Introduction to mass spectrometry: instrumentation, applications, and strategies for data interpretation
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester [u.a]
Wiley
2007
|
Ausgabe: | 4. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Previous ed.: Philadelphia, Pa.: Lippincott-Raven, 1997 |
Beschreibung: | XXIV, 818 S. Ill., graph. Darst. |
ISBN: | 9780470516348 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022958566 | ||
003 | DE-604 | ||
005 | 20120822 | ||
007 | t | ||
008 | 071112s2007 ad|| j||| 00||| eng d | ||
013 | |a 52768497X | ||
020 | |a 9780470516348 |9 978-0-470-51634-8 | ||
035 | |a (OCoLC)255583249 | ||
035 | |a (DE-599)GBV52768497X | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-91G |a DE-703 |a DE-11 |a DE-188 |a DE-91S |a DE-384 | ||
050 | 0 | |a QC454.M3 | |
082 | 0 | |a 543.65 | |
084 | |a VG 9800 |0 (DE-625)147244:253 |2 rvk | ||
084 | |a VG 9801 |0 (DE-625)147244:254 |2 rvk | ||
084 | |a CHE 254f |2 stub | ||
100 | 1 | |a Watson, Jack T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to mass spectrometry |b instrumentation, applications, and strategies for data interpretation |c J. Throck Watson ; O. David Sparkman |
250 | |a 4. ed. | ||
264 | 1 | |a Chichester [u.a] |b Wiley |c 2007 | |
300 | |a XXIV, 818 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Previous ed.: Philadelphia, Pa.: Lippincott-Raven, 1997 | ||
650 | 4 | |a Biomolecules |x Analysis | |
650 | 4 | |a Mass spectrometry | |
650 | 0 | 7 | |a Massenspektrometrie |0 (DE-588)4037882-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4173536-5 |a Patentschrift |2 gnd-content | |
689 | 0 | 0 | |a Massenspektrometrie |0 (DE-588)4037882-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sparkman, Orrin David |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016162961&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016162961 |
Datensatz im Suchindex
_version_ | 1804137204046364672 |
---|---|
adam_text | Contents
Preface xix
Acknowledgments xxiii
Chapter 1 Introduction 1
I. Introduction 3
1. The Tools and Dataof Mass Spectrometry 4
2. The Concept of Mass Spectrometry 4
II. History 9
III. Some Important Terminology Used In Mass Spectrometry 22
1. Introduction 22
2. Ions 22
3. Peaks 23
4. Resolution and Resolving Power 25
IV. Applications 28
1. Example 1 1: Interpretation of Fragmentation Patterns
(Mass Spectra) to Distinguish Positional
Isomers 28
2. Example 1 2: Drug Overdose: Use of GC/MS to Identify
a Drug Metabolite 29
3. Example 1 3: Verification that the Proper Derivative of the
Compound of Interest Has Been Prepared 32
4. Example 1 4: Use of a Cl Mass Spectrum to Complement an
El Mass Spectrum 35
5. Example 1 5: Use of Exact Mass Measurements to Identify
Analytes According to Elemental Composition 37
6. Example 1 6: Is This Protein Phosphorylated? If So, Where? 39
7. Example 1 7: Clinical Diagnostic Tests Based on Quantitation
of Stable Isotopes by Mass Spectrometry in Lieu
of Radioactivity 42
V. The Need for Chromatography 42
VI. Closing Remarks 44
VII. Monographs on Mass Spectrometry Published Before 1970 44
Chapter 2 The Mass Spectrometer 53
I. Introduction 55
II. Ion Guides 56
III. Types of m/z Analyzers 61
1. Time of Flight m/z Analyzers 62
A. Linear 64
1) Resolving Power of the Linear TOF Instrument 65
2) Time Lag Focusing 66
3) Beam Deflection 67
B. Reflectron 69
C. Orthogonal Acceleration 74
vii
D. Ion Detection in the TOF Analyzer 75
1) Time Slice Detection 76
2) Time Array Detection 77
3) TAD with Transient Recorders 79
4) TAD with an Integrating Transient Recorder 79
5) Hadamard Transform TOF MS 80
2. Quadrupole Ion Traps 82
A. 3D Quadrupole Ion Trap 84
B. Linear Quadrupole Ion Trap (LIT) 97
C. Performance Trade Offs in the Ion Trap 100
3. TheOrbitrap 103
A. Historical Aspects 103
B. Operating Principles 103
1) Role of the C Trap in Success of the Orbitrap 106
2) Figures of Merit for the Orbitrap as an m/z Analyzer 107
4. Transmission Quadrupoles 108
A. QMF Equations of Motion 109
B. The Stability Diagram 110
C. Characteristics of Output 111
D. Spectral Skewing 113
E. Performance Limitations 115
5. Magnetic Sector Instruments 115
A. Single Focusing Instruments 116
1) Operating Principles 116
2) Magnetic Versus Scanning 117
3) Performance Limitations 118
B. Double Focusing Instruments 118
6. FTICR MS 122
A. Hardware Configuration 123
B. Operational Considerations 126
C. Representative Applications 127
7. Ion Mobility Spectrometry (IMS) 128
A. Operating Principles 128
B. FAIMS 129
C. Applications 130
IV. Calibration of the m/z Scale 131
1. Electron lonization 132
2. Chemical lonization 133
3. Electrospray lonization and APCI Techniques 134
4. MALDI 135
V. Ion Detectors 136
1. General Considerations 136
2. Types of Detectors 137
A. Faraday Cup 138
B. Electron Multiplier 139
1) Discrete Dynode Version 139
2) Continuous Dynode Version 140
C. Negative Ion Detection 142
D. Post Acceleration Detection and Detection of High Mass Ions 143
E. Channel Electron Multiplier Array (CEMA) 144
vjjj
F. Electro Optical Ion Detection 144
G. The Daly Detector 145
H. Cryogenic Detectors 146
I. Ion Detection in FTMS 147
VI. Vacuum Systems 147
1. Introduction 147
2. Definitions 148
3. Pressure Gauges 150
A. Thermal Conductivity Gauges 150
B. PiraniGauge 150
C. Thermocouple Gauges 151
4. lonization Gauges 151
A. Hot Cathode Gauge 151
B. Cold Cathode Gauge 151
5. Types of Pumps 152
A. Mechanical Pumps (Low Vacuum) 152
1) Rotary Vane Pumps 153
2) Scroll Pumps 154
3) Roots Pumps 155
4) Diaphram Pumps 156
B. High Vacuum 156
1) Turbomolecular Pumps 156
2) Oil Diffusion Pumps 157
