Pythagorean-hodograph curves: algebra and geometry inseparable ; with 15 tables
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Schriftenreihe: | Geometry and computing
1 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 728 S. Ill., graph. Darst. |
ISBN: | 9783540733973 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022959042 | ||
003 | DE-604 | ||
005 | 20080805 | ||
007 | t | ||
008 | 071112s2008 ad|| |||| 00||| eng d | ||
015 | |a 07,N31,0507 |2 dnb | ||
016 | 7 | |a 984910883 |2 DE-101 | |
020 | |a 9783540733973 |9 978-3-540-73397-3 | ||
024 | 3 | |a 9783540733973 | |
035 | |a (OCoLC)255467254 | ||
035 | |a (DE-599)BSZ273299123 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-824 |a DE-11 |a DE-188 |a DE-739 | ||
050 | 0 | |a QA559.5 | |
082 | 0 | |a 510 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 17,1 |2 ssgn | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Farouki, Rida T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Pythagorean-hodograph curves |b algebra and geometry inseparable ; with 15 tables |c Rida T. Farouki |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XVI, 728 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Geometry and computing |v 1 | |
650 | 4 | |a Kurve - Geometrische Modellierung | |
650 | 4 | |a Curves |x Computer-aided design | |
650 | 4 | |a Geometry, Analytic | |
650 | 4 | |a Hodograph equations | |
650 | 4 | |a Pythagorean theorem | |
650 | 4 | |a Pythagorean-hodograph curves | |
650 | 0 | 7 | |a Geometrische Modellierung |0 (DE-588)4156717-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kurve |0 (DE-588)4033824-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kurve |0 (DE-588)4033824-1 |D s |
689 | 0 | 1 | |a Geometrische Modellierung |0 (DE-588)4156717-1 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Geometry and computing |v 1 |w (DE-604)BV022959018 |9 1 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163430&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016163430 |
Datensatz im Suchindex
_version_ | 1804137204843282432 |
---|---|
adam_text | RIDA T. FAROUKI PYTHAGOREAN - HODOGRAPH CURVES: ALGEBRA AND GEOMETRY
INSEPARABLE WITH 204 FIGURES AND 15 TABLES 4Y SPRINGER CONTENTS 1
INTRODUCTION 1 1.1 THE LURE OF ANALYTIC GEOMETRY 1 1.2 SYMBIOSIS OF
ALGEBRA AND GEOMETRY 3 1.3 COMPUTER-AIDED GEOMETRIC DESIGN 4 1.4
PYTHAGOREAN-HODOGRAPH CURVES 6 1.5 ALGORITHMS AND APPLICATIONS 7 PART I
ALGEBRA 2 PREAMBLE 11 2.1 A HISTORICAL ENIGMA 11 2.2 THEOREM OF
PYTHAGORAS 17 2.3 AL-JABR WA 1-MUQABALA 22 2.4 FIELDS, RINGS, AND GROUPS
25 3 POLYNOMIALS 29 3.1 BASIC PROPERTIES 29 3.2 POLYNOMIAL BASES 31 3.3
ROOTS OF POLYNOMIALS 36 3.4 RESULTANTS AND DISCRIMINANTS 38 3.5 RATIONAL
FUNCTIONS 41 4 COMPLEX NUMBERS 45 4.1 CASPAR WESSEL 45 4.2 ELEMENTARY
PROPERTIES 48 4.3 FUNCTIONS OF COMPLEX VARIABLES 49 4.4 DIFFERENTIATION
AND INTEGRATION 51 4.5 GEOMETRY OF CONFORMAL MAPS *. 54 4.6 HARMONIC
FUNCTIONS 56 VIII CONTENTS 4.7 CONFORMAL TRANSPLANTS 56 4.8 SOME SIMPLE
MAPPINGS 58 5 QUATERNIONS 61 5.1 MULTI-DIMENSIONAL NUMBERS 61 5.2 NO
THREE-DIMENSIONAL NUMBERS 64 5.3 SUMS AND PRODUCTS OF QUATERNIONS 64 5.4
QUATERNIONS AND SPATIAL ROTATIONS 67 5.5 ROTATIONS AS PRODUCTS OF
REFLECTIONS 69 5.6 FAMILIES OF SPATIAL ROTATIONS 70 5.7 FOUR-DIMENSIONAL
ROTATIONS 74 6 CLIFFORD ALGEBRA 79 6.1 CLIFFORD ALGEBRA BASES 79 6.2
ALGEBRA OF MULTIVECTORS 80 6.3 THE GEOMETRIC PRODUCT 82 6.4 REFLECTIONS
AND ROTATIONS 85 PART II GEOMETRY 7 COORDINATE SYSTEMS 89 7.1 CARTESIAN
COORDINATES 91 7.2 BARYCENTRIC COORDINATES 93 7.2.1 BARYCENTRIC
COORDINATES ON INTERVALS 94 7.2.2. BARYCENTRIC COORDINATES ON TRIANGLES
95 7.2.3 TRANSFORMATION OF THE DOMAIN 98 7.2.4 BARYCENTRIC POINTS AND
VECTORS 98 7.2.5 DIRECTIONAL DERIVATIVES 100 7.2.6 POLYNOMIAL BASES OVER
TRIANGLES 101 7.2.7 UN-NORMALIZED BARYCENTRIC COORDINATES 102 7.2.8
THREE OR MORE DIMENSIONS 103 7.3 CURVILINEAR COORDINATES 104 7.3.1
ONE-TO-ONE CORRESPONDENCE 105 7.3.2 DISTANCE AND ANGLE MEASUREMENTS 106
7.3.3 JACOBIAN OF THE TRANSFORMATION 109 7.3.4 EXAMPLE: PLANE POLAR
COORDINATES . 110 7.3.5 THREE OR MORE DIMENSIONS ILL 7.4 HOMOGENEOUS
COORDINATES 112 7.4.1 THE PROJECTIVE PLANE 113 7.4.2 CIRCULAR POINTS AND
ISOTROPIC LINES 114 7.4.3 THE PRINCIPLE OF DUALITY 116 7.4.4 PROJECTIVE
