NMR in biological systems: from molecules to humans
This title caters to the needs of graduate students who mostly learn such techniques from senior post-docs in the laboratory, and those who are not experts in NMR but wish to understand if a particular problem in animal, plant, medical and pharmaceutical sciences can be answered by NMR. --back cover...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer
2008
|
Schriftenreihe: | Focus on Structural Biology
6 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | This title caters to the needs of graduate students who mostly learn such techniques from senior post-docs in the laboratory, and those who are not experts in NMR but wish to understand if a particular problem in animal, plant, medical and pharmaceutical sciences can be answered by NMR. --back cover. |
Beschreibung: | XXXVII, 521 S. 235 mm x 155 mm |
ISBN: | 9781402066795 1402066791 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022955982 | ||
003 | DE-604 | ||
005 | 20100816 | ||
007 | t | ||
008 | 071109s2008 gw |||| 00||| eng d | ||
015 | |a 07,N38,0851 |2 dnb | ||
016 | 7 | |a 985455993 |2 DE-101 | |
020 | |a 9781402066795 |c Gb. : EUR 101.60 (freier Pr.), sfr 165.50 (freier Pr.) |9 978-1-402-06679-5 | ||
020 | |a 1402066791 |c Gb. : EUR 101.60 (freier Pr.), sfr 165.50 (freier Pr.) |9 1-402-06679-1 | ||
024 | 3 | |a 9781402066795 | |
028 | 5 | 2 | |a 12085965 |
035 | |a (OCoLC)174130522 | ||
035 | |a (DE-599)DNB985455993 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-91G |a DE-703 |a DE-M49 |a DE-355 |a DE-11 | ||
050 | 0 | |a QH324.9.N8 | |
050 | 0 | |a QP519.9.N83 | |
082 | 0 | |a 570.28 |2 22 | |
082 | 0 | |a 616.07/548 |2 22 | |
084 | |a VG 9500 |0 (DE-625)147241:253 |2 rvk | ||
084 | |a WC 2600 |0 (DE-625)148071: |2 rvk | ||
084 | |a WC 3460 |0 (DE-625)148086: |2 rvk | ||
084 | |a CHE 808f |2 stub | ||
084 | |a BIO 040f |2 stub | ||
084 | |a 570 |2 sdnb | ||
084 | |a CHE 244f |2 stub | ||
100 | 1 | |a Chary, Kandala V. R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a NMR in biological systems |b from molecules to humans |c by K. V. R. Chary and Girjesh Govil |
264 | 1 | |a Dordrecht |b Springer |c 2008 | |
300 | |a XXXVII, 521 S. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Focus on Structural Biology |v 6 | |
520 | 3 | |a This title caters to the needs of graduate students who mostly learn such techniques from senior post-docs in the laboratory, and those who are not experts in NMR but wish to understand if a particular problem in animal, plant, medical and pharmaceutical sciences can be answered by NMR. --back cover. | |
650 | 4 | |a Biological systems | |
650 | 4 | |a Biology |x Technique | |
650 | 4 | |a Biomolecules | |
650 | 4 | |a Nuclear magnetic resonance | |
650 | 4 | |a Proteins | |
650 | 0 | 7 | |a Biologisches System |0 (DE-588)4122930-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetische Kernresonanz |0 (DE-588)4037005-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Magnetische Kernresonanz |0 (DE-588)4037005-7 |D s |
689 | 0 | 1 | |a Biologisches System |0 (DE-588)4122930-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Govil, Girjesh |e Verfasser |4 aut | |
830 | 0 | |a Focus on Structural Biology |v 6 |w (DE-604)BV014030722 |9 6 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016160396&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016160396 |
Datensatz im Suchindex
_version_ | 1804137200786341888 |
---|---|
adam_text | CONTENTS
PREFACE
............................................................................................................xxiii
FOREWORD
........................................................................................................xxv
ACKNOWLEDGEMENTS
...............................................................................xxvii
ABBREVIATIONS
..............................................................................................xxix
CHAPTER
1:
BASIC CONCEPTS IN NMR SPECTROSCOPY
........................1
1.
HISTORICAL PERSPECTIVES
..........................................................................1
1.1
Quantum Mechanical Model for Spin-
1/2
Nuclei
.........................................2
1.2
Classical Model
............................................................................................4
1.2.1
Rotating Frame of Reference
.............................................................5
1.2.2
Strength of RF Pulses
........................................................................5
1.3
Basic Design of a NMR Spectrometer
...........................................................6
1.4
A Simple Pulse Sequence for NMR Excitation and Detection
......................8
1.5
Fourier Transform
.........................................................................................9
1.6
Line Widths
.................................................................................................10
1.7
Properties of Spin Operators and
Pauli
Matrices
.........................................10
2.
NMR SPINS USED IN LIFE SCIENCES
..........................................................11
3.
INTERACTION OF NUCLEAR SPINS AND NMR PARAMETERS
.............12
3.1
Chemical Shift
(б)
.......................................................................................12
3.2
Peak Intensities
............................................................................................15
3.3
Nuclear Spin-Spin (Scalar) Coupling (J)
.....................................................16
3.4
Hamiltonian for a 2-spin System
.................................................................17
3.5
Dipolar Coupling
(Dij)
................................................................................20
3.6
Quadrapolar Interactions
.............................................................................21
3.7
Electron-Nuclear Interaction
.......................................................................22
4.
NMR RELAXATION
........................................................................................23
4.1
Relaxation Rates
..........................................................................................23
4.2
Molecular Mechanisms Leading to Relaxation
...........................................24
4.3
Theoretical Treatment of Relaxation Rates
.................................................25
4.4
Correlation Times
........................................................................................26
4.5
Dipolar Relaxation due to Several Interacting Spins
...................................29
4.6
Field Dependence of Relaxation Rates
........................................................29
5.
CHEMICAL EXCHANGE: DYNAMIC EFFECTS
IN NMR SPECTROSCOPY
...............................................................................30
5.1
Conformational Equilibrium
........................................................................30
5.2
Solvent Exchange
........................................................................................32
6.
NUCLEAR MAGNETIC DOUBLE RESONANCE
..........................................33
6.1
Spin Decoupling
..........................................................................................33
6.2
Heteronuclear and Broad-band Decoupling
................................................34
6.3
Nuclear Overhauser Effect
(NOE)
..............................................................34
7.
LINE SHAPES IN NMR
.....................................................................................37
7.1
Absorptive and Dispersive Signals
..............................................................37
v
vi
CONTENTS
7.2
Characteristics
ofFT-NMR Signals
............................................................38
7.3
Quadrature
Phase Detection
........................................................................39
8.
REFERENCES
....................................................................................................40
8.1
History and Early Developments
.................................................................40
8.2
Theoretical and Physical Aspects of NMR
..................................................40
8.3
Chemistry Oriented Books
..........................................................................41
8.4
Specialized Topics
.......................................................................................41
CHAPTER
2:
INTRODUCTION TO BIOLOGICAL NMR
.............................43
1.
