Global analysis on open manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Nova Science Publ.
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 625 - 640 |
Beschreibung: | IX, 644 S. |
ISBN: | 1600215637 9781600215636 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022958763 | ||
003 | DE-604 | ||
005 | 20150722 | ||
007 | t | ||
008 | 071112s2007 |||| 00||| eng d | ||
013 | |a 537870210 | ||
020 | |a 1600215637 |9 1-60021-563-7 | ||
020 | |a 9781600215636 |9 978-1-60021-563-6 | ||
035 | |a (OCoLC)170922327 | ||
035 | |a (DE-599)GBV537870210 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-11 |a DE-19 |a DE-20 | ||
050 | 0 | |a QA614 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
100 | 1 | |a Eichhorn, Jürgen |d 1942- |e Verfasser |0 (DE-588)1049961633 |4 aut | |
245 | 1 | 0 | |a Global analysis on open manifolds |c Jürgen Eichhorn |
264 | 1 | |a New York, NY |b Nova Science Publ. |c 2007 | |
300 | |a IX, 644 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 625 - 640 | ||
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 0 | 7 | |a Globale Analysis |0 (DE-588)4021285-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Globale Analysis |0 (DE-588)4021285-3 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163153&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016163153 |
Datensatz im Suchindex
_version_ | 1804137204403929088 |
---|---|
adam_text | Contents
1 A Setting of Linear Analysis 1
1 Basics of Riemannian Geometry..................... 1
2 Tools from Hubert Space Theory.................... 7
3 Sobolev Spaces on Open Manifolds................... 13
4 Uniform Pseudo-Differential and Fourier Integral
Operators on Open Manifolds...................... 52
2 Spectral Geometry 59
1 Generalities of Spectral Geometry ................... 60
2 Spectral Geometry of the Scalar Laplacian............... 79
3 Spectral Geometry of ç-Forms..................... 118
4 The spectral Value Zero......................... 149
5 The Heat Semigroup and the Heat Kernel............... 171
6 Fredholm Properties and Index Theory................. 207
3 A Setting of Non-Linear Analysis 241
1 Uniform Structures and their Application to Vector Bundles and Con-
formal Factors.............................. 242
2 Spaces of Metrics and Connections and their Geometry....... 249
3 Characteristic Numbers for Open Manifolds and their Applications . 282
4 Uniform Structures of Clifford Bundles................. 316
5 Manifolds of Maps............................ 325
6 Banach Manifolds of Maps in the Lp-Category............ 358
7 The Bounded Diffeomorphism Group .................. 363
8 ILH Diffeomorphism Groups....................... 374
9 The Group of Volume Preserving Diffeomorphisms.......... 377
10 The Groups of Contact Transformations and of Symplectic Diffeo-
morphisms ................................. 398
11 Lie Groups of Fourier Integral Operators on Open Manifolds .... 415
ii Jürgen Eichhorn
4 Some Non-Linear Partial Differential Equations on Open Mani-
folds 439
1 Gauge Theory on Open Manifolds ...................440
2 Fluid Dynamics..............................462
3 Teichmüller Theory............................464
4 A Slice Theorem.............................490
5 A Classification Approach 503
1 Uniform Structures of Metric Spaces.................. 506
2 Functional Algebraic Topology..................... 535
3 Bordism Theory for Open Manifolds.................. 561
6 Dirichlet Series for Open Manifolds 585
1 General Heat Kernel Estimates..................... 586
2 Trace Class Properties.......................... 588
3 Relative Index Theory.......................... 606
4 Relative Zeta-Functions, Eta-Functions,
Determinants and Torsion........................ 614
Bibliography 625
Notation 641
Index 643
|
adam_txt |
Contents
1 A Setting of Linear Analysis 1
1 Basics of Riemannian Geometry. 1
2 Tools from Hubert Space Theory. 7
3 Sobolev Spaces on Open Manifolds. 13
4 Uniform Pseudo-Differential and Fourier Integral
Operators on Open Manifolds. 52
2 Spectral Geometry 59
1 Generalities of Spectral Geometry . 60
2 Spectral Geometry of the Scalar Laplacian. 79
3 Spectral Geometry of ç-Forms. 118
4 The spectral Value Zero. 149
5 The Heat Semigroup and the Heat Kernel. 171
6 Fredholm Properties and Index Theory. 207
3 A Setting of Non-Linear Analysis 241
1 Uniform Structures and their Application to Vector Bundles and Con-
formal Factors. 242
2 Spaces of Metrics and Connections and their Geometry. 249
3 Characteristic Numbers for Open Manifolds and their Applications . 282
4 Uniform Structures of Clifford Bundles. 316
5 Manifolds of Maps. 325
6 Banach Manifolds of Maps in the Lp-Category. 358
7 The Bounded Diffeomorphism Group . 363
8 ILH Diffeomorphism Groups. 374
9 The Group of Volume Preserving Diffeomorphisms. 377
10 The Groups of Contact Transformations and of Symplectic Diffeo-
