.3.1. Definition and physical significance for media of absolute
permittivity (e), magnetic permeability (ft) and subject to a
conduction current (j { ) 275
7.3.2. Propagation velocity of energy in a vacuum 277
Contents xv
7.3.3. Complex notation 218
7.3.4. The Poynting vector and the average power for a MPPEM
wave in a non absorbent (k and n are real) and non magnetic
(Hr = 1, so that n =n0) medium 219
7.3.5. Poynting vector for a MPPEM wave in an absorbent
dielectric such that fi is real 219
7.4 Problem 220
Poynting vector 220
Chapter 8. Waves in plasmas and dielectric, metallic, and magnetic
materials 227
8.1. Interactions between electromagnetic wave and materials 227
8.1.1. Parameters under consideration 227
8.1.2. The various forces involved in conventionally studied
materials 228
8.2. Interactions of KM waves with linear, homogeneous and isotropic
(lhi) dielectric materials: electronic polarization, dispersion and
absorption 229
8.2.1. The Drude Lorentz model 231
8.2.2. The form of the polarization and the dielectric permittivity 232
8.2.3. Study of the curves %e (G ) and %e (to)for to » too 234
8.2.4. Study of the curves of xe (w) and %e (co) when to* (o0 238
8.2.5. The (zero) pole of the dielectric function 240
8.2.6. Behavior of a transverse plane progressive EM wave which
has a pulsation between too and to, sufficiently far from
Wo so that e 0 241
8.2.7. Study of an MPPEM wave both outside the absorption zone
and the range /(On, tot / 241
8.2.8. Equation for dispersion n =f(Xo) when co« too 243
8.3. Propagation of a MPPEM wave in a plasma (or the dielectric
response of an electronic gas) 245
8.3.1. Plasma oscillations and pulsations 245
8.3.2. The dielectric response of an electronic gas 248
8.4. Propagation of an EM wave in a metallic material (frictional
forces) 252
xvi Basic electromagnetism and materials
8.5. Uncharged magnetic media 256
8.5.1. Dispersion equation in conducting magnetic media 256
8.5.2. Impedance characteristics (when k is real) 257
8.6. Problems 258
8.6.1. The complex forms for polarisation and dielectric
permittivity 258
8.6.2. A study of the electrical properties of a metal 263
Chapter 9. Electromagnetic field sources, dipolar radiation and
antennae 267
9.1. Introduction 267
9.2. The Lorentz gauge and retarded potentials 268
9.2.1. Lorentz s gauge 268
9.2.2. Equation for the propagation of potentials, and retarded
potentials 273
9.3. Dipole field at a great distance 275
9.3.1. Expression for the potential vector A 275
9.3.2. Expression for the electromagnetic field in the radiation zone.. 277
9.3.3. Power radiated by a dipole 278
9.4. Antennas 280
9.4.1. Principle: a short antenna where i«X 280
9.4.2. General remarks on various antennae: half wave and whip
antennae 283
9.5.Problem 285
Radiation from a half wave antenna 286
Chapter 10. Interactions between materials and electromagnetic
waves, and diffusion and absorption processes 289
10.1. Introduction 289
10 .2. Diffusion mechanisms 289
10.2.1. Rayleigh diffusion: radiation diffused by charged particles.... 289
10.2.2. Radiation due to Rutherford diffusion 294
Contents xvii
10.3. Radiation produced by accelerating charges: synchrotron
radiation and bremsstrahlung »297
10.3.1. Synchrotron radiation 297
10.3.2. Bremsstrahlung: electromagnetic stopping radiation 297
10. 4. Process of absorption or emission of electromagnetic radiation by
atoms or molecules (to approach as part of a second reading) 298
10.4.1. The problem 298
10.4.2. Form of the interaction Hamiltonian 298
10.4.3. Transition rules 302
10.5. Conclusion: introduction to atomic and molecular spectroscopy... 306
10.5.1. Result concerning the dipole approximation 306
10.5.2. Different transitions possible in an electromagnetic
spectrum 307
10.5.3. Conclusion 309
10.6. Problems 309
10.5.1. Problem 1. Diffusion due to bound electrons 309
10.5.2. Problem 2. Demonstration of the relationship between matrix
elements 313
Chapter 11. Reflection and refraction of electromagnetic waves in
absorbent materials of finite dimensions 317
11.1. Introduction 317
11.2. Law of reflection and refraction 318
11.2.1. Representation of the system 318