TRANSFORMATIONS 118 7.4.5 INVARIANCE OF THE CROSS RATIO 122 7.4.6
GEOMETRICAL FIGURES AND THEIR SHADOWS 123 7.4.7 PROJECTIVE GEOMETRY OF
THREE DIMENSIONS 127 CONTENTS IX DIFFERENTIAL GEOMETRY 131 8.1 INTRINSIC
GEOMETRY OF PLANE CURVES 133 8.1.1 TANGENT AND CURVATURE 133 8.1.2 THE
CIRCLE OF CURVATURE 135 8.1.3 VERTICES OF PLANE CURVES 137 8.1.4 THE
INTRINSIC EQUATION 137 8.2 FAMILIES OF PLANE CURVES 138 8.2.1 ENVELOPES
OF CURVE FAMILIES 139 8.2.2 FAMILIES OF IMPLICIT CURVES 140 8.2.3
FAMILIES OF PARAMETRIC CURVES 142 8.2.4 FAMILIES OF LINES AND CIRCLES
144 8.3 EVOLUTES, INVOLUTES, PARALLEL CURVES 144 8.3.1 TANGENT LINE AND
OSCULATING CIRCLE 144 8.3.2 EVOLUTES AND INVOLUTES 146 8.3.3 THE
HOROLOGIUM OSCILLATORIUM 154 8.3.4 FAMILIES OF PARALLEL (OFFSET) CURVES
161 8.3.5 TRIMMING THE UNTRIMMED OFFSET 167 8.4 INTRINSIC GEOMETRY OF
SPACE CURVES 178 8.4.1 CURVATURE AND TORSION 178 8.4.2 THE FRENET FRAME
180 8.4.3 INFLECTIONS OF SPACE CURVES 181 8.4.4 INTRINSIC EQUATIONS 181
8.5 INTRINSIC GEOMETRY OF SURFACES 183 8.5.1 FIRST FUNDAMENTAL FORM 183
8.5.2 SECOND FUNDAMENTAL FORM 184 8.5.3 CURVES LYING ON A SURFACE 185
8.5.4 NORMAL CURVATURE OF A SURFACE 186 8.5.5 PRINCIPAL CURVATURES AND
DIRECTIONS 186 8.5.6 LOCAL SURFACE SHAPE 188 8.5.7 GAUSS MAP OF A
SURFACE 190 8.5.8 LINES OF CURVATURE 191 8.5.9 GEODESIES ON A SURFACE
193 ALGEBRAIC GEOMETRY 197 9.1 PARAMETRIC AND IMPLICIT FORMS 198 9.2
PLANE ALGEBRAIC CURVES 199 9.2.1 SINGULAR POINTS 201 9.2.2 INTERSECTIONS
WITH A STRAIGHT LINE 202 9.2.3 DOUBLE POINTS OF ALGEBRAIC CURVES 202
9.2.4 HIGHER-ORDER SINGULAR POINTS 204 9.2.5 GENUS OF AN ALGEBRAIC CURVE
204 9.2.6 RESOLUTION OF SINGULARITIES 208 9.2.7 BIRATIONAL
TRANSFORMATIONS . 211 9.2.8 PLIICKER RELATIONS 212 X CONTENTS 9.2.9
BEZOUT S THEOREM 214 9.2.10 IMPLICITIZATION AND PARAMETERIZATION . . 216
9.3 ALGEBRAIC SURFACES 219 9.3.1 SINGULAR POINTS AND CURVES 220 9.3.2
RATIONALITY OF ALGEBRAIC SURFACES 221 9.4 ALGEBRAIC SPACE CURVES 222
9.4.1 COMPOSITE SURFACE INTERSECTIONS 223 9.4.2 PLANE PROJECTIONS OF A
SPACE CURVE 226 9.4.3 GENUS OF AN ALGEBRAIC SPACE CURVE 227 9.4.4
SINGULARITIES OF SPACE CURVES 228 10 NON-EUCLIDEAN GEOMETRY 231 10.1 THE
METRIC TENSOR 232 10.2 CONTRAVARIANT AND COVARIANT VECTORS 233 10.3
METHODS OF TENSOR ALGEBRA 235 10.4 THE GEODESIC EQUATIONS 240 10.5
DIFFERENTIATION OF TENSORS 241 10.6 PARALLEL TRANSPORT OF VECTORS 243
PART III COMPUTER AIDED GEOMETRIC DESIGN 11 THE BERNSTEIN BASIS 249 11.1
THEOREM OF WEIERSTRASS 250 11.2 BERNSTEIN-FORM PROPERTIES 252 11.3 THE
CONTROL POLYGON 254 11.4 TRANSFORMATION OF DOMAIN 254 11.5 DEGREE
OPERATIONS 255 11.6 DE CASTELJAU ALGORITHM 256 11.7 ARITHMETIC
OPERATIONS 258 11.8 COMPUTING ROOTS ON (0,1) 259 11.9 NUMERICAL
CONDITION 260 12 NUMERICAL STABILITY 261 12.1 LICENSE TO COMPUTE 261
12.2 CHARACTERIZATION OF ERRORS 262 12.3 FLOATING-POINT COMPUTATIONS 263
12.3.1 FLOATING-POINT NUMBERS 264 12.3.2 FLOATING-POINT ARITHMETIC 266
12.3.3 DANGERS OF DIGIT CANCELLATION 267 12.3.4 MODELS FOR ERROR
PROPAGATION 270 12.4 STABILITY AND CONDITION NUMBERS 271 12.4.1
CONDITION OF A POLYNOMIAL VALUE 272 12.4.2 CONDITION OF A POLYNOMIAL
ROOT 275 12.4.3 WILKINSON S POLYNOMIAL 277 CONTENTS XI 12.4.4 VECTOR AND
MATRIX NORMS 281 12.4.5 CONDITION OF A LINEAR MAP 285 12.4.6 BASIS
TRANSFORMATIONS 287 12.4.7 SUBDIVISION PROCESSES 289 12.4.8 ILL-POSED
PROBLEMS 289 12.5 BACKWARD ERROR ANALYSIS 290 12.5.1 EQUIVALENT INPUT
ERRORS 290 12.5.2 EXAMPLE: HORNER S METHOD 291 13 BEZIER CURVES AND
SURFACES 295 13.1 CONVEX-HULL CONFINEMENT 296 13.2 VARIATION-DIMINISHING
PROPERTY 298 13.3 DEGREE ELEVATION 298 13.4 DE CASTELJAU ALGORITHM 300
13.5 BEZIER CURVE HODOGRAPHS 301 13.6 RATIONAL BEZIER CURVES 303 13.7
CONIES AS BEZIER CURVES 309 13.8 TENSOR-PRODUCT SURFACE PATCHES 312 13.9
TRIANGULAR SURFACE PATCHES 320 14 C 2 CUBIC SPLINE CURVES 323 14.1
MECHANICAL SPLINES 324 14.2 ELASTIC BENDING ENERGY 325 14.3 POLYNOMIAL
INTERPOLATION 326 14.3.1 THE LAGRANGE BASIS 326 14.3.2 CONVERGENCE
BEHAVIOR 327 14.4 C 2 CUBIC SPLINE FUNCTIONS 328 14.4.1 CUBIC HERMITE
FORM 328 14.4.2 C 2 CONTINUITY EQUATIONS 329 14.4.3 CHOICE OF END
CONDITIONS 330 14.4.4 SOLUTION OF TRIDIAGONAL SYSTEMS 332 14.4.5 MINIMUM
ENERGY PROPERTY 333 14.4.6 SPLINE APPROXIMATION CONVERGENCE 336 14.5 C 2