LEVELS OF BIOLOGICAL STRUCTURES
....................................................44
2.
NMR AND BIOLOGICAL STRUCTURES
......................................................46
3.
DIFFICULTIES IN STUDYING BIOLOGICAL SYSTEMS BY NMR
...........47
3.1
Sensitivity
....................................................................................................47
3.2
Resolution
....................................................................................................48
3.3
Assignments
................................................................................................48
3.4
Water Signal
................................................................................................48
3.5
Line Widths
.................................................................................................49
3.6
Quantification
..............................................................................................50
4.
BIOLOGICAL MACROMOLECULES
.............................................................50
4.1
Building Blocks of Biological Molecules
....................................................50
4.2 Biopolymers................................................................................................51
4.3 3D
Structures of Biological Molecules
........................................................52
4.4
Comparison of
3D
Structures Obtained from NMR and X-ray
...................53
5.
NMR IN CELLS AND TISSUES
.......................................................................54
5.1
Cellular Metabolism is the Bridge between Proteomics and Function
........55
6.
NMR IN STUDIES OF ORGANS
......................................................................55
6.1
Historical Development of
MRI
..................................................................56
6.2
Basis of
MRI
...............................................................................................56
6.3
Comparison of Images from NMR and Other Techniques
..........................57
6.4
Magnetic Resonance Spectroscopy (MRS)
.................................................59
7.
BASIC MULTI-PULSE NMR EXPERIMENTS IN BIOLOGICAL
SYSTEMS
...........................................................................................................59
7.1
Signal Averaging and Partial Saturation
......................................................59
7.2
Presaturation
................................................................................................61
7.3
Jump and Return (JR) Sequence
..................................................................61
7.4
Spin-echo
(SE)
............................................................................................62
7.4.1
Effect of Inhomogeneity of Bo
.........................................................62
7.4.2
Behaviour of J-Coupled Systems
.....................................................63
7.4.3
Application of
SE
.............................................................................66
7.5
Carr-Purcell-Meiboom-Gill (CPMG) Sequence
..........................................66
7.6
Inversion Recovery Experiment
(IR)
...........................................................66
8.
COMPARISION OF NMR OTHER PHYSICAL TECHNIQUES
.....................67
9.
REFERENCES
....................................................................................................68
9.1
Theoretical and Physical Aspects of NMR
..................................................68
9.2
Biological Molecules
...................................................................................68
9.3
Biomedical
Systems
....................................................................................68
CONTENTS
VU
CHAPTER
3:
MULTI-DIMENSIONAL NMR
...................................................69
1.
INTRODUCTION
...............................................................................................69
1.1
Multi-Dimensional (MD) NMR
..................................................................69
1.2
General Scheme for 2D NMR
.....................................................................69
1.3
Correlated SpectroscopY (COSY)
..............................................................72
1.4
Advantages of 2D NMR
..............................................................................73
2.
PRODUCT OPERATOR FORMALISM
(POF)
.................................................74
2.1
Product Operators
(PO)
...............................................................................75
2.2
Coherences
..................................................................................................75
2.3
Observable Coherences
...............................................................................77
2.4
Effect ofRF Pulses on Product Operators
...................................................77
2.5
Evolution of Product Operators under free Hamiltonian
.............................78
2.6
Effect of Composite
π
pulses on Product Operators
....................................78
2.7
Evolution of MQ Coherences
......................................................................79
2.8
Evolution of Zero Quantum Coherences
.....................................................79
2.9
Evolution of Two Quantum Coherences
.....................................................79
3.
HOMONUCLEAR CORRELATION SPECTROSCOPY
..................................80
3.1
Correlation Spectroscopy (COSY)
..............................................................80
3.2
Phase Cycling
..............................................................................................81
3.2.1
CYCLOPS
.......................................................................................82
3.2.2
Axial Peak Suppression
...................................................................82
3.3
Relayed COSY
............................................................................................83
3.4
TOtal Correlation SpectroscopY (TOCSY)
.................................................84
3.5
MQ-Filtered COSY
.....................................................................................85
3.5.1
Multiple-Quantum Filtering
.............................................................85
3.5.2
Double-Quantum Filtered COSY (2QF-COSY)
..............................86
3.5.3
Three-Quantum Filtered COSY (3QF-COSY)
................................87
3.5.4
Exclusive COSY
..............................................................................89
3.6
EXSYandNOESY
......................................................................................90
3.7
Rotational Nuclear Overhauser Effect SpectroscopY (ROESY)
................91
4.
MULTIPLE-QUANTUM (MQ) SPECTROSCOPY
..........................................92
4.1
2D Double-Quantum (DQ) Experiment
.....................................................92
5.
HETERONUCLEAR CORRELATION SPECTROSCOPY
..............................94
5.1
Insensitive Nuclei Enhanced by Polarization Transfer (INEPT)
.................94
5.2
Reverse INEPT
............................................................................................96
5.3
Refocused INEPT
........................................................................................96
5.4
Distortionless Enhanced by Polarization Transfer
(DEPT)
.........................97
5.5
Broadband Decoupling
................................................................................97
5.6
Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC)
...........99
5.7
Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC)
.... 101
5.8
Sensitivity Enhanced HSQC
......................................................................101
6.
PULSED FIELD GRADIENTS
........................................................................102
6.1
Coherence Pathway Selection using PFG
..................................................103
6.2
Water Suppression by Gradient Tailored Excitation (WATERGATE)
.....104
viii CONTENTS
7.
THREE DIMENSIONAL
(3D)
EXPERIMENTS
............................................105
7.1 3D
Double-Resonance Experiments
..........................................................106
7.2 3D
NOESY-tOC/lSN-lH] HSQC
...........................................................106
7.3 3D
TOCSY-flSC/lSN-lH] HSQC
............................................................108
7.4 3D
Triple Resonance Experiments
............................................................108
8.
TECHNIQUES FOR SOLUTION NMR OF VERY LARGE
MOLECULES
...................................................................................................108
9.
REFERENCES
..................................................................................................110
9.1
Theoretical and Physical Aspects
..............................................................110
9.2
Review Articles
.........................................................................................110
9.3
Three Dimensional NMR
..........................................................................110
10.APPENDIX3.1
.................................................................................................
Ill
CHAPTER
4:
BIOMOLECULAR STRUCTURES USING NMR:
GENERAL PRINCIPLES
...................................................................................113
1.
INTRODUCTION
.............................................................................................113
1.1
Conformation of Biological Molecules
.....................................................114
1.2
Conformational Theory
.............................................................................115
1.3
Conformational Domains of Proteins and Nucleic Acids
..........................118
2.
ELEMENTS OF MACROMOLECULAR STRUCTURES
.............................119
2.1
Primary Structure
......................................................................................119
2.2
Secondary Structures
.................................................................................120
2.3
Tertiary Structures
.....................................................................................120
2.4
Quaternary Structures
................................................................................120
2.5
Multi-molecular Assemblies
......................................................................121
2.6
Random Coil Structures
............................................................................121
3.