11.2.2. Conservation of angular frequency 319
11.2.3. Form of the wave vectors with respect to the symmetry of the
media 320
11.2.4. Symmetry and linear properties of the media 321
11.2.5. Snell Descartes law 322
11.2.6. Equation for the electric field in medium (I): the law of
reflection 323
11.2.7. The Snell Descartes law for reflection a system where medium
(2) can be absorbent: n2 and k2 are complex 325
11.3. Coefficients for reflection and transmission of a monochromatic
plane progressive EM wave at the interface between two non
absorbent lhi dielectrics (ni , n2 real), and the Fresnel equations....331
xviii Basic electromagnetism and materials
11.3.1. Hypothesis and aim of the study 331
11.3.2. Fresnel equations for perpendicular polarizations (TE) 333
11.3.3. Fresnel s equations for parallel magnetic field polarizations.. 337
11.3.4. Reflection coefficients and energy transmission 342
11.3.5. Total and frustrated total reflection 346
11.4. Reflection and absorption by an absorbing medium 348
11.4.1. Reflection coefficient for a wave at a normal incidence to an
interface between a non absorbent medium (1) (index ofn/)
and an absorbent medium (2) (index of n2 ) 348
11.4.2. Optical properties of a metal: reflection and absorption at
low and high frequencies by a conductor 349
11.5. The anti echo condition: reflection from a magnetic layer; a
study of an anti radar structure; and a Dallenbach layer 350
11.5.1. The anti echo condition: reflection from a non conducting
magnetic layer 350
11.5.2. The Dallenbach layer: an anti radar structure 352
11.6. Problems 356
11.6.1. Reflection and absorption at low and high frequencies by a
conductor 356
11.6.2. Limited penetration of Hertzian waves in sea water 362
Chapter 12. Total reflection and guided propagation of
electromagnetic waves in materials of finite
dimensions 367
12.1. Introduction 367
12.2. A coaxial line 369
12.2.1. Form of transverse EM waves in a coaxial cable 369
12.2.2. Form of the potential, the intensity, and the characteristic
impedance of the cable 371
12.2.3. Electrical power transported by an EM wave 373
12.2.4. Conductor with an imperfect core 374
12.3. Preliminary study of the normal reflection 374
12.3.1. Properties of a perfect conductor 374
12.3.2. Equation for the stationary wave following reflection 376
12.3.3. Study of the form of the surface charge densities and the
current at the metal 377
Contents xix
12.4. Study of propagation guided between two plane conductors 380
12.4.1. Wave form and equation for propagation 380
12.4.2. Study of transverse EM waves 381
12.4.3. Study of transverse electric waves (TE waves) 383
12.4.4. Generalization of the study of TE wave propagation 388
12.5. Optical guiding: general principles and how fibers work 399
12.5.1. Principle 399
12.5.2. Guiding conditions 400
12.5.3. Increasing the signals 401
12.6. Electromagnetic characteristics of a symmetrical monomodal
guide 402
12.6.1. General form of the solutions 403
12.6.2. Solutions for zone (2) with an index denoted by n 404
12.6.3. Solutions for the zones (1) and (3) 405
12.6.4. Equations for the magnetic field 408
12.6.5. Use of the limiting conditions: determination of constants.... 408
12.6.6. Modal equation 410
12.6.7. Comments: alternative methodologies 415
12.6.8. Field distribution and solution parity 417
12.6.9. Guide characteristics 419
12.7. Problem 423
Monomodal conditions 423
Index 427
|
adam_txt |
Contents
Chapter 1. Introduction to the fundamental equations of electrostatics
and magnetostatics in vacuums and conductors 1
1.1. Vectorial analysis 1
1.1.1. Operators /
1.1.2. Important formulae 4
1.1.3. Vectorial integrations 4
1.1.4. Terminology 7
1.2. Electrostatics and vacuums 8
1.2.1. Coulomb's law 8
1.2.2. The electric field: local properties and its integral 9
1.2.3. Gauss's theorem 10
1.2.4. The Laplace and Poisson equations 14
1.3. The current density vector: conducting media and electric
currents 16
1.3.1. The current density vector 16
1.3.2. Local charge conservation equation 17
1.3.3. Stationary regimes 17
1.3.4. Ohm's law and its limits 20
1.3.5. Relaxation of a conductor 23
1.3.6. Comment: definition of surface current (current sheet) 24