3) Sputter Ion Pumps (Nonregeneratable Getter Pumps) 162
Chapter 3 Mass Spectrometry/Mass Spectrometry 173
I. Introduction 175
1. History and the Evolution of the Technique 175
2. Concept and Definitions 176
3. Nomenclature 177
II. Ion Dissociation 179
1. Metastable Ions 179
2. Collisionally Activated Dissociation 180
3. Electron Capture Dissociation 181
4. Electron Transfer Dissociation 181
5. Illustrative Example of Qualitative Analysis by MS/MS 184
III. Instrumentation for MS/MS 184
1. Tandem in Space Mass Spectrometry (MS/MS) 186
A. Triple Quadrupole Mass Spectrometer 187
B. Q TOF Hybrid Mass Spectrometer 188
C. TOF TOF Mass Spectrometer 190
D. BEqQ Hybrid Mass Spectrometer 190
E. Double Focusing Instrument 191
2. Tandem in Time Mass Spectrometry 192
IV. Specialized Techniques and Applications 196
1. In SourceCAD 196
2. CAD in Conjunction with Soft lonization 197
A. Data Dependent Acquisition 199
ix
3. Selected Reaction Monitoring 199
A. Illustrative Example Showing that SRM Has a Higher
Specificity than SIM in Spite of a Lower Signal Strength 199
B. An Example Comparing the Specificity of SRM and SIM in the
Context of Analyzing a Biological Sample for a Drug Metabolite....201
4. Precursor Ion Analysis 204
5. Neutral Loss (Common Neutral Loss) Analysis 205
6. lon/Molecule Reactions 206
7. Hybrid Instrumentation for MS/MS and Ion Mobility
Spectrometry (IMS) 206
V. Analyte Identification from MS/MS Data 208
1. Introduction 208
2. Identifying an Unknown Using a Product Ion Mass Spectrum 209
3. Similarities between El and Product Ion Mass Spectra 214
4. Another Wayof Using Substructure Identification 215
5. Searching of Product Ion Spectra against Standardized Databases ....218
VI. Concluding Remarks about MS/MS 220
Chapter 4 Inlet Systems 229
I. Introduction 231
II. Baten Inlets 232
1. Heated Reservoir Inlet 232
2. Direct Inlet Probe (DIP) 233
A. The Chromatoprobe 235
3. Direct Exposure Probe (Desorption Chemical lonization, DCI) 236
4. Pyrolysis 238
III. Continuous Inlets 239
1. Membrane Introduction MS (MIMS) 239
2. Supercritical Fluid Chromatography (SFC) 240
3. Electrophoretic Inlet 242
IV. lonization Inlet Systems 244
1. Direct Analysis in Real Time (DART) 245
2. Desorption Electrospray lonization (DESI) 247
3. Desorption Atmospheric Pressure Chemical lonization (DAPCI) 249
V. Speciality Interfaces 249
1. Selected Ion Flow Tube Mass Spectrometry (SIFTMS) 249
2. Fast Atom Bombardment (FAB) and Liquid Secondary Ion Mass
Spectrometry (LSIMS) 250
3. Chemical Reaction Interface Mass Spectrometry (CRIMS) 252
4. Inductively Coupled Plasma Mass Spectrometry (ICPMS) 253
A. Hardware Configuration 254
B. Operational Considerations 254
C. Electrothermal Vaporization 255
D. Laser Ablation 255
E. Speciation 256
F. Summary 256
VI. Final Statement 257
x
Chapter 5 Strategies for Data Interpretation
(Other than Fragmentation) 267
I. Introduction 269
II. Some Important Definitions 271
III. Possible Information That Can Be Obtained from the Mass Spectrum 271
IV. Elemental Composition of an Ion and the Ratios of Its Isotope Peaks 273
1. Definition of Terms Related to the Matter of Mass Spectrometry 273
2. NitrogenRule 275
3. Elemental Composition of an Ion Based on the Ratio of
Isotope Peak Intensities 276
A. Isotope Peak Patterns Used to Determine the Elemental
Composition of Ions 276
B. Isotope Peak Patterns for Ions Containing Various
Combinations of Br/Cl 279
C. Constraint on the Number of Atoms Allowed for a
Given Element 281
D. Relationship of the Charge State of an Ion and the
Spacing of the Corresponding Isotope Peaks 281
1) Ions of High Mass to Charge Ratio 282
E. Steps to Assigning an Elemental Composition
Based on Isotope Peak Intensities 283
F. Validating the Putative Elemental Composition of an Ion 284
G. An Illustrative Example of the Use of Isotope Peak Ratios to
Determine an Elemental Composition 285
H. Potential Problems Arising from Adjacent Peaks 291
4. Elemental Composition as a Function of an Accurate
Determination of the m/z Value of a Mass Spectral Peak 293
A. Appearance of Mass Spectra of High m/z Value Ions 295
5. Using El Data to Identify Unknowns Detected During
Analysis by LC/MS 297
6. Does the Result Make Sense? 299
V. Identifying the Mass of an Analyte 302
1. Recognition of the Peak Representing the Molecular Ion in El 304
A. Reasonable Losses from the Molecular Ion in El 305
2. Recognition of the Protonated Molecule (MH+) in Soft lonization 305
A. Probable Adducts Observed in the Mass Spectrum
Produced by Soft lonization 306
3. Recognition of the Deprotonated Molecule ([M H] ) Peak
in Soft lonization 306
VI. Recognition of Spurious Peaks in the Mass Spectrum 307
1. Noise Spikes 307
2. Peaks Corresponding to Contaminants in GC/MS and LC/MS 307
A. The Phthalate Ion Peak 307
B. GCColumn Bleed 308
C. Clusterlons 308
VII. Obtaining Structural Information from the Mass Spectrum 308
xi
Chapter 6 Electron lonization 315
I. Introduction 317
II. lonization Process 317
III. Strategy for Data Interpretation 321
1. Assumptions 321
2. The lonization Process 321
IV. Types of Fragmentation Pathways 328
1. Sigma Bond Cleavage 330
2. Homolytic or Radical Site Driven Cleavage 333
3. Heterolytic or Charge Site Driven Cleavage 335
4. Rearrangements 337
A. Hydrogen Shift Rearrangements 338
B. Hydride Shift Rearrangements 342
V. Representative Fragmentations (Spectra) of Classes of Compounds 344
1. Hydrocarbons 345
A. Saturated Hydrocarbons 345
1) Straight Chain Hydrocarbons 345
2) Branched Hydrocarbons 348
3) Cyclic Hydrocarbons 351
B. Unsaturated 353
C. Aromatic 355
2. AlkylHalides 363
3. Oxygen Containing Compounds 368