CUBIC SPLINE CURVES 336 14.5.1 CHOICE OF KNOT SEQUENCE 337 14.5.2
PARAMETRIC OR GEOMETRIC CONTINUITY 338 14.5.3 GEOMETRIC HERMITE
INTERPOLATION 339 14.5.4 ELASTICA OR NON-LINEAR SPLINES 341 15 SPLINE
BASIS FUNCTIONS 345 15.1 BASES FOR SPLINE FUNCTIONS ; 345 15.2 THE
CARDINAL BASIS 346 15.2.1 CONSTRUCTION OF CARDINAL BASIS . .* 346 15.2.2
BIVARIATE SPLINE FUNCTIONS 348 15.2.3 TENSOR-PRODUCT SPLINE SURFACES 351
XII CONTENTS 15.3 THE B-SPLINE BASIS 353 15.3.1 THE KNOT VECTOR 356
15.3.2 COX-DE BOOR ALGORITHM 361 15.3.3 TENSOR-PRODUCT B-SPLINE SURFACES
361 15.3.4 RATIONAL B-SPLINE CURVES AND SURFACES 362 15.3.5 BEZIER AND
B-SPLINE FORMS COMPARED 362 15.4 SPLINE BASIS CONVERSION 364 15.4.1
CARDINAL TO B-SPLINE FORM 364 15.4.2 BASIS CONVERSION MATRIX 365 PART IV
PLANAR PYTHAGOREAN*HODOGRAPH CURVES 16 ARC-LENGTH PARAMETERIZATION 369
16.1 IN SEARCH OF AN ELUSIVE IDEAL 370 16.2 THE RECTIFICATION OF CURVES
374 16.3 POLYNOMIAL PARAMETRIC SPEED 377 16.4 ALGEBRAICALLY-RECTIFIABLE
CURVES 378 16:5 UNIT SPEED APPROXIMATIONS 379 17 PYTHAGOREAN*HODOGRAPH
CURVES 381 17.1 PLANAR PYTHAGOREAN HODOGRAPHS 381 17.2 BEZIER CONTROL
POINTS OF PH CURVES 384 17.3 PARAMETRIC SPEED AND ARC LENGTH 386 17.4
DIFFERENTIAL AND INTEGRAL PROPERTIES 388 17.5 RATIONAL OFFSETS OF PH
CURVES 389 18 TSCHIRNHAUSEN S CUBIC 393 18.1 EHRENFRIED WALTHER VON
TSCHIRNHAUS 393 18.2 TSCHIRNHAUS AND CAUSTIC CURVES 396 18.3 UNIQUE
PYTHAGOREAN-HODOGRAPH CUBIC 400 18.4 YOU MEAN WE PAY YOU TO DO THATW 404
19 COMPLEX REPRESENTATION 407 19.1 COMPLEX CURVES AND HODOGRAPHS 408
19.2 ONE-TO-ONE CORRESPONDENCE 409 19.3 ROTATION INVARIANCE OF
HODOGRAPHS 414 19.4 PYTHAGOREAN-HODOGRAPH CUBICS REVISITED 414 19.5
CHARACTERIZATION OF THE PH QUINTICS 415 19.6 GEOMETRY OF THE CONTROL
POLYGON 419 19.7 INTRINSIC FEATURES OF CORRESPONDING CURVES 422 CONTENTS
XIII 20 RATIONAL PYTHAGOREAN-HODOGRAPH CURVES 427 20.1 CONSTRUCTION OF
RATIONAL PH CURVES 428 20.2 DUAL BEZIER CURVE REPRESENTATION 433 20.3
RELATION TO POLYNOMIAL PH CURVES 437 20.4 RATIONAL ARC LENGTH FUNCTIONS
438 20.5 GEOMETRICAL OPTICS INTERPRETATION 439 20.6 LAGUERRE GEOMETRY
FORMULATION 444 20.7 IMPROPER RATIONAL PARAMETERIZATIONS 446 20.8
RATIONAL SURFACES WITH RATIONAL OFFSETS 449 20.9 MINKOWSKI
ISOPERIMETRIC-HODOGRAPH CURVES 451 PART V SPATIAL PYTHAGOREAN*HODOGRAPH
CURVES 21 PYTHAGOREAN HODOGRAPHS IN R 3 455 21.1 GEOMETRY OF SPATIAL PH
CUBICS 456 21.2 SPATIAL PYTHAGOREAN HODOGRAPHS 462 21.3 BEZIER CONTROL
POLYGONS 464 21.4 DIFFERENTIAL PROPERTIES 465 22 QUATERNION
REPRESENTATION 469 22.1 PYTHAGOREAN CONDITION IN K 3 469 22.2
DEGENERATION OF SPATIAL PH CURVES 472 22.3 ROTATION INVARIANCE OF
HODOGRAPHS 476 22.4 REFLECTION FORM OF HODOGRAPHS . 480 22.5 ONE-TO-ONE
CORRESPONDENCE? 483 23 HELICAL POLYNOMIAL CURVES 485 23.1 HELICAL CURVES
AND PH CURVES ? 486 23.2 MORPHOLOGY OF HELICAL PH QUINTICS 488 23.3
MONOTONE-HELICAL PH QUINTICS 490 23.4 GENERAL HELICAL PH QUINTICS 492
23.5 SUFFICIENT AND NECESSARY CONDITIONS 497 24 MINKOWSKI PYTHAGOREAN
HODOGRAPHS 507 24.1 THE MINKOWSKI METRIC 508 24.2 MEDIAL AXIS TRANSFORM
510 24.3 MINKOWSKI PH CURVES IN K 2 - 1 512 24.4 CLIFFORD ALGEBRA
REPRESENTATION 515 24.5 MAT APPROXIMATION BY MPH CURVES 516 24.6
GENERALIZATION TO THE SPACE M 3 1 519 XIV CONTENTS PART VI ALGORITHMS
25 PLANAR HERMITE INTERPOLANTS 523 25.1 HERMITE INTERPOLATION PROBLEM
524 25.2 SOLUTION IN COMPLEX REPRESENTATION 527 25.3 THE ABSOLUTE
ROTATION INDEX 531 25.4 COMPARISON WITH ORDINARY CUBICS 535 25.5
HIGHER-ORDER HERMITE INTERPOLANTS 537 25.6 MONOTONE CURVATURE SEGMENTS
539 26 ELASTIC BENDING ENERGY 543 26.1 COMPLEX FORM OF THE INTEGRAND 544
26.2 ENERGY OF TSCHIRNHAUS SEGMENTS 545 26.3 BENDING ENERGY OF PH
QUINTICS 546 26.4 THE GRACEFULNESS OF PH QUINTICS 550 26.5
MINIMAL-ENERGY HERMITE INTERPOLANTS 552 27 PLANAR C 2 PH QUINTIC SPLINES
555 27.1 CONSTRUCTION OF PH SPLINES 555 27.1.1 C 2 PH QUINTIC SPLINE
EQUATIONS 556 27.1.2 END CONDITIONS FOR PH SPLINES 558 27.1.3 NUMBER OF
DISTINCT INTERPOLANTS 560 27.2 SOLUTION BY HOMOTOPY METHOD 561 27.2.1
CHOICE OF INITIAL SYSTEM 561 27.2.2 PREDICTOR-CORRECTOR PROCEDURE 562
27.2.3 EMPIRICAL RESULTS AND EXAMPLES 565 27.3 SOLUTION BY ITERATIVE
METHODS 572 27.3.1 CHOICE OF STARTING APPROXIMATION 572 27.3.2