SAMPLE PREPARATION FOR NMR: LABELLING TECHNIQUES
..........121
3.1
Preparation of Samples for NMR
..............................................................122
3.1.1
Cloning and Expression of Proteins
...............................................123
3.1.2
Taming Proteins
.............................................................................124
3.1.3
Protein Recovery
...........................................................................125
3.1.4
Protein Purification
........................................................................125
3.1.5
Ion-exchange Chromatography
......................................................126
3.1.6
Affinity Chromatography
..............................................................126
3.1.7
Gel Filtration
..................................................................................126
3.1.8
Approaches in Structural Genomics
..............................................126
3.2
Isotope Labelling
.......................................................................................127
3.3
Concentration
............................................................................................127
3.4
Quality Assessment and Storage
...............................................................128
3.5
Synthesis of Nucleic Acids
........................................................................128
3.6
RNA
Samples
............................................................................................128
3.7
Purification of Nucleic Acids
....................................................................129
3.8
BC and 15N Labelling of Nucleic Acids
....................................................129
3.9
In-vitro
RNA
Transcription and Purification
.............................................130
4.
NMR APPROACH TO STRUCTURAL STUDIES
.........................................130
CONTENTS ix
4.1 NMR
Strategies
.........................................................................................131
4.2 General
Approach for the Resonance Assignments in Biomolecules
........131
5.
NMR PARAMETERS FOR STRUCTURAL STUDIES
.................................133
5.1
Chemical Shifts: Magnetic Anisotropy of Chemical Groups
....................133
5.1.1
Ring Current Effects
......................................................................134
5.1.2
Changes in Chemical Shifts and Secondary Structures
.................135
5.2
Chemical Shifts and 2H Exchange Rates of Hydrogen Bonded Protons....
135
5.3
Nuclear Overhauser Effect
(NOE)
............................................................136
5.3.1
Limitations of
NOE
.......................................................................136
5.3.2
Introduction of
NOE
Constraints
...................................................138
5.4
Scalar Coupling Constants (J)
...................................................................138
5.4.1
Torsion Angle Dependence of 3J
...................................................139
5.4.2
Coupling Constants across Hydrogen Bonds
.................................140
5.5
Residual Dipolar Couplings (RDC)
...........................................................141
5.5.1
Partial Alignment
...........................................................................142
5.5.2
Methods of Achieving Partial Alignment of Biological
Molecules
.......................................................................................144
5.5.3
Use of RDC for
3D
Structure Determination
.................................144
5.5.4
Advantages of RDC
.......................................................................145
5.6
Use of Cross-Correlated Relaxation
..........................................................145
5.7
Covalent Bond Distances
..........................................................................147
5.8
Stereochemical Assignments
.....................................................................148
5.9
Removing Undesirable Restraints
.............................................................149
6.
PARAMAGNETIC MOLECULES AND REAGENTS
...................................149
6.1
Contact Shifts
............................................................................................150
6.2
Pseudo-Contact Shifts
...............................................................................150
6.3
Relaxation Rates
........................................................................................151
6.4
Metallo-Proteins
........................................................................................152
6.5 Lanthanides
Shift Reagents
.......................................................................152
6.6
Use of Spin Labels
.....................................................................................153
7.
FROM NMR PARAMETERS TO STRUCTURES
.........................................153
7.1
Starting Structures
.....................................................................................153
7.2
Metric Matrix Distance Geometry
.............................................................154
7.3
Variable Target Functions: Torsion Angle Approaches
............................155
7.4
Molecular Mechanics and Molecular Dynamics Algorithms
....................155
7.5
Torsion Angle Dynamics (TAD)
...............................................................157
7.6
Restraint Energy Minimization
.................................................................158
7.7
Validation of Final Structures
....................................................................159
7.8
Presenting the Final Structures
..................................................................160
8.
DATA BANKS FOR STRUCTURES AND NMR OF BIOMOLECULES
.....160
8.1
Protein and Nucleic Acid Data Banks (PDB)
............................................160
8.2
Biological Magnetic Resonance Data Bank
(BioMagResBank; BMRB)
........................................................................161
8.3
Applications of Data Banks
.......................................................................161
8.4
Where to look for Literature on NMR Structures
......................................162
9.
REFERENCES
..................................................................................................162
9.1
Further Reading
.........................................................................................162
9.2
Books
.........................................................................................................162
X
CONTENTS
CHAPTER
5:
PROTEIN NMR: GENERAL PRINCIPLES
AND RESONANCE ASSIGNMENTS
...............................................................163
1.
INTRODUCTION
.............................................................................................163
1.1
Functions of Proteins
.................................................................................163
1.2
Conformation and Dynamics of Proteins
..................................................164
1.3
History of Protein Structure Determination
...............................................166
2.
ELEMENTS OF PROTEIN STRUCTURES
....................................................167
2.1
Nomenclature
............................................................................................167
2.2
Backbone and Side-chain Torsion Angles
.................................................167
2.3
Primary Structure
......................................................................................169
2.4
Conformational Freedom of Peptides
........................................................170
2.5
Disulfide Bridges and
Proline
Rings
.........................................................172
2.6
Secondary Structures
.................................................................................172
2.6.1
α
-helix...........................................................................................
173
2.6.2 ß-strands
and
ß-sheet.....................................................................173
2.6.3 ß-turns............................................................................................175
2.6.4
Collagen
.........................................................................................175
2.6.5
Poly (L-Proline)
.............................................................................175
2.7
Fibrous Proteins
.........................................................................................176
2.8
Tertiary Structure: Globular Proteins
........................................................176
2.9
Higher Levels of Structural Organization
..................................................176
3.
INTRODUCTION TO NMR OF PROTEINS
..................................................177
3.1
History of NMR of Proteins
......................................................................177
3.2
Current Status
............................................................................................178
3.3
Sample Preparation
....................................................................................179
3.4
NMR Approach to Protein Structure
.........................................................179
3.5
Classification of Chemical Shifts
..............................................................180
3.6
13Caand BCP Chemical Shift Statistics
......................................................181
4.
RESONANCE ASSIGNMENT STRATEGIES
...............................................181
4.1
Identification of Networks of J-coupled Spin Systems
..............................181
4.1.1
Glycine
...........................................................................................182
4.1.2
Amino
acids Containing Methyl Group(s):
Ala, Thr, Val, Ile
and Leu
.............................................................182
4.1.3
Asn, Asp, Cys and
Ser
...................................................................183
4.1.4
His, Phe,
Trp
and
Tyr
.....................................................................183
4.1.5
Long Side-chain Residues
.............................................................184
4.2
Linking Side Chains to the Respective Amide Protons
.............................184
4.3
Sequence Specific Resonance Assignments
..............................................184
4.4
Identification of Disulfide Bridges
............................................................185
4.5
Stereo-specific Resonance Assignments
...................................................186
4.6
Higher Dimensional NMR
........................................................................186
5. 3D
TRIPLE-RESONANCE EXPERIMENTS FOR PROTEINS
.....................186
CONTENTS xi
5.1 HNCA.......................................................................................................187
5.2
HN(CO)CA...............................................................................................