A. Aliphatic Alcohols 368
B. Aliphatic Ethers 372
C. Aromatic Alcohols 376
D. Cyclic Ethers 381
E. Ketonesand Aldehydes 381
F. Aliphatic Acids and Esters 392
G. Aromatic Acids and Esters 402
4. Nitrogen Containing Compounds 405
A. Aliphatic Amines 405
B. Aromatic Compounds Containing Atoms of Nitrogen 414
C. Heterocyclic Nitrogen Containing Compounds 419
D. Nitro Compounds 419
E. Concluding Remarks on the Mass Spectra of
Nitrogen Containing Compounds 420
5. Multiple Heteroatoms or Heteroatoms and a Double Bond 421
6. Trimethylsilyl Derivative 422
7. Determining the Location of Double Bonds 429
VI. Library Searches and El Mass Spectral Databases 433
1. Databases 433
2. Library Search Programs 435
3. What To Do When the Spectrum of the Unknown is Not in the
Database(s) 439
4. Searching Multiple Databases 440
5. Database Size and Quality 440
6. Concluding Remarks on the NIST Mass Spectral Search Program 441
VII. Summary of Interpretation of El Mass Spectra 442
xii
Chapter 7 Chemical lonization 449
I. Introduction 451
II. Description of the Chemical lonization Source 454
III. Production of Reagent Ions from Various Reagent Gases 455
IV. Positive Ion Formation Under Cl 457
1. Fundamentals 457
2. Practical Consideration of Proton Affinity in Cl 460
3. Selective lonization 461
4. Fragmentation 461
V. Negative Ion Formation under Cl 464
1. True Negative Chemical lonization 464
2. Resonant Electron Capture Negative lonization 465
VI. Data Interpretation and Systematic Studies of Cl 469
VII. lonization by Charge Exchange 470
1. Mechanism of lonization 470
2. Fragmentation and Appearance of Mass Spectra 471
VIII. Atmospheric Pressure Chemical lonization 471
IX. Desorption Chemical lonization 472
X. General Applications 474
XI. Concluding Remarks 477
Chapter 8 Electrospray lonization 485
I. Introduction 487
II. Operating Principles 487
III. Appearance of ESI Mass Spectra and Data Interpretation 490
IV. ESI with an m/z Analyzer of High Resolving Power 493
V. Conventional ESI Source Interface 494
VI. Nanoelectrospray and Microelectrospray lonization 494
VII. Desorption Electrospray lonization (DESI) 496
VIII. Effect of Composition and Flow Rate of an Analyte Solution 499
IX. Special Applications 500
1. Direct Analysis of Ions in Solution by ESI 500
2. Cold Spray lonization 501
3. Negative Ion Detection 501
4. Secondary Electrospray lonization (SESI) 502
5. Kinetic Measurements of Chemical Reactions 502
6. ESI Generation of Ions for Ancillary Experiments 502
X. General Applications of ESI 503
Chapter 9 MALDI 519
I. Historical Perspective and Introduction 521
II. Operating Principles 521
1. The Matrix 521
2. The Laser, m/z Analyzer, and Representative Mass Spectra 525
3. The lonization Process 529
4. High Pressure (HP) MALDI and Atmospheric Pressure
(AP) MALDI 533
xiii
III. Sample Handling 535
1. Sample Preparation of the Conventional Plate 535
2. The Problem of Analyte Solubility 537
3. The Problem of Sample Purity 537
4. On Probe Sample Purification and/or Modification 538
A. SAMs and Polymer Modified Surfaces 538
B. Affinity Surfaces 540
5. Direct Analysis from Gels 541
6. Hydrogen/Deuterium Exchange 542
IV. Special Instrumental Techniques 542
1. Post Source Decay (PSD) 542
2. Ion Excitation 544
3. Delayed Extraction (DE) 545
4. Desorption lonization On Silicon (DIOS) 546
5. Tissue Profiling or Imaging 547
V. Representative Applications 549
1. Proteins and Peptides 549
2. Microbes 549
3. Biomarkers 550
4. Synthetic Polymers 550
5. Small Molecules 551
6. Quantitäten 552
7. Combined with Liquid Chromatography 553
Chapter 10 Gas Chromatography/Mass Spectrometry 571
I. Introduction 573
II. Introduction to GC 575
1. Basic Typesof Injectors 582
2. Injection Considerations and Syringe Handling 583
3. Syringeless Modes of Sample Injection for Fast GC 585
III. Sample Handling 585
1. Proper Sample Container 585
2. Analyte Isolation and Purification 587
3. Derivative Formation 587
A. Silyl Derivatives 588
B. Esters of Carboxylic Acids 588
C. Oxime Derivatives 589
D. Acyl Derivatives 590
E. Derivatives for Characterizing Double Bonds 590
IV. Instrument Requirements for GC/MS 590
1. Operating Pressures 590
2. Typical Parameters for a Conventional GC MS Interface 593
3. Supersonic Molecular Beam Interface for GC/MS 594
4. Open Split Interface 596
5. Molecular Separators 597
A. Jet Orifice Separator 597
B. Membrane Separator 598
6. Inertness of Materials in the Interface 599
xiv
V. Operational Considerations 601
1. Spectral Skewing 601
2. Background/Bleed 602
3. The Need for Rapid Acquisition of Mass Spectra 604
A. Performance Trade Offs of Conventional
Instruments for GC/MS 605
B. Time Array Detection 605
4. Selected Ion Monitoring (SIM) 606
A. Definition and Nomenclature 606
B. Development of the Technique 607
C. Qualitative Example of SIM 607
D. Quantitative Example of SIM 609
E. Mechanics of Ion Monitoring 613
1) Adjustment of the Mass Scale 613
2) Mass Range 613
3) Magnetic Mass Spectrometer 613
4) Transmission Quadrupole Mass Spectrometer 614
5) Numberof Ion Currents (Masses) 614
F. Programmable SIM 614
G. SIM at High Resolving Power 615
VI. Sources of Error 616
1. Errors Relating to Equipmentor Procedure 616
2. Errors Relating to Contamination 617
3. Sources of Interference 618
4. Dealing with Background in a Mass Spectrum 618
A. AMDIS (Automated Mass spectral Deconvolution
and Identification System) 622
B. Other Software Techniques 629
VII. Representative Applications of GC/MS 631
VIII. Special Techniques 631
1. PurgeandTrap 631
2. Thermal Desorption 632
Chapter 11 Liquid Chromatography/Mass Spectrometry 639