1.4. Magnetostatics 24
1.4.1. Magnetic field formed by a current 25
1.4.2. Vector potential 26
x Basic electromagnetism and materials
1.4.3. Local properties and the integral of 'B 26
1.4.4. Poisson 's equation for the vector potential 26
1.4.5. Properties of the vector potential A 27
1.4.6. The Maxwell Ampere relation 28
1.5 Problems 31
1.5.1. Calculations 31
1.5.2. Field and potential generated inside and outside
of a charged sphere 33
Chapter 2. Electrostatics of dielectric materials 39
2.1. Introduction: dielectrics and their polarization 39
2.1.1. Definition of a dielectric and the nature of the charges 39
2.1.2. Characteristics ofdipoles 40
2.1.3. Dielectric in a condenser 42
2.1.4. The polarization vector 43
2.2. Polarization equivalent charges 44
2.2.1. Calculation for charges equivalent to the polarization 44
2.2.2. Physical characteristics of polarization and polarization
charge distribution 46
2.2.3. Important comment: under dynamic regimes the polarization
charges are the origin of polarization currents 50
2.3. Vectors (E) and an electric displacement (5):
characteristics at interfaces 5/
2.3.1. Vectors for an electric field (E) and an electric
displacement (D): electric potentials 5/
2.3.2. Gauss's theorem 52
2.3.3. Conditions under which E and D move between two
dielectrics 53
2.3.4. Refraction of field or induction lines 56
2.4. Relations between displacement and polarization vectors 56
2.4.1. Coulomb's theorem 56
2.4.2. Representation of the dielectric armature system 57
2.4.3. Linear, homogeneous and isotropic dielectrics 58
2.4.4. Comments 59
2.4.5. Linear, inhomogeneous and non isotropic dielectrics 60
Contents xi
2.5 Problems: Lorentz field 61
2.5.1. Dielectric sphere 61
2.5.2. Empty spherical cavity 62
2.6. The mechanism of dielectric polarization: response to a static
field 63
2.6.1. Induced polarization and orientation 63
2.6.2. Study of the polarization induced in a molecule 66
2.6.3. Study of polarization by orientation 67
2.7. Problems 72
2.7. /. Electric field in a small cubic cavity found within a dielectric 72
2.7.2. Polarization of a dielectric strip 75
2.7.3. Dielectric planes and charge distribution (electric images) 77
2.7.4. Atomicpolarizability using J.J. Thomson's model 81
2.7.5. The field in a molecular sized cavity 82
Chapter 3: Magnetic properties of materials 89
3.1. Magnetic moment 89
3.1.1. Preliminary remarks on how a magnetic field cannot be
derived from a uniform scalar potential 89
3.1.2. The vector potential and magnetic field at a long
distance from a closed circuit 89
3.1.3. The analogy of the magnetic moment to the electric moment. 93
3.1.4. Characteristics of magnetic moments M = i JJdS 94
s
5.7.5. Magnetic moments in materials 97
3.1.6. Precession and magnetic moments 9*
3.2. Magnetic fields in materials 100
3.2.1. Magnetization intensity 100
3.2.2. Potential vector due to a piece of magnetic material 101
3.2.3. The Amperian currents 103
3.2.4. Definition of vectors B and H in materials 106
3.2.5. Conditions imposed on moving between two magnetic media. 107
3.2.6. Linear, homogeneous and isotropic (l.h.i) magnetic media 109
3.2.7. Comment on the analogy between dielectric and magnetic
media 109
xii Basic electromagnetism and materials
3.3. Problems HI
3.3.1. Magnetic moment associated with a surface charged sphere
turning around its own axis Ill
3.3.2. Magnetic field in a cavity deposited in a magnetic medium 112
3.3.3. A cylinder carrying surface currents 114
3.3.4 Virtual current 116
Chapter 4: Dielectric and magnetic materials 119
4.1. Dielectrics 119
4.1.1. Definitions 119
4.1.2. Origins and types of breakdowns 120
4.1.3 Insulators 121
4.1.4 Electrets 123
4.1.5. Ferroelectrics 126
4.2. Magnetic materials 129
4.2.1. Introduction 129
4.2.2. Diamagnetism andLangevin's theory 131
4.2.3. Paramagnetism 132
4.2.4. Ferromagnetism 137
4.2.5. Antiferromagnetism andferrimagnetism 150
4.6. Problem 151
Dielectrics, electrets, magnets, and the gap in spherical armatures. 151
Chapter 5. Time Varying Electromagnetic Fields and Maxwell's
equations 757
5.1. Variable slow rates and the rate approximation of quasi static
states (RAQSS) 157