189
5.3
HNCO
........................................................................................................190
5.4
HNCCA^O
...............................................................................................190
5.5
CBCANH
..................................................................................................191
5.6
CBCA(CO)NH
..........................................................................................191
5.7
HN(CA)HA and
ИЅКСОСА^А
..............................................................191
5.8 3D
Experiments used for Side-Chain Resonance Assignments
in Proteins
..................................................................................................192
6.
REDUCED DIMENSIONALITY: G-MATRIX FTNMR FOR PROTEINS
......192
6.1
RDNMR
...................................................................................................193
6.2
GFTNMR
.................................................................................................195
7.
AUTOMATED NMR ASSIGNMENTS IN PROTEINS
..................................197
7.1
Tracked Automated Assignment in Proteins (TATAPRO)
.......................198
7.2
Selective Labeling/Unlabeling: Residue Specific
Resonance Assignments
.............................................................................199
7.3
Side-chain Assignments
............................................................................200
7.4
Automated Chemical Shift Prediction Based on Sequence Homology
........200
8.
TECHNIQUES FOR STUDYING LARGE PROTEINS
.................................201
8.1
Transverse Relaxation Optimized SpectroscopY (TROSY)
......................201
8.2
2H labelling
................................................................................................202
9.
PROTONLESS
MULTI-DIMENSIONAL NMR
............................................203
9.1
2D
Protonless NMR
..................................................................................204
9.2
The Problem of Large Homonuclear Couplings
in Acquisition Dimension
..........................................................................204
9.3 3D
Protonless NMR
..................................................................................207
lO.REFERENCES
.................................................................................................208
10.1
Historical Foundation of Protein Structure and Function
..........................208
10.2
General Books on Proteins
........................................................................208
10.3
Books on Protein NMR
.............................................................................209
10.4
Study of Large Proteins
.............................................................................209
CHAPTER
6:
STRUCTURE, DYNAMICS AND FUNCTION
OF PROTEINS
.....................................................................................................211
1.
INTRODUCTION
.............................................................................................211
2.
CHARACTERIZATION OF SECONDARY STRUCTURE ELEMENTS
........211
2.1
Chemical Shift Index
(CSI)
.......................................................................211
2.2
Secondary Structure using Chemical Shift and Sequence Homology
.......213
2.3
Nuclear Overhauser Effect
(NOE)
............................................................213
2.4
Three bond Scalar-couplings (3J)
...............................................................215
2.5
H^H* Exchange
.....................................................................................215
3.
OBTAINING THE FINAL STRUCTURES
.....................................................217
3.1 3D
Structure Calculation
...........................................................................217
3.2
Automated NOESY Assignments
.............................................................218
3.3
Structural Statistics and Quality
................................................................218
xii CONTENTS
4. PROTEIN DYNAMICS....................................................................................219
4.1 NMR Parameters
for Studying
Dynamics.................................................220
4.2 Basic
Theory
..............................................................................................220
4.3 Protein Dynamics
using NMR
...................................................................221
4.4
Experimental Results.................................................................................
222
5. PROTEIN
FOLDING AND UNSTRUCTURED PROTEINS
.........................223
5.1
Protein Folding Pathways
..........................................................................223
5.2
NMR Methodologies for Studying Unfolded Protein Structures
...............224
5.3
Molten Globules
........................................................................................225
5.4
Unstructured Functional Proteins
..............................................................225
5.5
Protein Structures under High Pressure
.....................................................226
6.
NMR STUDIES OF PROTEIN STRUCTURE, DYNAMICS
AND FOLDING: SOME SPECIFIC EXAMPLES
...........................................226
6.1
Basic Pancreatic
Trypsin
Inhibitor (BPTI)
................................................227
6.2
Human Ubiquitin
.......................................................................................228
6.3
Ribonuclease
.............................................................................................228
6.4
Lysozyme
..................................................................................................228
6.5
EF-hand Calcium Binding Proteins (CaBP)
..............................................230
6.6
Maléate
Synthase
G (MSG)
.......................................................................231
6.7
GroEL-GroES Complex
............................................................................231
6.8
Membrane Proteins Studied in Solutions
..................................................232
7.
PARAMAGNETIC PROTEINS
.......................................................................232
7.1
Metal Ions of Interest
.................................................................................233
7.2
Heme
Iron Proteins
....................................................................................234
7.2.1
High-Spin Iron (III)
...........................................................................236
7.2.2
Low Spin Iron (III)
............................................................................237
7.2.3
High Spin Iron (II)
.............................................................................237
7.2.4
Diamagnetic Iron
Heme
Proteins
.......................................................238
7.3
Iron-Sulfur Proteins
...................................................................................238
7.4
Other Iron Proteins
....................................................................................239
7.5
Other Metal Ions
........................................................................................239
8.
FUNCTIONAL ASPECTS STUDIED BY NMR
.............................................240
8.1
pHTitrations
..............................................................................................240
8.2
Ligand Binding
..........................................................................................241
8.2.1
Diffusion Studies
...............................................................................242
8.2.2
Mapping of the Binding Site
..............................................................242
8.2.3
Conformation of the Bound Ligand
...................................................242
8.2.4
Changes in the Structure and Dynamics of the Protein
......................243
8.3
Enzyme Catalysis
......................................................................................243
8.3.1
Dihydrofolate
Reducíase
(DHFR)
.....................................................244
8.3.2
Triosephosphate Isomerase (TIM)
.....................................................244
8.4
Multi-Domain Structures
...........................................................................244
9.
REFERENCES
.................................................................................................244
9.1
Historical Foundation of Protein Structure and Function
..........................244
9.2
General Books on Proteins
........................................................................245
9.3
Books on Protein NMR
.............................................................................245
CONTENTS
ХІІІ
9.4
Study of Large Proteins
.............................................................................245
9.5
Protein Structure, Dynamics and Folding
..................................................246
9.6
Paramagnetic Proteins
...............................................................................246
9.7
Protein Binding and Function
....................................................................246
CHAPTER
7:
STRUCTURE AND DYNAMICS OF NUCLEIC ACIDS
......247
1.
INTRODUCTION
.............................................................................................247
1.1
Chemical Constitution of Nucleic Acids
...................................................247
1.2
Biological Role of Nucleic Acids
..............................................................249
1.3
Historical Background of Nucleic Acid Structures
...................................250
2.