FUNCTIONAL ITERATION AND RELAXATION 574 27.3.3 NEWTON-RAPHSON METHOD 576
27.3.4 COMPUTED EXAMPLES 579 27.4 GENERALIZATIONS OF PH SPLINES 582
27.4.1 NON-UNIFORM KNOT SEQUENCES 582 27.4.2 SHAPE-PRESERVING PH SPLINES
586 27.5 CONTROL POLYGONS FOR PH SPLINES 587 27.5.1 EQUIVALENT
INTERPOLATION PROBLEM 588 27.5.2 INCLUSION OF MULTIPLE KNOTS 589 27.5.3
EMULATING B-SPLINE CURVE PROPERTIES 590 27.5.4 ILLUSTRATIVE EXAMPLES 591
28 SPATIAL HERMITE INTERPOLANTS 595 28.1 G L INTERPOLATION BY CUBICS 595
28.2 C 1 HERMITE INTERPOLATION PROBLEM 596 28.3 ROTATION INVARIANCE OF
INTERPOLANTS 598 28.4 RESIDUAL DEGREES OF FREEDOM . : 600 CONTENTS XV
28.5 INTEGRAL MEASURES OF SHAPE 600 28.6 CLIFFORD ALGEBRA FORMULATION
604 28.7 HELICAL PH QUINTIC INTERPOLANTS 605 28.8 HIGHER-ORDER HERMITE
INTERPOLANTS 613 28.9 SPATIAL C 2 PH QUINTIC SPLINES 613 PART VII
APPLICATIONS 29 REAL-TIME CNC INTERPOLATORS 619 29.1 DIGITAL MOTION
CONTROL 619 29.2 TAYLOR SERIES INTERPOLATORS 621 29.3 PH CURVE
INTERPOLATORS 623 29.3.1 CONSTANT FEEDRATE 624 29.3.2
CURVATURE-DEPENDENT FEEDRATE 625 29.3.3 OFFSET CURVE INTERPOLATOR 626
29.4 FEEDRATE IN TERMS OF ARC LENGTH 627 29.4.1 LINEAR DEPENDENCE ON ARC
LENGTH 628 29.4.2 QUADRATIC DEPENDENCE ON ARC LENGTH 628 29.5
TIME-DEPENDENT FEEDRATE 630 29.5.1 POLYNOMIAL TIME DEPENDENCE 631 29.5.2
ACCELERATION/DECELERATION PROFILES 632 29.5.3 TRAVERSING A SINGLE PH
CURVE 634 29.5.4 EXPERIMENTAL RESULTS 635 29.6 CONSTANT MATERIAL REMOVAL
RATE 642 29.6.1 FORM OF FEEDRATE FUNCTION 643 29.6.2 INTERPOLATOR
ALGORITHM 644 29.6.3 EXPERIMENTAL RESULTS 647 29.7 CONTOUR MACHINING OF
SURFACES 651 29.7.1 TOOL PATH GENERATION 651 29.7.2 OPTIMAL CONTOUR
ORIENTATIONS 653 30 ROTATION*MINIMIZING FRAMES 661 30.1 INTRODUCTION AND
MOTIVATION 661 30.2 ADAPTED FRAMES ON SPACE CURVES 664 30.3
EULER-RODRIGUES FRAME FOR PH CURVES 666 30.4 ROTATION-MINIMIZING FRAMES
667 30.5 ENERGY OF FRAMED SPACE CURVES 668 30.6 EXACT RMFS ON PH CURVES
670 30.6.1 INTEGRATION OF RATIONAL FUNCTIONS 672 30.6.2 FRAMES FOR PH
CUBICS AND QUINTICS 674 30.7 RATIONAL RMF APPROXIMATIONS 677 30.7.1
RATIONAL HERMITE INTERPOLATION 679 30.7.2 COMPUTED EXAMPLES 685 30.8
PARAMETERIZATION OF CANAL SURFACES 689 XVI CONTENTS 31 CLOSURE 693
REFERENCES 69 7 INDEX 719
|
adam_txt |
RIDA T. FAROUKI PYTHAGOREAN - HODOGRAPH CURVES: ALGEBRA AND GEOMETRY
INSEPARABLE WITH 204 FIGURES AND 15 TABLES 4Y SPRINGER CONTENTS 1
INTRODUCTION 1 1.1 THE LURE OF ANALYTIC GEOMETRY 1 1.2 SYMBIOSIS OF
ALGEBRA AND GEOMETRY 3 1.3 COMPUTER-AIDED GEOMETRIC DESIGN 4 1.4
PYTHAGOREAN-HODOGRAPH CURVES 6 1.5 ALGORITHMS AND APPLICATIONS 7 PART I
ALGEBRA 2 PREAMBLE 11 2.1 A HISTORICAL ENIGMA 11 2.2 THEOREM OF
PYTHAGORAS 17 2.3 AL-JABR WA'1-MUQABALA 22 2.4 FIELDS, RINGS, AND GROUPS
25 3 POLYNOMIALS 29 3.1 BASIC PROPERTIES 29 3.2 POLYNOMIAL BASES 31 3.3
ROOTS OF POLYNOMIALS 36 3.4 RESULTANTS AND DISCRIMINANTS 38 3.5 RATIONAL
FUNCTIONS 41 4 COMPLEX NUMBERS 45 4.1 CASPAR WESSEL 45 4.2 ELEMENTARY
PROPERTIES 48 4.3 FUNCTIONS OF COMPLEX VARIABLES 49 4.4 DIFFERENTIATION
AND INTEGRATION 51 4.5 GEOMETRY OF CONFORMAL MAPS *. 54 4.6 HARMONIC
FUNCTIONS 56 VIII CONTENTS 4.7 CONFORMAL TRANSPLANTS 56 4.8 SOME SIMPLE
MAPPINGS 58 5 QUATERNIONS 61 5.1 MULTI-DIMENSIONAL NUMBERS 61 5.2 NO
THREE-DIMENSIONAL NUMBERS 64 5.3 SUMS AND PRODUCTS OF QUATERNIONS 64 5.4
QUATERNIONS AND SPATIAL ROTATIONS 67 5.5 ROTATIONS AS PRODUCTS OF
REFLECTIONS 69 5.6 FAMILIES OF SPATIAL ROTATIONS 70 5.7 FOUR-DIMENSIONAL
ROTATIONS 74 6 CLIFFORD ALGEBRA 79 6.1 CLIFFORD ALGEBRA BASES 79 6.2
ALGEBRA OF MULTIVECTORS 80 6.3 THE GEOMETRIC PRODUCT 82 6.4 REFLECTIONS
AND ROTATIONS 85 PART II GEOMETRY 7 COORDINATE SYSTEMS 89 7.1 CARTESIAN
COORDINATES 91 7.2 BARYCENTRIC COORDINATES 93 7.2.1 BARYCENTRIC
COORDINATES ON INTERVALS 94 7.2.2. BARYCENTRIC COORDINATES ON TRIANGLES
95 7.2.3 TRANSFORMATION OF THE DOMAIN 98 7.2.4 BARYCENTRIC POINTS AND
VECTORS 98 7.2.5 DIRECTIONAL DERIVATIVES 100 7.2.6 POLYNOMIAL BASES OVER
TRIANGLES 101 7.2.7 UN-NORMALIZED BARYCENTRIC COORDINATES 102 7.2.8
THREE OR MORE DIMENSIONS 103 7.3 CURVILINEAR COORDINATES 104 7.3.1
ONE-TO-ONE CORRESPONDENCE 105 7.3.2 DISTANCE AND ANGLE MEASUREMENTS 106
7.3.3 JACOBIAN OF THE TRANSFORMATION 109 7.3.4 EXAMPLE: PLANE POLAR
COORDINATES . 110 7.3.5 THREE OR MORE DIMENSIONS ILL 7.4 HOMOGENEOUS