5.1.1. Definition 157
5.1.2. Propagation 157
5.1.3. Basics of electromagnetic induction 158
5.1.4. Electric circuit subject to a slowly varying rate 158
5.1.5. The Maxwell Faraday relation 159
Contents xiii
5.2. Systems under frequencies (div j ^ 0) and the Maxwell Ampere
relation 160
5.2.1. The shortfall ofrot H = je (first form of Ampere's theorem
for static regimes) 160
5.2.2. The Maxwell A mpere relation 161
5.2.3. Physical interpretation of the displacement currents 162
5.2.4. Conclusion 165
5.3. Maxwell's equations 767
5.3.1. Forms of div E and divB under varying regimes 167
5.3.2. Summary of Maxwell's equations 767
5.3.3. The Maxwell equations and conditions at the interface of two
media 168
5.4. Problem 770
Values for conduction and displacement currents in various media. 170
Chapter 6. General properties of electromagnetic waves and their
propagation through vacuums 775
6.1. Introduction: equations for wave propagation in vacuums 775
6.1.1. Maxwell's equations for vacuums: pt =0 and j ( =0 775
6.7.2. Equations of wave propagation 775
6.7.5. Solutions for wave propagation equations 774
6.2. Different wave types 176
6.2.7. Transverse and longitudinal waves 776
6.2.2. Planar waves 776
6.2.3. Spherical waves 777
6.2.4. Progressive waves 77*
6.2.5. Stationary waves 179
6.3. General properties of progressive planar electromagnetic
waves (PPEMW) in vacuums with pr=0andj/ =0 180
6.3.1. E and Bperpendicular to the propagation: TEM waves 181
6.3.2. The relation between Eand B 181
6.3.3. Breakdown of a planar progressive electromagnetic wave
(PPEMW) to a superposition of two planar progressive
EM waves polarized rectilinearly 7*5
6.3.4. Representation and spectral breakdown of rectilinearly
polarized PPEMWs 184
xiv Basic electromagnetism and materials
6.4. Properties of monochromatic planar progressive electromagnetic
waves (MPPEMW) 186
6.4.1. The polarization 186
6.4.2. Mathematical expression for a monochromatic planar wave. 191
6.4.3. The speed of wave propagation and spatial periodicity 194
6.5. Jones's representation 195
6.5.1. Complex expression for a monochromatic planar wave 795
6.5.2. Representation by way of Jones's matrix 796
6.6. Problems 799
6.6.7. Breakdown in real notation of a rectilinear wave into 2
opposing circular waves 799
6.6.2. The particular case of an anisotropic medium and the
example of a phase retarding strip 200
6.6.3. Jones's matrix based representation of polarization 202
Chapter 7. Electromagnetic waves in absorbent and dispersing infinite
materials and the Poynting vector 205
7.1. Propagation of electromagnetic waves in an unlimited and
uncharged material for which p f = 0 and j l: =0. Expression
for the dispersion of electromagnetic waves 205
7.7.7. Aide memoir: the Maxwell equation for a material
where pf = 0 and )(: = 0 205
7.1.2. General equations for propagation 205
7.1.3. A monochromatic electromagnetic wave in a linear,
homogeneous and isotropic material 206
7.1.4. A case specific to monochromatic planar progressive
electromagnetic waves (or MPPEM wave for short) 208
7.2. The different types of media 210
7.2.1. Non absorbing media and indices 270
7.2.2. Absorbent media, and complex indices 272
7.3. The energy of an electromagnetic plane wave and the
Poynting vector 275
7.3.1. Definition and physical significance for media of absolute
permittivity (e), magnetic permeability (ft) and subject to a
conduction current (j { ) 275
7.3.2. Propagation velocity of energy in a vacuum 277
Contents xv
7.3.3. Complex notation 218
7.3.4. The Poynting vector and the average power for a MPPEM
wave in a non absorbent (k and n are real) and non magnetic
(Hr = 1, so that n =n0) medium 219
7.3.5. Poynting vector for a MPPEM wave in an absorbent
dielectric such that fi is real 219
7.4 Problem 220
Poynting vector 220
Chapter 8. Waves in plasmas and dielectric, metallic, and magnetic
materials 227
8.1. Interactions between electromagnetic wave and materials 227
8.1.1. Parameters under consideration 227
8.1.2. The various forces involved in conventionally studied
materials 228
8.2. Interactions of KM waves with linear, homogeneous and isotropic