morphisms . 398
11 Lie Groups of Fourier Integral Operators on Open Manifolds . 415
ii Jürgen Eichhorn
4 Some Non-Linear Partial Differential Equations on Open Mani-
folds 439
1 Gauge Theory on Open Manifolds .440
2 Fluid Dynamics.462
3 Teichmüller Theory.464
4 A Slice Theorem.490
5 A Classification Approach 503
1 Uniform Structures of Metric Spaces. 506
2 Functional Algebraic Topology. 535
3 Bordism Theory for Open Manifolds. 561
6 Dirichlet Series for Open Manifolds 585
1 General Heat Kernel Estimates. 586
2 Trace Class Properties. 588
3 Relative Index Theory. 606
4 Relative Zeta-Functions, Eta-Functions,
Determinants and Torsion. 614
Bibliography 625
Notation 641
Index 643 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Eichhorn, Jürgen 1942- |
author_GND | (DE-588)1049961633 |
author_facet | Eichhorn, Jürgen 1942- |
author_role | aut |
author_sort | Eichhorn, Jürgen 1942- |
author_variant | j e je |
building | Verbundindex |
bvnumber | BV022958763 |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614 |
callnumber-search | QA614 |
callnumber-sort | QA 3614 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 |
ctrlnum | (OCoLC)170922327 (DE-599)GBV537870210 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01402nam a2200385 c 4500</leader><controlfield tag="001">BV022958763</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150722 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071112s2007 |||| 00||| eng d</controlfield><datafield tag="013" ind1=" " ind2=" "><subfield code="a">537870210</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1600215637</subfield><subfield code="9">1-60021-563-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781600215636</subfield><subfield code="9">978-1-60021-563-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)170922327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV537870210</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA614</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eichhorn, Jürgen</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1049961633</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Global analysis on open manifolds</subfield><subfield code="c">Jürgen Eichhorn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Nova Science Publ.</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 644 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 625 - 640</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Analysis</subfield><subfield code="0">(DE-588)4021285-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Globale Analysis</subfield><subfield code="0">(DE-588)4021285-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163153&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016163153</subfield></datafield></record></collection> |
id | DE-604.BV022958763 |
illustrated | Not Illustrated |
index_date | 2024-07-02T19:03:50Z |
indexdate | 2024-07-09T21:08:35Z |
institution | BVB |
isbn | 1600215637 9781600215636 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016163153 |
oclc_num | 170922327 |
open_access_boolean | |
owner | DE-29T DE-11 DE-19 DE-BY-UBM DE-20 |
owner_facet | DE-29T DE-11 DE-19 DE-BY-UBM DE-20 |
physical | IX, 644 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Nova Science Publ. |
record_format | marc |
spelling | Eichhorn, Jürgen 1942- Verfasser (DE-588)1049961633 aut Global analysis on open manifolds Jürgen Eichhorn New York, NY Nova Science Publ. 2007 IX, 644 S. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 625 - 640 Global analysis (Mathematics) Manifolds (Mathematics) Globale Analysis (DE-588)4021285-3 gnd rswk-swf Globale Analysis (DE-588)4021285-3 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163153&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Eichhorn, Jürgen 1942- Global analysis on open manifolds Global analysis (Mathematics) Manifolds (Mathematics) Globale Analysis (DE-588)4021285-3 gnd |
subject_GND | (DE-588)4021285-3 |
title | Global analysis on open manifolds |
title_auth | Global analysis on open manifolds |
title_exact_search | Global analysis on open manifolds |
title_exact_search_txtP | Global analysis on open manifolds |
title_full | Global analysis on open manifolds Jürgen Eichhorn |
title_fullStr | Global analysis on open manifolds Jürgen Eichhorn |
title_full_unstemmed | Global analysis on open manifolds Jürgen Eichhorn |
title_short | Global analysis on open manifolds |
title_sort | global analysis on open manifolds |
topic | Global analysis (Mathematics) Manifolds (Mathematics) Globale Analysis (DE-588)4021285-3 gnd |
topic_facet | Global analysis (Mathematics) Manifolds (Mathematics) Globale Analysis |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016163153&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT eichhornjurgen globalanalysisonopenmanifolds |