ELEMENTS OF STRUCTURE OF NUCLEIC ACIDS
..................................251
2.1
Nomenclature
............................................................................................251
2.2
The Backbone Torsion Angles
..................................................................253
2.3
Glycosidic Bond Rotation
(χ)
....................................................................253
2.4
Sugar Pucker: Pseudo-Rotation Angle (P)
................................................253
2.5
Inter-base Hydrogen Bonding
..................................................................255
3.
NMR SPECTROSCOPY OF NUCLEIC ACIDS
.............................................256
3.1
Comparison with Protein NMR
.................................................................257
3.2
Classification of Chemical Shifts
..............................................................258
3.3
Identification of Networks of Coupled Spin-systems
................................258
3.4
Sequence Specific Resonance Assignment Strategies
...............................261
3.5
Resonance Assignments using 13C and 15N Labelled Nucleic Acids
.........262
4.
NMR PARAMETERS IN NUCLEIC ACIDS
..................................................264
4.1
Three Bond Coupling Constants (3J)
.........................................................264
4.2
31P- H Couplings
.......................................................................................265
4.3
Scalar Couplings across Hydrogen Bonds
.................................................265
4.4
Estimation of
Ή-Ή
Distances using
NOE
................................................266
4.5
Residual Dipolar Couplings (RDC)
...........................................................266
4.6
Use of Paramagnetic Labels
......................................................................267
5.
STRUCTURE SIMULATIONS OF NUCLEIC ACIDS
..................................267
5.1
Conformation of Deoxyribose andRibose Rings
......................................268
5.2
Backbone Torsion Angles
.........................................................................271
5.3
Glycosidic Torsion Angle
(χ)
....................................................................271
5.4
Hydrogen-bond Constraints for Base-pairs
...............................................271
5.5 3D
Structure from NMR data
....................................................................272
6.
UNUSUAL
DNA
STRUCTURES
...................................................................273
6.1
Sequence Dependent Variations in B-DNA
..............................................273
6.2
Mismatch Base-pairs
.................................................................................273
6.3
Hairpin Nucleic Acids
...............................................................................275
6.4
Parallel Stranded (ps)
DNA
Duplex
..........................................................276
6.5
Triple Stranded Nucleic Acids
..................................................................277
6.6
G-Quartet
...................................................................................................280
6.7
i-motifTetraplex
........................................................................................281
xiv CONTENTS
6.8
Cruciform Structure
...................................................................................282
6.9
Holliday or Four-way Junction
..................................................................283
7.
POLYMORPHISM IN
DNA............................................................................283
7.1
Concentration-induced Conformational Transition
...................................284
7.2 pH-
Induced Polymorphism
.......................................................................286
7.3
Effect of Temperature
................................................................................286
7.4
Effect of Metal Ions
...................................................................................287
8.
DYNAMICS OF NUCLEIC ACIDS
................................................................287
9.
REFERENCES
..................................................................................................288
9.1
Further Reading
.........................................................................................288
9.2
Books
.........................................................................................................288
9.3 DNA
Structure
..........................................................................................289
9.4
Parallel Stranded
DNA..............................................................................289
9.5
Triple-Helical Nucleic Acids
.....................................................................289
9.6
Isotope Labelling of Nucleic Acids
...........................................................290
CHAPTER
8:
CARBOHYDRATES, LIPIDS AND
LIPID
ASSEMBLIES
__291
1.
INTRODUCTION
.............................................................................................291
2.
CARBOHYDRATES
........................................................................................291
2.1
Biological Roles of Carbohydrates
............................................................292
2.2
Building Blocks of Carbohydrates
............................................................293
2.3
Oligosaccharides
.......................................................................................293
2.4
General Features of NMR of Carbohydrates
.............................................294
2.5
Primary Structures of Carbohydrates
.........................................................297
2.6
NMR Determination of the Conformation of Monosaccharides
...............297
2.7
Assignments of NMR Spectrum of Carbohydrates
...................................298
2.8
Structure and Dynamics of Polysaccharides
..............................................299
2.9
Glycoconjugates
........................................................................................300
2.10
Applications in Development of Bacterial Polysaccharides as
Vaccines
....................................................................................................301
2.11
Recognition Motifs in Polysaccharides
.....................................................302
2.12Proteoglycans
............................................................................................302
3.
LIPIDS AND MODEL MEMBRANES
...........................................................302
3.1
Elements of Biological Membranes
..........................................................303
3.2
Lipids
.........................................................................................................303
3.3
Conformation of Phospholipids
.................................................................305
3.4
Lipid
Vesicles and Bilayer Structures
.......................................................306
3.5
Membrane Architecture
.............................................................................307
4.
NMR STUDIES OF STRUCTURE AND DYNAMICS
OF
LIPID BILAYERS
.....................................................................................308
4.1
Molecular Motions in Model Membranes
.................................................308
4.2
Phase Transitions
.......................................................................................309
4.3
Lipid
Polymorphism in Model Membranes
...............................................311
4.4
13C NMR Studies of
Segmental
Motions in
Alkyl
Chains
........................311
4.5
Molecular Order and 2H NMR Studies of Membrane Organization
.........312
4.6
Modulation of Motion and Order of Lipids by Larger Molecules
.............313
CONTENTS
XV
4.7
Measurement of
Lateral
Diffusion using NMR
.........................................314
5.
REFERENCES
..................................................................................................314
5.1
Further Reading
.........................................................................................314
5.2
Books and Reviews
...................................................................................315
CHAPTER
9:
HIGH-RESOLUTION SOLID-STATE NMR
..........................317
1.
INTRODUCTION
.............................................................................................317
2.
NMR HAMILTONIANS IN SOLID-STATE
..................................................317
2.1
NMR Hamiltonian in Solid-State
.............................................................318
2.2
Chemical Shift Anisotropy (Fcsa)
.............................................................320
2.3
Heteronuclear Dipolar Interactions [//het(D)]
..............................................323
2.4
Homonuclear Dipolar Interactions [i?homo(D)]
............................................324
2.5
Quadrupolar Interaction (HQ)
....................................................................325
2.6
Scalar Coupling
[Щ
..................................................................................326
3.
STRATEGIES FOR OBTAINING HIGH-RESOLUTION NMR
SPECTRA IN SOLID-STATE
..........................................................................326
3.1
Magic-Angle Spinning (MAS)
..................................................................328
3.2
Heteronuclear Dipolar Decoupling (DD)
..................................................329
3.3
Cross Polarization (CP)
.............................................................................330
3.4
31PNMR
....................................................................................................331
3.5
Spectra of Dilute Spin
1/2
Nuclei
..............................................................331
3.6
HNMR
.....................................................................................................332
3.7
Heteronuclear and Homonuclear Correlation Experiments
.......................333
3.8
2HNMR
.....................................................................................................334
3.9
Measurement of Internuciear Distances in Solid-State:
Dipolar Recoupling
...................................................................................335
3.10
Reintroduction
of CSA
..............................................................................336
4.