(lhi) dielectric materials: electronic polarization, dispersion and
absorption 229
8.2.1. The Drude Lorentz model 231
8.2.2. The form of the polarization and the dielectric permittivity 232
8.2.3. Study of the curves %e'(G ) and %e"(to)for to » too 234
8.2.4. Study of the curves of xe'(w) and %e"(co) when to* (o0 238
8.2.5. The (zero) pole of the dielectric function 240
8.2.6. Behavior of a transverse plane progressive EM wave which
has a pulsation between too and to, sufficiently far from
Wo so that e" 0 241
8.2.7. Study of an MPPEM wave both outside the absorption zone
and the range /(On, tot / 241
8.2.8. Equation for dispersion n =f(Xo) when co« too 243
8.3. Propagation of a MPPEM wave in a plasma (or the dielectric
response of an electronic gas) 245
8.3.1. Plasma oscillations and pulsations 245
8.3.2. The dielectric response of an electronic gas 248
8.4. Propagation of an EM wave in a metallic material (frictional
forces) 252
xvi Basic electromagnetism and materials
8.5. Uncharged magnetic media 256
8.5.1. Dispersion equation in conducting magnetic media 256
8.5.2. Impedance characteristics (when k is real) 257
8.6. Problems 258
8.6.1. The complex forms for polarisation and dielectric
permittivity 258
8.6.2. A study of the electrical properties of a metal 263
Chapter 9. Electromagnetic field sources, dipolar radiation and
antennae 267
9.1. Introduction 267
9.2. The Lorentz gauge and retarded potentials 268
9.2.1. Lorentz's gauge 268
9.2.2. Equation for the propagation of potentials, and retarded
potentials 273
9.3. Dipole field at a great distance 275
9.3.1. Expression for the potential vector A 275
9.3.2. Expression for the electromagnetic field in the radiation zone. 277
9.3.3. Power radiated by a dipole 278
9.4. Antennas 280
9.4.1. Principle: a short antenna where i«X 280
9.4.2. General remarks on various antennae: half wave and 'whip'
antennae 283
9.5.Problem 285
Radiation from a half wave antenna 286
Chapter 10. Interactions between materials and electromagnetic
waves, and diffusion and absorption processes 289
10.1. Introduction 289
10 .2. Diffusion mechanisms 289
10.2.1. Rayleigh diffusion: radiation diffused by charged particles. 289
10.2.2. Radiation due to Rutherford diffusion 294
Contents xvii
10.3. Radiation produced by accelerating charges: synchrotron
radiation and bremsstrahlung »297
10.3.1. Synchrotron radiation 297
10.3.2. Bremsstrahlung: electromagnetic stopping radiation 297
10. 4. Process of absorption or emission of electromagnetic radiation by
atoms or molecules (to approach as part of a second reading) 298
10.4.1. The problem 298
10.4.2. Form of the interaction Hamiltonian 298
10.4.3. Transition rules 302
10.5. Conclusion: introduction to atomic and molecular spectroscopy. 306
10.5.1. Result concerning the dipole approximation 306
10.5.2. Different transitions possible in an electromagnetic
spectrum 307
10.5.3. Conclusion 309
10.6. Problems 309
10.5.1. Problem 1. Diffusion due to bound electrons 309
10.5.2. Problem 2. Demonstration of the relationship between matrix
elements 313
Chapter 11. Reflection and refraction of electromagnetic waves in
absorbent materials of finite dimensions 317
11.1. Introduction 317
11.2. Law of reflection and refraction 318
11.2.1. Representation of the system 318
11.2.2. Conservation of angular frequency 319
11.2.3. Form of the wave vectors with respect to the symmetry of the
media 320
11.2.4. Symmetry and linear properties of the media 321
11.2.5. Snell Descartes law 322
11.2.6. Equation for the electric field in medium (I): the law of
reflection 323
11.2.7. The Snell Descartes law for reflection a system where medium
(2) can be absorbent: n2 and k2 are complex 325
11.3. Coefficients for reflection and transmission of a monochromatic
plane progressive EM wave at the interface between two non
absorbent lhi dielectrics (ni , n2 real), and the Fresnel equations.331
xviii Basic electromagnetism and materials
11.3.1. Hypothesis and aim of the study 331
11.3.2. Fresnel equations for perpendicular polarizations (TE) 333
11.3.3. Fresnel's equations for parallel magnetic field polarizations. 337
11.3.4. Reflection coefficients and energy transmission 342