I. Introduction 641
II. Historical Milestones in the Development of the Interface 642
1. Introduction 642
2. The Direct Inlet 642
3. The Moving Belt Interface 644
4. The Thermospray Interface 644
5. Continuous Flow FAB 646
III. Currently Viable Versions of the Interface 647
1. Atmospheric Pressure lonization 647
A. Electrospray lonization Interface 647
1) Optimization for Analyses by HPLC 648
2) Capillary Electrophoresis Interface 650
B. APCI Interface 650
xv
C. APPI Interface 654
1) Operating Principles of APPI 654
2) Operating Mechanics for APPI 656
3) Signal Suppression 657
4) Applications of APPI 658
2. ParticIeBeam Interface 659
3. Electron lonization and LC/MS 661
IV. Special Operation of LC under MS Conditions 661
1. Effects of Mobile Phase Composition 661
A. Signal Suppression 662
B. Use of Internal Standards in the Face of
Signal Suppression 663
C. Adjusting the Chromatography in the Face of Signal
Suppression during LC/MS 663
D. Ion Pairing and Signal Suppression 663
E. Influence of the Type and the Nature of LC Buffer 665
F. Influence of Solvent Composition on the ESI Signal 665
G. Adduct Formation 667
H. Spectral Interference 668
I. System Compromise 668
2. Differences in Method Development for ESI vs APCI 672
V. Applications 674
1. Attention to High Throughput 676
Chapter 12 Analysis of Proteins and Other Biopolymers 689
I. Introduction 691
II. Proteins 691
1. Sequencing 693
A. Nomenclature and Fragmentation in Sequencing of Peptides 693
1) Nomenclature 693
2) Fragmentation 695
B. Strategy for Deducing Amino Acid Sequence via CAD
of Peptides 701
1) An Illustrative Example 702
2) Possible Pitfalls in Interpretation 705
3) Search for Confirming Ions 706
4) Ladder Sequencing 707
2. Mass Mapping 709
A. Peptide Mass Fingerprinting 709
B. De novo Sequencing 710
C. Sequence Tagging 710
D. Sequest 710
E. Evaluation of Hits in Automated Searches 711
F. Data Dependent Analysis by Mass Spectrometry 712
3. Post Translational Modifications 712
A. Recognition of Sites of Protein Phosphorylation 714
1) An Illustrative Example 715
2) Selective Capture and Detection of Phosphopeptides 718
3) Chemical Modification of Phosphorylation Sites 719
xvi
B. Recognition of Sites of Sulfation 722
C. Recognition of Sites of Glycosylation 723
D. Acetylation of Lysine 724
E. Cysteine Status in Proteins 726
1) Are There Any Disulfide Bonds? 726
2) Which Cysteines Are Free? 727
3) What Is the Linkage of Cysteines in the
Disulfide Bonds? 727
(A) Conventional Proteolytic Mass Mapping
of Disulfides 727
(B) Cyanylation Based Mass Mapping of Disulfides 730
F. Recognition of Ubiquinated Proteins 734
G. OtherTypes of Modifications 735
4. Quantitation in Proteomics 735
A. ICATs 735
1) Operating Principles 735
2) Illustrative Example of the ICAT Approach 737
3) Analogous to ICAT Methodologies 740
B. Alternative Stable Isotope Based Methodologies 740
C. Related Methodologies 743
5. Top Down Strategies of Analysis 744
A. Instrumentation and Fragmentation Requirements 744
B. Electron Capture Dissociation (ECD) 749
C. Electron Transfer Dissociation (ETD) 752
D. Applications 753
6. Noncovalent Interactions 753
7. Folding and Unfolding 756
8. Applications 759
IM. Oligonucleotides 760
1. Analytical Considerations 760
2. Sequencing 761
A. Nomenclature 761
B. Algorithm for Data Interpretation 763
3. Applications 764
IV. Carbohydrates 765
1. Analytical Considerations 765
2. Nomenclature 765
3. Diagnostic Fragmentation 766
4. Applications 769
Subject Index 803
xvii
|
adam_txt |
Contents
Preface xix
Acknowledgments xxiii
Chapter 1 Introduction 1
I. Introduction 3
1. The Tools and Dataof Mass Spectrometry 4
2. The Concept of Mass Spectrometry 4
II. History 9
III. Some Important Terminology Used In Mass Spectrometry 22
1. Introduction 22
2. Ions 22
3. Peaks 23
4. Resolution and Resolving Power 25
IV. Applications 28
1. Example 1 1: Interpretation of Fragmentation Patterns
(Mass Spectra) to Distinguish Positional
Isomers 28
2. Example 1 2: Drug Overdose: Use of GC/MS to Identify
a Drug Metabolite 29
3. Example 1 3: Verification that the Proper Derivative of the
Compound of Interest Has Been Prepared 32
4. Example 1 4: Use of a Cl Mass Spectrum to Complement an
El Mass Spectrum 35
5. Example 1 5: Use of Exact Mass Measurements to Identify
Analytes According to Elemental Composition 37
6. Example 1 6: Is This Protein Phosphorylated? If So, Where? 39
7. Example 1 7: Clinical Diagnostic Tests Based on Quantitation
of Stable Isotopes by Mass Spectrometry in Lieu
of Radioactivity 42
V. The Need for Chromatography 42
VI. Closing Remarks 44
VII. Monographs on Mass Spectrometry Published Before 1970 44
Chapter 2 The Mass Spectrometer 53
I. Introduction 55
II. Ion Guides 56
III. Types of m/z Analyzers 61
1. Time of Flight m/z Analyzers 62
A. Linear 64
1) Resolving Power of the Linear TOF Instrument 65
2) Time Lag Focusing 66
3) Beam Deflection 67
B. Reflectron 69
C. Orthogonal Acceleration 74
vii
D. Ion Detection in the TOF Analyzer 75
1) Time Slice Detection 76
2) Time Array Detection 77
3) TAD with Transient Recorders 79
4) TAD with an Integrating Transient Recorder 79
5) Hadamard Transform TOF MS 80
2. Quadrupole Ion Traps 82
A. 3D Quadrupole Ion Trap 84
B. Linear Quadrupole Ion Trap (LIT) 97
C. Performance Trade Offs in the Ion Trap 100
3. TheOrbitrap 103
A. Historical Aspects 103
B. Operating Principles 103
1) Role of the C Trap in Success of the Orbitrap 106
2) Figures of Merit for the Orbitrap as an m/z Analyzer 107
4. Transmission Quadrupoles 108
A. QMF Equations of Motion 109
B. The Stability Diagram 110
C. Characteristics of Output 111