PROTEIN STRUCTURE DETERMINATION USING
SOLID-STATE NMR
.......................................................................................338
4.1
Membrane Proteins
...................................................................................338
4.2
Polarisation Inversion at Magic Angle: PISA Wheels
..............................340
4.3
Structure Analysis using MAS Solid-State NMR
......................................341
4.4
Ion Channel Proteins
.................................................................................341
4.5
Bacteriorhodopsin (bR)
.............................................................................342
4.6
Amyloid Proteins
.......................................................................................343
4.7
Structure of the Coat Protein in fd Filamentous Bacteriophage
Particles
.............................................................................................................345
4.8
Collagen
....................................................................................................345
4.9
Other Fibrous Proteins
...............................................................................347
4.10
Other Systems
............................................................................................347
5.
FUTURE OF SOLID-STATE NMR IN BIOLOGY
.........................................347
6.
REFERENCES
..................................................................................................348
6.1
Further Reading
.........................................................................................348
6.2
Books and Reviews
...................................................................................349
XVI
CONTENTS
CHAPTER
10: BIOMOLECULAR
INTERACTIONS
AND SUPRAMOLECULAR ASSEMBLIES
....................................................351
1.
INTRODUCTION
.............................................................................................351
2.
INTERMOLECULAR INTERACTIONS
........................................................352
3.
NMR APPROACHES TO STUDY BIOMOLECULAR
INTERACTIONS
..............................................................................................352
3.1
Experimental Considerations
.....................................................................352
3.2
Use of
NOE
and RDC
...............................................................................353
3.3
Use of Perturbations in Chemical Shifts (CSPs)
.......................................353
3.4
Relaxation Rates
........................................................................................354
3.5
Use Paramagnetic Probes
..........................................................................354
3.6
Cross Saturation Method
..........................................................................355
3.7
Strategies for Structure Simulations
..........................................................356
4.
PROTEIN-PROTEIN INTERACTIONS
..........................................................356
5.
PROTEIN-DNA INTERACTIONS
..................................................................359
5.1
Biological Importance
...............................................................................359
5.2
Nature of Protein-Nucleic Acid Interactions
.............................................360
5.3
Structure Calculation of Protein-Nucleic Acid Complexes
.......................360
5.4
Examples of Protein-DNA Interactions
.....................................................361
5.4.1
Myocyte Enhancer Factor 2A (MEF2A)-DNA Complex
.............361
5.4.2
Far-upstream Element-Binding Protein (FBP) Bound
to Single-Stranded
DNA:...............................................................363
6.
RNA
STRUCTURES AND THEIR INTERACTION WITH PROTEINS
.......363
6.1
Structural Motifs in
RNA
Structures
.........................................................364
6.2
Introduction to NMR of
RNA
...................................................................364
6.3
Transfer
RNA
(tRNA) and its Interaction with Aminoacyl-tRNA
Synthetase
..................................................................................................365
6.4
Ribosomal
RNA
........................................................................................368
6.5
Protein-RNA Interactions
..........................................................................369
6.6
NMR Studies of Protein-RNA Interactions
...............................................369
6.6.1
JDV Tat-BIV TAR Complex
........................................................369
6.6.2
HIV-1 Rev peptide-RRE
RNA
complex
.......................................370
6.6.3
Splicing Factor 1-RNA complex
...................................................371
7.
SUPRAMOLECULAR ASSEMBLIES
............................................................371
7.1
Bone
..........................................................................................................371
7.2
Skeletal Muscle
.........................................................................................372
7.3
Large
DNA
and its Complexes
..................................................................372
7.4
Chlorophyll
................................................................................................372
8.
FUTURE OF NMR STUDIES ON SUPRAMOLECULAR SYSTEMS
..........374
9.
REFERENCES
..................................................................................................374
9.1
Further Reading
.........................................................................................374
9.2
RNA
Structure
...........................................................................................374
9.3
Protein-Nucleic acid Interactions
..............................................................375
9.4
Books
.........................................................................................................375
CONTENTS
XVii
CHAPTER
11:
MAGNETIC RESONANCE IMAGING
.................................377
1.
INTRODUCTION
.............................................................................................377
2.
PRINCIPLES OF NMR IMAGING
..................................................................377
3.
SPATIAL LOCALIZATION OF THE NUCLEUS TO BE IMAGED
.............379
3.1
Slice Selection
...........................................................................................380
3.2
Sensitive-Point Method
.............................................................................381
3.3
Two-Dimensional Fourier Imaging
...........................................................382
3.3.1
Slice Selection
....................................................................................383
3.3.2
Phase Encoding
..................................................................................383
3.3.3
Frequency Encoding
...........................................................................384
3.3.4
Fourier Transform
..............................................................................384
3.3.5
Multi-slice Imaging
............................................................................385
3.4
k-Space
......................................................................................................385
4.
PULSE SEQUENCES IN
MRI
.........................................................................387
4.1
Spin-echo
(SE)
..........................................................................................388
4.2
Half Fourier Transform Imaging (HFI)
.....................................................389
4.3
Inversion Recovery
(IR)
............................................................................390
4.4
The Need for Fast Imaging Techniques
.....................................................391
4.5
Gradient Echo
(GRE)
................................................................................392
4.6
Turbo-Spin-Echo (TSE)
............................................................................393
4.7
Single-Shot Techniques: Echo Planar Imaging
(EPI)
................................395
4.8
Parallel Imaging
........................................................................................396
4.9
Three Dimensional Imaging
......................................................................397
4.10
Motion Suppression Techniques
...............................................................397
4.11
Scan Speed
................................................................................................397
4.12
Receiver Coils
...........................................................................................398
4.13
Display
......................................................................................................398
4.14
Future
........................................................................................................399
5.
TISSUE CONTRAST BASED ON RELAXATION RATES
AND
Ή
DENSITY
...........................................................................................399
5.1
Proton Density (PD)
..................................................................................400
5.2
Relaxation times
Ti
and T2
........................................................................401
5.3
Achieving Contrast
....................................................................................402
5.4
Lipid
Signals
..............................................................................................404
5.5
Susceptibility Effects: Diamagnetic Interfaces
..........................................404
5.6
Paramagnetic and Ferromagnetic Materials: Contrast
Enhancement
(CE)
.....................................................................................405
5.7
Other Imaging Parameters
.........................................................................406
6.
IMAGE CONTRAST BASED ON FLOW, DIFFUSION
AND
PERFUSION
...........................................................................................406
6.1
Magnetic Resonance Angiography
(MRA)
...............................................407
6.2
Diffusion-weighted Imaging (DWI)
..........................................................408
6.3
Perfusion
....................................................................................................410
6.4
Magnetization Transfer (MT)
....................................................................411
7.
FUNCTIONAL
MRI (ÍMRI)
............................................................................411
xviii CONTENTS
7.1
Principle of
ÍMRI
......................................................................................411
7.2
Methodology
.............................................................................................412
7.3
Applications of
fMRI
................................................................................413
7.4
Limitations and Future Outlook
................................................................415
8.