11.3.5. Total and frustrated total reflection 346
11.4. Reflection and absorption by an absorbing medium 348
11.4.1. Reflection coefficient for a wave at a normal incidence to an
interface between a non absorbent medium (1) (index ofn/)
and an absorbent medium (2) (index of n2 ) 348
11.4.2. Optical properties of a metal: reflection and absorption at
low and high frequencies by a conductor 349
11.5. The anti echo condition: reflection from a magnetic layer; a
study of an anti radar structure; and a Dallenbach layer 350
11.5.1. The anti echo condition: reflection from a non conducting
magnetic layer 350
11.5.2. The Dallenbach layer: an anti radar structure 352
11.6. Problems 356
11.6.1. Reflection and absorption at low and high frequencies by a
conductor 356
11.6.2. Limited penetration of Hertzian waves in sea water 362
Chapter 12. Total reflection and guided propagation of
electromagnetic waves in materials of finite
dimensions 367
12.1. Introduction 367
12.2. A coaxial line 369
12.2.1. Form of transverse EM waves in a coaxial cable 369
12.2.2. Form of the potential, the intensity, and the characteristic
impedance of the cable 371
12.2.3. Electrical power transported by an EM wave 373
12.2.4. Conductor with an imperfect core 374
12.3. Preliminary study of the normal reflection 374
12.3.1. Properties of a perfect conductor 374
12.3.2. Equation for the stationary wave following reflection 376
12.3.3. Study of the form of the surface charge densities and the
current at the metal 377
Contents xix
12.4. Study of propagation guided between two plane conductors 380
12.4.1. Wave form and equation for propagation 380
12.4.2. Study of transverse EM waves 381
12.4.3. Study of transverse electric waves (TE waves) 383
12.4.4. Generalization of the study of TE wave propagation 388
12.5. Optical guiding: general principles and how fibers work 399
12.5.1. Principle 399
12.5.2. Guiding conditions 400
12.5.3. Increasing the signals 401
12.6. Electromagnetic characteristics of a symmetrical monomodal
guide 402
12.6.1. General form of the solutions 403
12.6.2. Solutions for zone (2) with an index denoted by n 404
12.6.3. Solutions for the zones (1) and (3) 405
12.6.4. Equations for the magnetic field 408
12.6.5. Use of the limiting conditions: determination of constants. 408
12.6.6. Modal equation 410
12.6.7. Comments: alternative methodologies 415
12.6.8. Field distribution and solution parity 417
12.6.9. Guide characteristics 419
12.7. Problem 423
Monomodal conditions 423
Index 427 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Moliton, André |
author_GND | (DE-588)124479383 |
author_facet | Moliton, André |
author_role | aut |
author_sort | Moliton, André |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV022959346 |
callnumber-first | T - Technology |
callnumber-label | TA403 |
callnumber-raw | TA403.6 |
callnumber-search | TA403.6 |
callnumber-sort | TA 3403.6 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UH 1000 UH 3000 UP 6000 |
ctrlnum | (OCoLC)81892886 (DE-599)BVBBV022959346 |
dewey-full | 620.1/1297 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/1297 |
dewey-search | 620.1/1297 |
dewey-sort | 3620.1 41297 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01911nam a2200493zc 4500</leader><controlfield tag="001">BV022959346</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091102 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071112s2007 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005939183</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387302840</subfield><subfield code="9">0-387-30284-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387302843</subfield><subfield code="9">978-0-387-30284-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)81892886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022959346</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA403.