D. Spectral Skewing 113
E. Performance Limitations 115
5. Magnetic Sector Instruments 115
A. Single Focusing Instruments 116
1) Operating Principles 116
2) Magnetic Versus Scanning 117
3) Performance Limitations 118
B. Double Focusing Instruments 118
6. FTICR MS 122
A. Hardware Configuration 123
B. Operational Considerations 126
C. Representative Applications 127
7. Ion Mobility Spectrometry (IMS) 128
A. Operating Principles 128
B. FAIMS 129
C. Applications 130
IV. Calibration of the m/z Scale 131
1. Electron lonization 132
2. Chemical lonization 133
3. Electrospray lonization and APCI Techniques 134
4. MALDI 135
V. Ion Detectors 136
1. General Considerations 136
2. Types of Detectors 137
A. Faraday Cup 138
B. Electron Multiplier 139
1) Discrete Dynode Version 139
2) Continuous Dynode Version 140
C. Negative Ion Detection 142
D. Post Acceleration Detection and Detection of High Mass Ions 143
E. Channel Electron Multiplier Array (CEMA) 144
vjjj
F. Electro Optical Ion Detection 144
G. The Daly Detector 145
H. Cryogenic Detectors 146
I. Ion Detection in FTMS 147
VI. Vacuum Systems 147
1. Introduction 147
2. Definitions 148
3. Pressure Gauges 150
A. Thermal Conductivity Gauges 150
B. PiraniGauge 150
C. Thermocouple Gauges 151
4. lonization Gauges 151
A. Hot Cathode Gauge 151
B. Cold Cathode Gauge 151
5. Types of Pumps 152
A. Mechanical Pumps (Low Vacuum) 152
1) Rotary Vane Pumps 153
2) Scroll Pumps 154
3) Roots Pumps 155
4) Diaphram Pumps 156
B. High Vacuum 156
1) Turbomolecular Pumps 156
2) Oil Diffusion Pumps 157
3) Sputter Ion Pumps (Nonregeneratable Getter Pumps) 162
Chapter 3 Mass Spectrometry/Mass Spectrometry 173
I. Introduction 175
1. History and the Evolution of the Technique 175
2. Concept and Definitions 176
3. Nomenclature 177
II. Ion Dissociation 179
1. Metastable Ions 179
2. Collisionally Activated Dissociation 180
3. Electron Capture Dissociation 181
4. Electron Transfer Dissociation 181
5. Illustrative Example of Qualitative Analysis by MS/MS 184
III. Instrumentation for MS/MS 184
1. Tandem in Space Mass Spectrometry (MS/MS) 186
A. Triple Quadrupole Mass Spectrometer 187
B. Q TOF Hybrid Mass Spectrometer 188
C. TOF TOF Mass Spectrometer 190
D. BEqQ Hybrid Mass Spectrometer 190
E. Double Focusing Instrument 191
2. Tandem in Time Mass Spectrometry 192
IV. Specialized Techniques and Applications 196
1. In SourceCAD 196
2. CAD in Conjunction with Soft lonization 197
A. Data Dependent Acquisition 199
ix
3. Selected Reaction Monitoring 199
A. Illustrative Example Showing that SRM Has a Higher
Specificity than SIM in Spite of a Lower Signal Strength 199
B. An Example Comparing the Specificity of SRM and SIM in the
Context of Analyzing a Biological Sample for a Drug Metabolite.201
4. Precursor Ion Analysis 204
5. Neutral Loss (Common Neutral Loss) Analysis 205
6. lon/Molecule Reactions 206
7. Hybrid Instrumentation for MS/MS and Ion Mobility
Spectrometry (IMS) 206
V. Analyte Identification from MS/MS Data 208
1. Introduction 208
2. Identifying an Unknown Using a Product Ion Mass Spectrum 209
3. Similarities between El and Product Ion Mass Spectra 214
4. Another Wayof Using Substructure Identification 215
5. Searching of Product Ion Spectra against Standardized Databases .218
VI. Concluding Remarks about MS/MS 220
Chapter 4 Inlet Systems 229
I. Introduction 231
II. Baten Inlets 232
1. Heated Reservoir Inlet 232
2. Direct Inlet Probe (DIP) 233
A. The Chromatoprobe 235
3. Direct Exposure Probe (Desorption Chemical lonization, DCI) 236
4. Pyrolysis 238
III. Continuous Inlets 239
1. Membrane Introduction MS (MIMS) 239
2. Supercritical Fluid Chromatography (SFC) 240
3. Electrophoretic Inlet 242
IV. lonization Inlet Systems 244
1. Direct Analysis in Real Time (DART) 245
2. Desorption Electrospray lonization (DESI) 247
3. Desorption Atmospheric Pressure Chemical lonization (DAPCI) 249
V. Speciality Interfaces 249
1. Selected Ion Flow Tube Mass Spectrometry (SIFTMS) 249
2. Fast Atom Bombardment (FAB) and Liquid Secondary Ion Mass
Spectrometry (LSIMS) 250
3. Chemical Reaction Interface Mass Spectrometry (CRIMS) 252
4. Inductively Coupled Plasma Mass Spectrometry (ICPMS) 253
A. Hardware Configuration 254
B. Operational Considerations 254
C. Electrothermal Vaporization 255
D. Laser Ablation 255
E. Speciation 256
F. Summary 256
VI. Final Statement 257
x
Chapter 5 Strategies for Data Interpretation
(Other than Fragmentation) 267
I. Introduction 269
II. Some Important Definitions 271
III. Possible Information That Can Be Obtained from the Mass Spectrum 271
IV. Elemental Composition of an Ion and the Ratios of Its Isotope Peaks 273
1. Definition of Terms Related to the Matter of Mass Spectrometry 273
2. NitrogenRule 275
3. Elemental Composition of an Ion Based on the Ratio of
Isotope Peak Intensities 276
A. Isotope Peak Patterns Used to Determine the Elemental
Composition of Ions 276
B. Isotope Peak Patterns for Ions Containing Various
Combinations of Br/Cl 279
C. Constraint on the Number of Atoms Allowed for a
Given Element 281
D. Relationship of the Charge State of an Ion and the
Spacing of the Corresponding Isotope Peaks 281
1) Ions of High Mass to Charge Ratio 282
E. Steps to Assigning an Elemental Composition
Based on Isotope Peak Intensities 283
F. Validating the Putative Elemental Composition of an Ion 284
G. An Illustrative Example of the Use of Isotope Peak Ratios to
Determine an Elemental Composition 285
H. Potential Problems Arising from Adjacent Peaks 291
4. Elemental Composition as a Function of an Accurate
Determination of the m/z Value of a Mass Spectral Peak 293