MRI
AS A CLINICAL TOOL
..........................................................................415
8.1
Central Nervous System (CNS)
.................................................................415
8.1.1
Ischaemic Stroke
...........................................................................416
8.1.2
Haemorrhage Stroke
......................................................................416
8.1.3
Neurological Diseases
...................................................................417
8.2
Musculoskeletal System
............................................................................417
8.3
Heart and Cardiovascular System
..............................................................418
8.4
Breast
.........................................................................................................418
8.5
MRI
in Pregnancy
.....................................................................................420
8.6
Genitourinary System
................................................................................420
8.7
Gastrointestinal System
.............................................................................420
8.8
Prostate Cancer
..........................................................................................420
8.9
Interventional Imaging
..............................................................................421
8.10
Patient Comfort and Precautions
...............................................................421
9.
REFERENCES
..................................................................................................422
9.1
Further Reading
.........................................................................................422
9.2
Books and Reviews
...................................................................................422
CHAPTER
12:
STUDY OF METABOLISM: CELLS AND TISSUES
..........423
1.
INTRODUCTION
.............................................................................................423
1.1
Cell-metabolism is the Bridge between Proteomics and Function
...........423
1.2
Measurement of Products of Metabolism
.................................................424
2.
METABOLIC CYCLES AND PATHWAYS
..................................................425
2.1
Glycolysis
..................................................................................................426
2.2
Citric Acid (Kreb s) Cycle
......................................................................427
2.3
Oxidative Phosphorylation
........................................................................428
2.4
Pentose Phosphate Pathway, Gluconeogenesis and Glycogen
Synthesis
....................................................................................................428
2.5
Fatty Acid Synthesis and Degradation
......................................................429
2.6
Amino
Acid Metabolism
...........................................................................429
2.7
Integration and Control
..............................................................................429
2.8
Metabolic Profile and Requirements of each Body Organ
is Different
.................................................................................................430
2.9
31P NMR and Metabolism
.........................................................................431
2.10 HNMRSpectroscopy
..............................................................................433
2.11
13C NMR Spectroscopy
.............................................................................434
3.
STUDIES OF BODY FLUIDS
........................................................................435
3.1
Metabolomic Analysis using Biological Fluids
........................................435
3.2
Ή
and 13C Chemical Shifts of Common Metabolites: Assignments
.........437
3.3
Suppression of Water and Other Undesirable Signals
...............................439
3.4
Multi-dimensional NMR and Quantification
.............................................440
CONTENTS
ХІХ
3.5
Multi-variant Statistical Analysis
..............................................................440
3.6
Applications ofMetabonomics
..................................................................441
4.
CELLULAR NMR SPECTROSCOPY
.............................................................442
4.1
Technical Aspects of NMR in Cells
..........................................................443
4.2
Studies on Spermatozoa
............................................................................444
4.3
Identification of Low Molecular Weight Compounds in Cells
..................444
4.4
Biochemical Changes during Cell Maturation, Modification
and Differentiation
.....................................................................................445
4.5
Glycolysis in Cells
.....................................................................................446
4.6
Effect of Exogenous Compounds on Metabolism
.....................................447
4.7
In-Cell Studies of Macromolecular Structure and Dynamics
....................447
5.
STUDIES OF TISSUES USING SOLID-STATE NMR TECHNIQUES
........449
6.
REFERENCES
..................................................................................................451
6.1
Further Reading
.........................................................................................451
6.2
Books and Reviews
...................................................................................452
CHAPTER
13:
MRS STUDIES OF METABOLISM IN ANIMALS
AND HUMANS
.....................................................................................................453
1.
INTRODUCTION
.............................................................................................453
2.
TECHNIQUES FOR DETECTING MR SIGNALS
.........................................454
2.1
Spectral Localization
.................................................................................454
2.2
Water Suppression
.....................................................................................456
2.3
Depth Resolved Surface Coil Spectroscopy (DRESS)
..............................456
2.4
Image Guided Protocols
............................................................................457
2.5
Image Selected in vivo Spectroscopy (ISIS)
..............................................457
2.6
Stimulated Echo Acquisition Mode Spectroscopy (STEAM)
...................458
2.7
Point Resolved Spectroscopy (PRESS)
.....................................................459
2.8
Comparison of STEAM and PRESS
.........................................................459
2.9
Multiple Volume Spectroscopy (MVSI or
CSI)
........................................460
2.10
Recent Developments in MRS
..................................................................461
2.11
Detection of Metabolites using 2D NMR
.................................................462
3.
UNDERSTANDING THE CHEMISTRY OF BRAIN THROUGH MRS
.........462
3.1
Ή
NMR Spectroscopy
..............................................................................463
3.2
13C NMR: The
Glu,
Gin,
GABA
Cycle
.....................................................465
3.3
Age and Disease Related Changes in MRS of Brain
.................................466
4.
MRS OF OTHER ORGANS
.............................................................................466
4.1
Muscle
.......................................................................................................467
4.2
Insulin Regulation of Glycogen Metabolism
.............................................469
4.3
Breast
.........................................................................................................469
4.4
Prostrate
.....................................................................................................471
4.5
Cardiovascular Disorders
..........................................................................472
5.
MR IMAGING AND SPECTOSCOPY USING OTHER
NUCLEIAR SPINS
...........................................................................................472
5.1
Difficulties in vivo
Spectroscopie
Studies using other Spins
...................473
5.2
19F
..............................................................................................................473
XX
CONTENTS
5.3
2Н
...............................................................................................................475
5.4
7Li
..............................................................................................................475
5.5 23Na............................................................................................................476
5.6 3Heand129Xe.............................................................................................476
5.7
Other Nuclear
Spins..................................................................................477
6. APPLICATIONS
OF
NMR IN
DRUG
DEVELOPMENT...............................477
6.1
Stages in
Drag Development.....................................................................477
6.2 Target
Validation and Receptor Identification
..........................................478
6.3
Structural Approach to Drag-design.........................................................
479
6.4
Drag-Receptor Binding
............................................................................480
6.5
Lead Identification: Ligands for Hot Spot
.................................................480
6.6
Second Binding Site: The Linked-Fragment Strategy
...............................482
6.7
Lead Optimization
.....................................................................................482
6.8
Pre-clinical Studies: Drag Metabolism using Body Fluids
........................482
6.9
Human Trials
.............................................................................................483
6.10
Drag purity: Interfacing NMR with LC and MS
.......................................484
6.11
Use of Solid-State NMR for Drag Powders
..............................................484
7.
REFERENCES
..................................................................................................485
7.1
Further Reading
.........................................................................................485
7.2
Books and Reviews
...................................................................................486
CHAPTER
14:
STRUCTURE AND METABOLISM OF PLANTS
..............487
1.
INTRODUCTION
.............................................................................................487
1.1
Cell Structure of Plants
.............................................................................487
1.2
Biochemistry of Plants
..............................................................................488
1.3
Importance of NMR in Plant Biochemistry
...............................................488
2.