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/1297</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 1000</subfield><subfield code="0">(DE-625)145634:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 3000</subfield><subfield code="0">(DE-625)145643:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 6000</subfield><subfield code="0">(DE-625)146421:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moliton, André</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124479383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Basic electromagnetism and materials</subfield><subfield code="c">André Moliton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, N. Y.</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 430 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield><subfield code="x">Electric properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield><subfield code="x">Magnetic properties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetism</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetische Eigenschaft</subfield><subfield code="0">(DE-588)4624011-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetische Wechselwirkung</subfield><subfield code="0">(DE-588)4014300-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektromagnetische Wechselwirkung</subfield><subfield code="0">(DE-588)4014300-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Werkstoff</subfield><subfield code="0">(DE-588)4065579-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elektromagnetische Eigenschaft</subfield><subfield code="0">(DE-588)4624011-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163732&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016163732</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV022959346 |
illustrated | Illustrated |
index_date | 2024-07-02T19:04:06Z |
indexdate | 2024-07-09T21:08:35Z |
institution | BVB |
isbn | 0387302840 9780387302843 |
language | English |
lccn | 2005939183 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016163732 |
oclc_num | 81892886 |
open_access_boolean | |
owner | DE-703 DE-634 DE-384 DE-83 DE-11 |
owner_facet | DE-703 DE-634 DE-384 DE-83 DE-11 |
physical | XIX, 430 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
spelling | Moliton, André Verfasser (DE-588)124479383 aut Basic electromagnetism and materials André Moliton New York, N. Y. Springer 2007 XIX, 430 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Materials Electric properties Materials Magnetic properties Electromagnetism Werkstoff (DE-588)4065579-9 gnd rswk-swf Elektromagnetische Eigenschaft (DE-588)4624011-1 gnd rswk-swf Elektromagnetische Wechselwirkung (DE-588)4014300-4 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Elektromagnetische Wechselwirkung (DE-588)4014300-4 s Werkstoff (DE-588)4065579-9 s Elektromagnetische Eigenschaft (DE-588)4624011-1 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163732&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Moliton, André Basic electromagnetism and materials Materials Electric properties Materials Magnetic properties Electromagnetism Werkstoff (DE-588)4065579-9 gnd Elektromagnetische Eigenschaft (DE-588)4624011-1 gnd Elektromagnetische Wechselwirkung (DE-588)4014300-4 gnd |
subject_GND | (DE-588)4065579-9 (DE-588)4624011-1 (DE-588)4014300-4 (DE-588)4123623-3 |
title | Basic electromagnetism and materials |
title_auth | Basic electromagnetism and materials |
title_exact_search | Basic electromagnetism and materials |
title_exact_search_txtP | Basic electromagnetism and materials |
title_full | Basic electromagnetism and materials André Moliton |
title_fullStr | Basic electromagnetism and materials André Moliton |
title_full_unstemmed | Basic electromagnetism and materials André Moliton |
title_short | Basic electromagnetism and materials |
title_sort | basic electromagnetism and materials |
topic | Materials Electric properties Materials Magnetic properties Electromagnetism Werkstoff (DE-588)4065579-9 gnd Elektromagnetische Eigenschaft (DE-588)4624011-1 gnd Elektromagnetische Wechselwirkung (DE-588)4014300-4 gnd |
topic_facet | Materials Electric properties Materials Magnetic properties Electromagnetism Werkstoff Elektromagnetische Eigenschaft Elektromagnetische Wechselwirkung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163732&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT molitonandre basicelectromagnetismandmaterials |