COORDINATES 112 7.4.1 THE PROJECTIVE PLANE 113 7.4.2 CIRCULAR POINTS AND
ISOTROPIC LINES 114 7.4.3 THE PRINCIPLE OF DUALITY 116 7.4.4 PROJECTIVE
TRANSFORMATIONS 118 7.4.5 INVARIANCE OF THE CROSS RATIO 122 7.4.6
GEOMETRICAL FIGURES AND THEIR SHADOWS 123 7.4.7 PROJECTIVE GEOMETRY OF
THREE DIMENSIONS 127 CONTENTS IX DIFFERENTIAL GEOMETRY 131 8.1 INTRINSIC
GEOMETRY OF PLANE CURVES 133 8.1.1 TANGENT AND CURVATURE 133 8.1.2 THE
CIRCLE OF CURVATURE 135 8.1.3 VERTICES OF PLANE CURVES 137 8.1.4 THE
INTRINSIC EQUATION 137 8.2 FAMILIES OF PLANE CURVES 138 8.2.1 ENVELOPES
OF CURVE FAMILIES 139 8.2.2 FAMILIES OF IMPLICIT CURVES 140 8.2.3
FAMILIES OF PARAMETRIC CURVES 142 8.2.4 FAMILIES OF LINES AND CIRCLES
144 8.3 EVOLUTES, INVOLUTES, PARALLEL CURVES 144 8.3.1 TANGENT LINE AND
OSCULATING CIRCLE 144 8.3.2 EVOLUTES AND INVOLUTES 146 8.3.3 THE
HOROLOGIUM OSCILLATORIUM 154 8.3.4 FAMILIES OF PARALLEL (OFFSET) CURVES
161 8.3.5 TRIMMING THE UNTRIMMED OFFSET 167 8.4 INTRINSIC GEOMETRY OF
SPACE CURVES 178 8.4.1 CURVATURE AND TORSION 178 8.4.2 THE FRENET FRAME
180 8.4.3 INFLECTIONS OF SPACE CURVES 181 8.4.4 INTRINSIC EQUATIONS 181
8.5 INTRINSIC GEOMETRY OF SURFACES 183 8.5.1 FIRST FUNDAMENTAL FORM 183
8.5.2 SECOND FUNDAMENTAL FORM 184 8.5.3 CURVES LYING ON A SURFACE 185
8.5.4 NORMAL CURVATURE OF A SURFACE 186 8.5.5 PRINCIPAL CURVATURES AND
DIRECTIONS 186 8.5.6 LOCAL SURFACE SHAPE 188 8.5.7 GAUSS MAP OF A
SURFACE 190 8.5.8 LINES OF CURVATURE 191 8.5.9 GEODESIES ON A SURFACE
193 ALGEBRAIC GEOMETRY 197 9.1 PARAMETRIC AND IMPLICIT FORMS 198 9.2
PLANE ALGEBRAIC CURVES 199 9.2.1 SINGULAR POINTS 201 9.2.2 INTERSECTIONS
WITH A STRAIGHT LINE 202 9.2.3 DOUBLE POINTS OF ALGEBRAIC CURVES 202
9.2.4 HIGHER-ORDER SINGULAR POINTS 204 9.2.5 GENUS OF AN ALGEBRAIC CURVE
204 9.2.6 RESOLUTION OF SINGULARITIES 208 9.2.7 BIRATIONAL
TRANSFORMATIONS .' 211 9.2.8 PLIICKER RELATIONS 212 X CONTENTS 9.2.9
BEZOUT'S THEOREM 214 9.2.10 IMPLICITIZATION AND PARAMETERIZATION . . 216
9.3 ALGEBRAIC SURFACES 219 9.3.1 SINGULAR POINTS AND CURVES 220 9.3.2
RATIONALITY OF ALGEBRAIC SURFACES 221 9.4 ALGEBRAIC SPACE CURVES 222
9.4.1 COMPOSITE SURFACE INTERSECTIONS 223 9.4.2 PLANE PROJECTIONS OF A
SPACE CURVE 226 9.4.3 GENUS OF AN ALGEBRAIC SPACE CURVE 227 9.4.4
SINGULARITIES OF SPACE CURVES 228 10 NON-EUCLIDEAN GEOMETRY 231 10.1 THE
METRIC TENSOR 232 10.2 CONTRAVARIANT AND COVARIANT VECTORS 233 10.3
METHODS OF TENSOR ALGEBRA 235 10.4 THE GEODESIC EQUATIONS 240 10.5
DIFFERENTIATION OF TENSORS 241 10.6 PARALLEL TRANSPORT OF VECTORS 243
PART III COMPUTER AIDED GEOMETRIC DESIGN 11 THE BERNSTEIN BASIS 249 11.1
THEOREM OF WEIERSTRASS 250 11.2 BERNSTEIN-FORM PROPERTIES 252 11.3 THE
CONTROL POLYGON 254 11.4 TRANSFORMATION OF DOMAIN 254 11.5 DEGREE
OPERATIONS 255 11.6 DE CASTELJAU ALGORITHM 256 11.7 ARITHMETIC
OPERATIONS 258 11.8 COMPUTING ROOTS ON (0,1) 259 11.9 NUMERICAL
CONDITION 260 12 NUMERICAL STABILITY 261 12.1 LICENSE TO COMPUTE 261
12.2 CHARACTERIZATION OF ERRORS 262 12.3 FLOATING-POINT COMPUTATIONS 263
12.3.1 FLOATING-POINT NUMBERS 264 12.3.2 FLOATING-POINT ARITHMETIC 266
12.3.3 DANGERS OF DIGIT CANCELLATION 267 12.3.4 MODELS FOR ERROR
PROPAGATION 270 12.4 STABILITY AND CONDITION NUMBERS 271 12.4.1
CONDITION OF A POLYNOMIAL VALUE 272 12.4.2 CONDITION OF A POLYNOMIAL
ROOT 275 12.4.3 WILKINSON'S POLYNOMIAL 277 CONTENTS XI 12.4.4 VECTOR AND
MATRIX NORMS 281 12.4.5 CONDITION OF A LINEAR MAP 285 12.4.6 BASIS
TRANSFORMATIONS 287 12.4.7 SUBDIVISION PROCESSES 289 12.4.8 ILL-POSED
PROBLEMS 289 12.5 BACKWARD ERROR ANALYSIS 290 12.5.1 EQUIVALENT INPUT
ERRORS 290 12.5.2 EXAMPLE: HORNER'S METHOD 291 13 BEZIER CURVES AND
SURFACES 295 13.1 CONVEX-HULL CONFINEMENT 296 13.2 VARIATION-DIMINISHING
PROPERTY 298 13.3 DEGREE ELEVATION 298 13.4 DE CASTELJAU ALGORITHM 300
13.5 BEZIER CURVE HODOGRAPHS 301 13.6 RATIONAL BEZIER CURVES 303 13.7
CONIES AS BEZIER CURVES 309 13.8 TENSOR-PRODUCT SURFACE PATCHES 312 13.9
TRIANGULAR SURFACE PATCHES 320 14 C 2 CUBIC SPLINE CURVES 323 14.1
MECHANICAL SPLINES 324 14.2 ELASTIC BENDING ENERGY 325 14.3 POLYNOMIAL
INTERPOLATION 326 14.3.1 THE LAGRANGE BASIS 326 14.3.2 CONVERGENCE
BEHAVIOR 327 14.4 C 2 CUBIC SPLINE FUNCTIONS 328 14.4.1 CUBIC HERMITE
FORM 328 14.4.2 C 2 CONTINUITY EQUATIONS 329 14.4.3 CHOICE OF END