A. Appearance of Mass Spectra of High m/z Value Ions 295
5. Using El Data to Identify Unknowns Detected During
Analysis by LC/MS 297
6. Does the Result Make Sense? 299
V. Identifying the Mass of an Analyte 302
1. Recognition of the Peak Representing the Molecular Ion in El 304
A. Reasonable Losses from the Molecular Ion in El 305
2. Recognition of the Protonated Molecule (MH+) in Soft lonization 305
A. Probable Adducts Observed in the Mass Spectrum
Produced by Soft lonization 306
3. Recognition of the Deprotonated Molecule ([M H]") Peak
in Soft lonization 306
VI. Recognition of Spurious Peaks in the Mass Spectrum 307
1. Noise Spikes 307
2. Peaks Corresponding to Contaminants in GC/MS and LC/MS 307
A. The Phthalate Ion Peak 307
B. GCColumn Bleed 308
C. Clusterlons 308
VII. Obtaining Structural Information from the Mass Spectrum 308
xi
Chapter 6 Electron lonization 315
I. Introduction 317
II. lonization Process 317
III. Strategy for Data Interpretation 321
1. Assumptions 321
2. The lonization Process 321
IV. Types of Fragmentation Pathways 328
1. Sigma Bond Cleavage 330
2. Homolytic or Radical Site Driven Cleavage 333
3. Heterolytic or Charge Site Driven Cleavage 335
4. Rearrangements 337
A. Hydrogen Shift Rearrangements 338
B. Hydride Shift Rearrangements 342
V. Representative Fragmentations (Spectra) of Classes of Compounds 344
1. Hydrocarbons 345
A. Saturated Hydrocarbons 345
1) Straight Chain Hydrocarbons 345
2) Branched Hydrocarbons 348
3) Cyclic Hydrocarbons 351
B. Unsaturated 353
C. Aromatic 355
2. AlkylHalides 363
3. Oxygen Containing Compounds 368
A. Aliphatic Alcohols 368
B. Aliphatic Ethers 372
C. Aromatic Alcohols 376
D. Cyclic Ethers 381
E. Ketonesand Aldehydes 381
F. Aliphatic Acids and Esters 392
G. Aromatic Acids and Esters 402
4. Nitrogen Containing Compounds 405
A. Aliphatic Amines 405
B. Aromatic Compounds Containing Atoms of Nitrogen 414
C. Heterocyclic Nitrogen Containing Compounds 419
D. Nitro Compounds 419
E. Concluding Remarks on the Mass Spectra of
Nitrogen Containing Compounds 420
5. Multiple Heteroatoms or Heteroatoms and a Double Bond 421
6. Trimethylsilyl Derivative 422
7. Determining the Location of Double Bonds 429
VI. Library Searches and El Mass Spectral Databases 433
1. Databases 433
2. Library Search Programs 435
3. What To Do When the Spectrum of the Unknown is Not in the
Database(s) 439
4. Searching Multiple Databases 440
5. Database Size and Quality 440
6. Concluding Remarks on the NIST Mass Spectral Search Program 441
VII. Summary of Interpretation of El Mass Spectra 442
xii
Chapter 7 Chemical lonization 449
I. Introduction 451
II. Description of the Chemical lonization Source 454
III. Production of Reagent Ions from Various Reagent Gases 455
IV. Positive Ion Formation Under Cl 457
1. Fundamentals 457
2. Practical Consideration of Proton Affinity in Cl 460
3. Selective lonization 461
4. Fragmentation 461
V. Negative Ion Formation under Cl 464
1. True Negative Chemical lonization 464
2. Resonant Electron Capture Negative lonization 465
VI. Data Interpretation and Systematic Studies of Cl 469
VII. lonization by Charge Exchange 470
1. Mechanism of lonization 470
2. Fragmentation and Appearance of Mass Spectra 471
VIII. Atmospheric Pressure Chemical lonization 471
IX. Desorption Chemical lonization 472
X. General Applications 474
XI. Concluding Remarks 477
Chapter 8 Electrospray lonization 485
I. Introduction 487
II. Operating Principles 487
III. Appearance of ESI Mass Spectra and Data Interpretation 490
IV. ESI with an m/z Analyzer of High Resolving Power 493
V. Conventional ESI Source Interface 494
VI. Nanoelectrospray and Microelectrospray lonization 494
VII. Desorption Electrospray lonization (DESI) 496
VIII. Effect of Composition and Flow Rate of an Analyte Solution 499
IX. Special Applications 500
1. Direct Analysis of Ions in Solution by ESI 500
2. Cold Spray lonization 501
3. Negative Ion Detection 501
4. Secondary Electrospray lonization (SESI) 502
5. Kinetic Measurements of Chemical Reactions 502
6. ESI Generation of Ions for Ancillary Experiments 502
X. General Applications of ESI 503
Chapter 9 MALDI 519
I. Historical Perspective and Introduction 521
II. Operating Principles 521
1. The Matrix 521
2. The Laser, m/z Analyzer, and Representative Mass Spectra 525
3. The lonization Process 529
4. High Pressure (HP) MALDI and Atmospheric Pressure
(AP) MALDI 533
xiii
III. Sample Handling 535
1. Sample Preparation of the Conventional Plate 535
2. The Problem of Analyte Solubility 537
3. The Problem of Sample Purity 537
4. On Probe Sample Purification and/or Modification 538
A. SAMs and Polymer Modified Surfaces 538
B. Affinity Surfaces 540
5. Direct Analysis from Gels 541
6. Hydrogen/Deuterium Exchange 542
IV. Special Instrumental Techniques 542
1. Post Source Decay (PSD) 542
2. Ion Excitation 544
3. Delayed Extraction (DE) 545
4. Desorption lonization On Silicon (DIOS) 546
5. Tissue Profiling or Imaging 547
V. Representative Applications 549
1. Proteins and Peptides 549
2. Microbes 549
3. Biomarkers 550
4. Synthetic Polymers 550
5. Small Molecules 551
6. Quantitäten 552
7. Combined with Liquid Chromatography 553
Chapter 10 Gas Chromatography/Mass Spectrometry 571
I. Introduction 573
II. Introduction to GC 575
1. Basic Typesof Injectors 582
2. Injection Considerations and Syringe Handling 583
3. Syringeless Modes of Sample Injection for Fast GC 585
III. Sample Handling 585
1. Proper Sample Container 585
2. Analyte Isolation and Purification 587
3. Derivative Formation 587
A. Silyl Derivatives 588
B. Esters of Carboxylic Acids 588
C. Oxime Derivatives 589
D. Acyl Derivatives 590