CONDITIONS 330 14.4.4 SOLUTION OF TRIDIAGONAL SYSTEMS 332 14.4.5 MINIMUM
ENERGY PROPERTY 333 14.4.6 SPLINE APPROXIMATION CONVERGENCE 336 14.5 C 2
CUBIC SPLINE CURVES 336 14.5.1 CHOICE OF KNOT SEQUENCE 337 14.5.2
PARAMETRIC OR GEOMETRIC CONTINUITY 338 14.5.3 GEOMETRIC HERMITE
INTERPOLATION 339 14.5.4 ELASTICA OR "NON-LINEAR" SPLINES 341 15 SPLINE
BASIS FUNCTIONS 345 15.1 BASES FOR SPLINE FUNCTIONS ; 345 15.2 THE
CARDINAL BASIS 346 15.2.1 CONSTRUCTION OF CARDINAL BASIS . .* 346 15.2.2
BIVARIATE SPLINE FUNCTIONS 348 15.2.3 TENSOR-PRODUCT SPLINE SURFACES 351
XII CONTENTS 15.3 THE B-SPLINE BASIS 353 15.3.1 THE KNOT VECTOR 356
15.3.2 COX-DE BOOR ALGORITHM 361 15.3.3 TENSOR-PRODUCT B-SPLINE SURFACES
361 15.3.4 RATIONAL B-SPLINE CURVES AND SURFACES 362 15.3.5 BEZIER AND
B-SPLINE FORMS COMPARED 362 15.4 SPLINE BASIS CONVERSION 364 15.4.1
CARDINAL TO B-SPLINE FORM 364 15.4.2 BASIS CONVERSION MATRIX 365 PART IV
PLANAR PYTHAGOREAN*HODOGRAPH CURVES 16 ARC-LENGTH PARAMETERIZATION 369
16.1 IN SEARCH OF AN ELUSIVE IDEAL 370 16.2 THE RECTIFICATION OF CURVES
374 16.3 POLYNOMIAL PARAMETRIC SPEED 377 16.4 ALGEBRAICALLY-RECTIFIABLE
CURVES 378 16:5 UNIT SPEED APPROXIMATIONS 379 17 PYTHAGOREAN*HODOGRAPH
CURVES 381 17.1 PLANAR PYTHAGOREAN HODOGRAPHS 381 17.2 BEZIER CONTROL
POINTS OF PH CURVES 384 17.3 PARAMETRIC SPEED AND ARC LENGTH 386 17.4
DIFFERENTIAL AND INTEGRAL PROPERTIES 388 17.5 RATIONAL OFFSETS OF PH
CURVES 389 18 TSCHIRNHAUSEN'S CUBIC 393 18.1 EHRENFRIED WALTHER VON
TSCHIRNHAUS 393 18.2 TSCHIRNHAUS AND CAUSTIC CURVES 396 18.3 UNIQUE
PYTHAGOREAN-HODOGRAPH CUBIC 400 18.4 YOU MEAN WE PAY YOU TO DO THATW 404
19 COMPLEX REPRESENTATION 407 19.1 COMPLEX CURVES AND HODOGRAPHS 408
19.2 ONE-TO-ONE CORRESPONDENCE 409 19.3 ROTATION INVARIANCE OF
HODOGRAPHS 414 19.4 PYTHAGOREAN-HODOGRAPH CUBICS REVISITED 414 19.5
CHARACTERIZATION OF THE PH QUINTICS 415 19.6 GEOMETRY OF THE CONTROL
POLYGON 419 19.7 INTRINSIC FEATURES OF CORRESPONDING CURVES 422 CONTENTS
XIII 20 RATIONAL PYTHAGOREAN-HODOGRAPH CURVES 427 20.1 CONSTRUCTION OF
RATIONAL PH CURVES 428 20.2 DUAL BEZIER CURVE REPRESENTATION 433 20.3
RELATION TO POLYNOMIAL PH CURVES 437 20.4 RATIONAL ARC LENGTH FUNCTIONS
438 20.5 GEOMETRICAL OPTICS INTERPRETATION 439 20.6 LAGUERRE GEOMETRY
FORMULATION 444 20.7 IMPROPER RATIONAL PARAMETERIZATIONS 446 20.8
RATIONAL SURFACES WITH RATIONAL OFFSETS 449 20.9 MINKOWSKI
ISOPERIMETRIC-HODOGRAPH CURVES 451 PART V SPATIAL PYTHAGOREAN*HODOGRAPH
CURVES 21 PYTHAGOREAN HODOGRAPHS IN R 3 455 21.1 GEOMETRY OF SPATIAL PH
CUBICS 456 21.2 SPATIAL PYTHAGOREAN HODOGRAPHS 462 21.3 BEZIER CONTROL
POLYGONS 464 21.4 DIFFERENTIAL PROPERTIES 465 22 QUATERNION
REPRESENTATION 469 22.1 PYTHAGOREAN CONDITION IN K 3 469 22.2
DEGENERATION OF SPATIAL PH CURVES 472 22.3 ROTATION INVARIANCE OF
HODOGRAPHS 476 22.4 REFLECTION FORM OF HODOGRAPHS . 480 22.5 ONE-TO-ONE
CORRESPONDENCE? 483 23 HELICAL POLYNOMIAL CURVES 485 23.1 HELICAL CURVES
AND PH CURVES ? 486 23.2 MORPHOLOGY OF HELICAL PH QUINTICS 488 23.3
MONOTONE-HELICAL PH QUINTICS 490 23.4 GENERAL HELICAL PH QUINTICS 492
23.5 SUFFICIENT AND NECESSARY CONDITIONS 497 24 MINKOWSKI PYTHAGOREAN
HODOGRAPHS 507 24.1 THE MINKOWSKI METRIC 508 24.2 MEDIAL AXIS TRANSFORM
510 24.3 MINKOWSKI PH CURVES IN K 2 - 1 512 24.4 CLIFFORD ALGEBRA
REPRESENTATION 515 24.5 MAT APPROXIMATION BY MPH CURVES 516 24.6
GENERALIZATION TO THE SPACE M 3 ' 1 519 XIV CONTENTS PART VI ALGORITHMS
25 PLANAR HERMITE INTERPOLANTS 523 25.1 HERMITE INTERPOLATION PROBLEM
524 25.2 SOLUTION IN COMPLEX REPRESENTATION 527 25.3 THE ABSOLUTE
ROTATION INDEX 531 25.4 COMPARISON WITH "ORDINARY" CUBICS 535 25.5
HIGHER-ORDER HERMITE INTERPOLANTS 537 25.6 MONOTONE CURVATURE SEGMENTS
539 26 ELASTIC BENDING ENERGY 543 26.1 COMPLEX FORM OF THE INTEGRAND 544
26.2 ENERGY OF TSCHIRNHAUS SEGMENTS 545 26.3 BENDING ENERGY OF PH
QUINTICS 546 26.4 THE "GRACEFULNESS" OF PH QUINTICS 550 26.5
MINIMAL-ENERGY HERMITE INTERPOLANTS 552 27 PLANAR C 2 PH QUINTIC SPLINES
555 27.1 CONSTRUCTION OF PH SPLINES 555 27.1.1 C 2 PH QUINTIC SPLINE
EQUATIONS 556 27.1.2 END CONDITIONS FOR PH SPLINES 558 27.1.3 NUMBER OF
DISTINCT INTERPOLANTS 560 27.2 SOLUTION BY HOMOTOPY METHOD 561 27.2.1
CHOICE OF INITIAL SYSTEM 561 27.2.2 PREDICTOR-CORRECTOR PROCEDURE 562
27.2.3 EMPIRICAL RESULTS AND EXAMPLES 565 27.3 SOLUTION BY ITERATIVE
METHODS 572 27.3.1 CHOICE OF STARTING APPROXIMATION 572 27.3.2
FUNCTIONAL ITERATION AND RELAXATION 574 27.3.3 NEWTON-RAPHSON METHOD 576
27.3.4 COMPUTED EXAMPLES 579 27.4 GENERALIZATIONS OF PH SPLINES 582
27.4.1 NON-UNIFORM KNOT SEQUENCES 582 27.4.2 SHAPE-PRESERVING PH SPLINES
586 27.5 CONTROL POLYGONS FOR PH SPLINES 587 27.5.1 EQUIVALENT
INTERPOLATION PROBLEM 588 27.5.2 INCLUSION OF MULTIPLE KNOTS 589 27.5.3
EMULATING B-SPLINE CURVE PROPERTIES 590 27.5.4 ILLUSTRATIVE EXAMPLES 591
28 SPATIAL HERMITE INTERPOLANTS 595 28.1 G L INTERPOLATION BY CUBICS 595
28.2 C 1 HERMITE INTERPOLATION PROBLEM 596 28.3 ROTATION INVARIANCE OF
INTERPOLANTS 598 28.4 RESIDUAL DEGREES OF FREEDOM . : 600 CONTENTS XV
28.5 INTEGRAL MEASURES OF SHAPE 600 28.6 CLIFFORD ALGEBRA FORMULATION
604 28.7 HELICAL PH QUINTIC INTERPOLANTS 605 28.8 HIGHER-ORDER HERMITE
INTERPOLANTS 613 28.9 SPATIAL C 2 PH QUINTIC SPLINES 613 PART VII
APPLICATIONS 29 REAL-TIME CNC INTERPOLATORS 619 29.1 DIGITAL MOTION
CONTROL 619 29.2 TAYLOR SERIES INTERPOLATORS 621 29.3 PH CURVE
INTERPOLATORS 623 29.3.1 CONSTANT FEEDRATE 624 29.3.2
CURVATURE-DEPENDENT FEEDRATE 625 29.3.3 OFFSET CURVE INTERPOLATOR 626
29.4 FEEDRATE IN TERMS OF ARC LENGTH 627 29.4.1 LINEAR DEPENDENCE ON ARC
LENGTH 628 29.4.2 QUADRATIC DEPENDENCE ON ARC LENGTH 628 29.5
TIME-DEPENDENT FEEDRATE 630 29.5.1 POLYNOMIAL TIME DEPENDENCE 631 29.5.2
ACCELERATION/DECELERATION PROFILES 632 29.5.3 TRAVERSING A SINGLE PH
CURVE 634 29.5.4 EXPERIMENTAL RESULTS 635 29.6 CONSTANT MATERIAL REMOVAL
RATE 642 29.6.1 FORM OF FEEDRATE FUNCTION 643 29.6.2 INTERPOLATOR
ALGORITHM 644 29.6.3 EXPERIMENTAL RESULTS 647 29.7 CONTOUR MACHINING OF
SURFACES 651 29.7.1 TOOL PATH GENERATION 651 29.7.2 OPTIMAL CONTOUR
ORIENTATIONS 653 30 ROTATION*MINIMIZING FRAMES 661 30.1 INTRODUCTION AND
MOTIVATION 661 30.2 ADAPTED FRAMES ON SPACE CURVES 664 30.3
EULER-RODRIGUES FRAME FOR PH CURVES 666 30.4 ROTATION-MINIMIZING FRAMES
667 30.5 ENERGY OF FRAMED SPACE CURVES 668 30.6 EXACT RMFS ON PH CURVES
670 30.6.1 INTEGRATION OF RATIONAL FUNCTIONS 672 30.6.2 FRAMES FOR PH
CUBICS AND QUINTICS 674 30.7 RATIONAL RMF APPROXIMATIONS 677 30.7.1
RATIONAL HERMITE INTERPOLATION 679 30.7.2 COMPUTED EXAMPLES 685 30.8
PARAMETERIZATION OF CANAL SURFACES 689 XVI CONTENTS 31 CLOSURE 693
REFERENCES 69 7 INDEX 719 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Farouki, Rida T. |
author_facet | Farouki, Rida T. |
author_role | aut |
author_sort | Farouki, Rida T. |
author_variant | r t f rt rtf |
building | Verbundindex |
bvnumber | BV022959042 |
callnumber-first | Q - Science |
callnumber-label | QA559 |
callnumber-raw | QA559.5 |
callnumber-search | QA559.5 |
callnumber-sort | QA 3559.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 240 SK 370 |
ctrlnum | (OCoLC)255467254 (DE-599)BSZ273299123 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01935nam a2200529 cb4500</leader><controlfield tag="001">BV022959042</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080805 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071112s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N31,0507</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984910883</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540733973</subfield><subfield code="9">978-3-540-73397-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540733973</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255467254</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ273299123</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA559.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Farouki, Rida T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pythagorean-hodograph curves</subfield><subfield code="b">algebra and geometry inseparable ; with 15 tables</subfield><subfield code="c">Rida T. Farouki</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 728 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Geometry and computing</subfield><subfield code="v">1</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kurve - Geometrische Modellierung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Curves</subfield><subfield code="x">Computer-aided