E. Derivatives for Characterizing Double Bonds 590
IV. Instrument Requirements for GC/MS 590
1. Operating Pressures 590
2. Typical Parameters for a Conventional GC MS Interface 593
3. Supersonic Molecular Beam Interface for GC/MS 594
4. Open Split Interface 596
5. Molecular Separators 597
A. Jet Orifice Separator 597
B. Membrane Separator 598
6. Inertness of Materials in the Interface 599
xiv
V. Operational Considerations 601
1. Spectral Skewing 601
2. Background/Bleed 602
3. The Need for Rapid Acquisition of Mass Spectra 604
A. Performance Trade Offs of Conventional
Instruments for GC/MS 605
B. Time Array Detection 605
4. Selected Ion Monitoring (SIM) 606
A. Definition and Nomenclature 606
B. Development of the Technique 607
C. Qualitative Example of SIM 607
D. Quantitative Example of SIM 609
E. Mechanics of Ion Monitoring 613
1) Adjustment of the Mass Scale 613
2) Mass Range 613
3) Magnetic Mass Spectrometer 613
4) Transmission Quadrupole Mass Spectrometer 614
5) Numberof Ion Currents (Masses) 614
F. Programmable SIM 614
G. SIM at High Resolving Power 615
VI. Sources of Error 616
1. Errors Relating to Equipmentor Procedure 616
2. Errors Relating to Contamination 617
3. Sources of Interference 618
4. Dealing with Background in a Mass Spectrum 618
A. AMDIS (Automated Mass spectral Deconvolution
and Identification System) 622
B. Other Software Techniques 629
VII. Representative Applications of GC/MS 631
VIII. Special Techniques 631
1. PurgeandTrap 631
2. Thermal Desorption 632
Chapter 11 Liquid Chromatography/Mass Spectrometry 639
I. Introduction 641
II. Historical Milestones in the Development of the Interface 642
1. Introduction 642
2. The Direct Inlet 642
3. The Moving Belt Interface 644
4. The Thermospray Interface 644
5. Continuous Flow FAB 646
III. Currently Viable Versions of the Interface 647
1. Atmospheric Pressure lonization 647
A. Electrospray lonization Interface 647
1) Optimization for Analyses by HPLC 648
2) Capillary Electrophoresis Interface 650
B. APCI Interface 650
xv
C. APPI Interface 654
1) Operating Principles of APPI 654
2) Operating Mechanics for APPI 656
3) Signal Suppression 657
4) Applications of APPI 658
2. ParticIeBeam Interface 659
3. Electron lonization and LC/MS 661
IV. Special Operation of LC under MS Conditions 661
1. Effects of Mobile Phase Composition 661
A. Signal Suppression 662
B. Use of Internal Standards in the Face of
Signal Suppression 663
C. Adjusting the Chromatography in the Face of Signal
Suppression during LC/MS 663
D. Ion Pairing and Signal Suppression 663
E. Influence of the Type and the Nature of LC Buffer 665
F. Influence of Solvent Composition on the ESI Signal 665
G. Adduct Formation 667
H. Spectral Interference 668
I. System Compromise 668
2. Differences in Method Development for ESI vs APCI 672
V. Applications 674
1. Attention to High Throughput 676
Chapter 12 Analysis of Proteins and Other Biopolymers 689
I. Introduction 691
II. Proteins 691
1. Sequencing 693
A. Nomenclature and Fragmentation in Sequencing of Peptides 693
1) Nomenclature 693
2) Fragmentation 695
B. Strategy for Deducing Amino Acid Sequence via CAD
of Peptides 701
1) An Illustrative Example 702
2) Possible Pitfalls in Interpretation 705
3) Search for Confirming Ions 706
4) Ladder Sequencing 707
2. Mass Mapping 709
A. Peptide Mass Fingerprinting 709
B. De novo Sequencing 710
C. Sequence Tagging 710
D. Sequest 710
E. Evaluation of Hits in Automated Searches 711
F. Data Dependent Analysis by Mass Spectrometry 712
3. Post Translational Modifications 712
A. Recognition of Sites of Protein Phosphorylation 714
1) An Illustrative Example 715
2) Selective Capture and Detection of Phosphopeptides 718
3) Chemical Modification of Phosphorylation Sites 719
xvi
B. Recognition of Sites of Sulfation 722
C. Recognition of Sites of Glycosylation 723
D. Acetylation of Lysine 724
E. Cysteine Status in Proteins 726
1) Are There Any Disulfide Bonds? 726
2) Which Cysteines Are Free? 727
3) What Is the Linkage of Cysteines in the
Disulfide Bonds? 727
(A) Conventional Proteolytic Mass Mapping
of Disulfides 727
(B) Cyanylation Based Mass Mapping of Disulfides 730
F. Recognition of Ubiquinated Proteins 734
G. OtherTypes of Modifications 735
4. Quantitation in Proteomics 735
A. ICATs 735
1) Operating Principles 735
2) Illustrative Example of the ICAT Approach 737
3) Analogous to ICAT Methodologies 740
B. Alternative Stable Isotope Based Methodologies 740
C. Related Methodologies 743
5. "Top Down" Strategies of Analysis 744
A. Instrumentation and Fragmentation Requirements 744
B. Electron Capture Dissociation (ECD) 749
C. Electron Transfer Dissociation (ETD) 752
D. Applications 753
6. Noncovalent Interactions 753
7. Folding and Unfolding 756
8. Applications 759
IM. Oligonucleotides 760
1. Analytical Considerations 760
2. Sequencing 761
A. Nomenclature 761
B. Algorithm for Data Interpretation 763
3. Applications 764
IV. Carbohydrates 765
1. Analytical Considerations 765
2. Nomenclature 765
3. Diagnostic Fragmentation 766
4. Applications 769
Subject Index 803
xvii |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Watson, Jack T. Sparkman, Orrin David |
author_facet | Watson, Jack T. Sparkman, Orrin David |
author_role | aut aut |
author_sort | Watson, Jack T. |
author_variant | j t w jt jtw o d s od ods |
building | Verbundindex |
bvnumber | BV022958566 |
callnumber-first | Q - Science |
callnumber-label | QC454 |
callnumber-raw | QC454.M3 |
callnumber-search | QC454.M3 |
callnumber-sort | QC 3454 M3 |
callnumber-subject | QC - Physics |
classification_rvk | VG 9800 VG 9801 |
classification_tum | CHE 254f |