design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Analytic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hodograph equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pythagorean theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pythagorean-hodograph curves</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Modellierung</subfield><subfield code="0">(DE-588)4156717-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kurve</subfield><subfield code="0">(DE-588)4033824-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kurve</subfield><subfield code="0">(DE-588)4033824-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Modellierung</subfield><subfield code="0">(DE-588)4156717-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Geometry and computing</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV022959018</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163430&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016163430</subfield></datafield></record></collection> |
id | DE-604.BV022959042 |
illustrated | Illustrated |
index_date | 2024-07-02T19:03:58Z |
indexdate | 2024-07-09T21:08:35Z |
institution | BVB |
isbn | 9783540733973 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016163430 |
oclc_num | 255467254 |
open_access_boolean | |
owner | DE-29T DE-824 DE-11 DE-188 DE-739 |
owner_facet | DE-29T DE-824 DE-11 DE-188 DE-739 |
physical | XVI, 728 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Geometry and computing |
series2 | Geometry and computing |
spelling | Farouki, Rida T. Verfasser aut Pythagorean-hodograph curves algebra and geometry inseparable ; with 15 tables Rida T. Farouki Berlin [u.a.] Springer 2008 XVI, 728 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Geometry and computing 1 Kurve - Geometrische Modellierung Curves Computer-aided design Geometry, Analytic Hodograph equations Pythagorean theorem Pythagorean-hodograph curves Geometrische Modellierung (DE-588)4156717-1 gnd rswk-swf Kurve (DE-588)4033824-1 gnd rswk-swf Kurve (DE-588)4033824-1 s Geometrische Modellierung (DE-588)4156717-1 s DE-604 Geometry and computing 1 (DE-604)BV022959018 1 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163430&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Farouki, Rida T. Pythagorean-hodograph curves algebra and geometry inseparable ; with 15 tables Geometry and computing Kurve - Geometrische Modellierung Curves Computer-aided design Geometry, Analytic Hodograph equations Pythagorean theorem Pythagorean-hodograph curves Geometrische Modellierung (DE-588)4156717-1 gnd Kurve (DE-588)4033824-1 gnd |
subject_GND | (DE-588)4156717-1 (DE-588)4033824-1 |
title | Pythagorean-hodograph curves algebra and geometry inseparable ; with 15 tables |
title_auth | Pythagorean-hodograph curves algebra and geometry inseparable ; with 15 tables |
title_exact_search | Pythagorean-hodograph curves algebra and geometry inseparable ; with 15 tables |
title_exact_search_txtP | Pythagorean-hodograph curves algebra and geometry inseparable ; with 15 tables |
title_full | Pythagorean-hodograph curves algebra and geometry inseparable ; with 15 tables Rida T. Farouki |
title_fullStr | Pythagorean-hodograph curves algebra and geometry inseparable ; with 15 tables Rida T. Farouki |
title_full_unstemmed | Pythagorean-hodograph curves algebra and geometry inseparable ; with 15 tables Rida T. Farouki |
title_short | Pythagorean-hodograph curves |
title_sort | pythagorean hodograph curves algebra and geometry inseparable with 15 tables |
title_sub | algebra and geometry inseparable ; with 15 tables |
topic | Kurve - Geometrische Modellierung Curves Computer-aided design Geometry, Analytic Hodograph equations Pythagorean theorem Pythagorean-hodograph curves Geometrische Modellierung (DE-588)4156717-1 gnd Kurve (DE-588)4033824-1 gnd |
topic_facet | Kurve - Geometrische Modellierung Curves Computer-aided design Geometry, Analytic Hodograph equations Pythagorean theorem Pythagorean-hodograph curves Geometrische Modellierung Kurve |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163430&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022959018 |
work_keys_str_mv | AT faroukiridat pythagoreanhodographcurvesalgebraandgeometryinseparablewith15tables |