ctrlnum | (OCoLC)255583249 (DE-599)GBV52768497X |
dewey-full | 543.65 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 543 - Analytical chemistry |
dewey-raw | 543.65 |
dewey-search | 543.65 |
dewey-sort | 3543.65 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie |
discipline_str_mv | Chemie / Pharmazie Chemie |
edition | 4. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01737nam a2200445 c 4500</leader><controlfield tag="001">BV022958566</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120822 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071112s2007 ad|| j||| 00||| eng d</controlfield><datafield tag="013" ind1=" " ind2=" "><subfield code="a">52768497X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470516348</subfield><subfield code="9">978-0-470-51634-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255583249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV52768497X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91S</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC454.M3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">543.65</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 9800</subfield><subfield code="0">(DE-625)147244:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 9801</subfield><subfield code="0">(DE-625)147244:254</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 254f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Watson, Jack T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to mass spectrometry</subfield><subfield code="b">instrumentation, applications, and strategies for data interpretation</subfield><subfield code="c">J. Throck Watson ; O. David Sparkman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester [u.a]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 818 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Previous ed.: Philadelphia, Pa.: Lippincott-Raven, 1997</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomolecules</subfield><subfield code="x">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass spectrometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Massenspektrometrie</subfield><subfield code="0">(DE-588)4037882-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4173536-5</subfield><subfield code="a">Patentschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Massenspektrometrie</subfield><subfield code="0">(DE-588)4037882-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sparkman, Orrin David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016162961&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016162961</subfield></datafield></record></collection> |
genre | (DE-588)4173536-5 Patentschrift gnd-content |
genre_facet | Patentschrift |
id | DE-604.BV022958566 |
illustrated | Illustrated |
index_date | 2024-07-02T19:03:45Z |
indexdate | 2024-07-09T21:08:34Z |
institution | BVB |
isbn | 9780470516348 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016162961 |
oclc_num | 255583249 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-703 DE-11 DE-188 DE-91S DE-BY-TUM DE-384 |
owner_facet | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-703 DE-11 DE-188 DE-91S DE-BY-TUM DE-384 |
physical | XXIV, 818 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley |
record_format | marc |
spelling | Watson, Jack T. Verfasser aut Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation J. Throck Watson ; O. David Sparkman 4. ed. Chichester [u.a] Wiley 2007 XXIV, 818 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Previous ed.: Philadelphia, Pa.: Lippincott-Raven, 1997 Biomolecules Analysis Mass spectrometry Massenspektrometrie (DE-588)4037882-2 gnd rswk-swf (DE-588)4173536-5 Patentschrift gnd-content Massenspektrometrie (DE-588)4037882-2 s DE-604 Sparkman, Orrin David Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016162961&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Watson, Jack T. Sparkman, Orrin David Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation Biomolecules Analysis Mass spectrometry Massenspektrometrie (DE-588)4037882-2 gnd |
subject_GND | (DE-588)4037882-2 (DE-588)4173536-5 |
title | Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation |
title_auth | Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation |
title_exact_search | Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation |
title_exact_search_txtP | Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation |
title_full | Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation J. Throck Watson ; O. David Sparkman |
title_fullStr | Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation J. Throck Watson ; O. David Sparkman |
title_full_unstemmed | Introduction to mass spectrometry instrumentation, applications, and strategies for data interpretation J. Throck Watson ; O. David Sparkman |
title_short | Introduction to mass spectrometry |
title_sort | introduction to mass spectrometry instrumentation applications and strategies for data interpretation |
title_sub | instrumentation, applications, and strategies for data interpretation |
topic | Biomolecules Analysis Mass spectrometry Massenspektrometrie (DE-588)4037882-2 gnd |
topic_facet | Biomolecules Analysis Mass spectrometry Massenspektrometrie Patentschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016162961&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT watsonjackt introductiontomassspectrometryinstrumentationapplicationsandstrategiesfordatainterpretation AT sparkmanorrindavid introductiontomassspectrometryinstrumentationapplicationsandstrategiesfordatainterpretation |