UNIQUE METABOLIC PATHWAYS IN PLANTS
.......................................489
2.1
Photosynthesis
...........................................................................................489
2.2
Nitrogen Metabolism
.................................................................................489
2.3
Photorespiration
.........................................................................................489
2.4
Sulphur Metabolism
..................................................................................490
3.
NMR OF PLANTS: GENERAL FEATURES
..................................................490
3.1
Handling Whole Plants
..............................................................................490
3.2
Tissues and Small Plants
...........................................................................492
3.3
General Features of Plant NMR
...............................................................492
3.4
Scope of Plant NMR
..................................................................................493
3.5
Nuclear Spins used in Plant NMR
.............................................................493
3.6
Interpretation of Spectra
............................................................................495
3.7
Compartmentation in Plant Cells
..............................................................495
4.
PLANT METABOLISM USING NMR
...........................................................496
4.1
Tissues, Cells and Cell Extracts
................................................................496
4.2
Nitrogen Metabolism
.................................................................................497
4.3
Amino
Acid Metabolism
...........................................................................499
4.4
Photosynthesis
...........................................................................................499
4.5
Carbon Metabolism
...................................................................................500
CONTENTS
ХХІ
4.6
Sulphur Metabolism
..................................................................................500
4.7
Phosphorus Metabolism
...........................................................................501
4.8
Other ions and Substrates
..........................................................................501
4.9
Paramagnetic Reagents
..............................................................................501
4.10
Effect of Physiological Conditions
............................................................502
4.11
Secondary Metabolic Pathways
.................................................................502
4.12
Plant-Fungal Relations
..............................................................................502
5.
METABOLIC FLUXES AND PLANT METABOLOMICS
...........................502
5.1
Analysis of Metabolic Fluxes
....................................................................503
5.2
Secondary Products of Plant Metabolism
..................................................503
5.3
Plant Metabolomics
...................................................................................503
6.
IMAGING AND MICROSCOPY IN PLANTS
...............................................503
6.1
NMR Microscopy
......................................................................................504
6.2
Studies of Plant Water
...............................................................................504
6.3
Studies of Roots
.........................................................................................505
6.4
Stems, Leaves and Flowers
.......................................................................505
6.5
Fruits and Seeds
.........................................................................................505
6.6
Chemical Shift Imaging
.............................................................................506
7.
SOLID-STATE NMR STUDIES
......................................................................506
7.1
Studies on Plant Organelles
.......................................................................506
7.2
Solid-State NMR on PS I and PS II
...........................................................507
7.3
Chlorosomal Bacteriochlophylls
...............................................................508
8.
REFERENCES
..................................................................................................509
8.1
Further Reading
.........................................................................................509
8.2
Books and Reviews
...................................................................................510
INDEX
..................................................................................................................511
|
adam_txt |
CONTENTS
PREFACE
.xxiii
FOREWORD
.xxv
ACKNOWLEDGEMENTS
.xxvii
ABBREVIATIONS
.xxix
CHAPTER
1:
BASIC CONCEPTS IN NMR SPECTROSCOPY
.1
1.
HISTORICAL PERSPECTIVES
.1
1.1
Quantum Mechanical Model for Spin-
1/2
Nuclei
.2
1.2
Classical Model
.4
1.2.1
Rotating Frame of Reference
.5
1.2.2
Strength of RF Pulses
.5
1.3
Basic Design of a NMR Spectrometer
.6
1.4
A Simple Pulse Sequence for NMR Excitation and Detection
.8
1.5
Fourier Transform
.9
1.6
Line Widths
.10
1.7
Properties of Spin Operators and
Pauli
Matrices
.10
2.
NMR SPINS USED IN LIFE SCIENCES
.11
3.
INTERACTION OF NUCLEAR SPINS AND NMR PARAMETERS
.12
3.1
Chemical Shift
(б)
.12
3.2
Peak Intensities
.15
3.3
Nuclear Spin-Spin (Scalar) Coupling (J)
.16
3.4
Hamiltonian for a 2-spin System
.17
3.5
Dipolar Coupling
(Dij)
.20
3.6
Quadrapolar Interactions
.21
3.7
Electron-Nuclear Interaction
.22
4.
NMR RELAXATION
.23
4.1
Relaxation Rates
.23
4.2
Molecular Mechanisms Leading to Relaxation
.24
4.3
Theoretical Treatment of Relaxation Rates
.25
4.4
Correlation Times
.26
4.5
Dipolar Relaxation due to Several Interacting Spins
.29
4.6
Field Dependence of Relaxation Rates
.29
5.
CHEMICAL EXCHANGE: DYNAMIC EFFECTS
IN NMR SPECTROSCOPY
.30
5.1
Conformational Equilibrium
.30
5.2
Solvent Exchange
.32
6.
NUCLEAR MAGNETIC DOUBLE RESONANCE
.33
6.1
Spin Decoupling
.33
6.2
Heteronuclear and Broad-band Decoupling
.34
6.3
Nuclear Overhauser Effect
(NOE)
.34
7.
LINE SHAPES IN NMR
.37
7.1
Absorptive and Dispersive Signals
.37
v
vi
CONTENTS
7.2
Characteristics
ofFT-NMR Signals
.38
7.3
Quadrature
Phase Detection
.39
8.
REFERENCES
.40
8.1
History and Early Developments
.40
8.2
Theoretical and Physical Aspects of NMR
.40
8.3
Chemistry Oriented Books
.41
8.4
Specialized Topics
.41
CHAPTER
2:
INTRODUCTION TO BIOLOGICAL NMR
.43
1.
LEVELS OF BIOLOGICAL STRUCTURES
.44
2.
NMR AND BIOLOGICAL STRUCTURES
.46
3.
DIFFICULTIES IN STUDYING BIOLOGICAL SYSTEMS BY NMR
.47
3.1
Sensitivity
.47
3.2
Resolution
.48
3.3
Assignments
.48
3.4
Water Signal
.48
3.5
Line Widths
.49
3.6
Quantification
.50
4.
BIOLOGICAL MACROMOLECULES
.50
4.1
Building Blocks of Biological Molecules
.50
4.2 Biopolymers.51
4.3 3D
Structures of Biological Molecules
.52
4.4
Comparison of
3D
Structures Obtained from NMR and X-ray
.53
5.
NMR IN CELLS AND TISSUES
.54
5.1
Cellular Metabolism is the Bridge between Proteomics and Function
.55
6.
NMR IN STUDIES OF ORGANS
.55
6.1
Historical Development of
MRI
.56
6.2
Basis of
MRI
.56
6.3
Comparison of Images from NMR and Other Techniques
.57
6.4
Magnetic Resonance Spectroscopy (MRS)
.59
7.
BASIC MULTI-PULSE NMR EXPERIMENTS IN BIOLOGICAL
SYSTEMS
.59
7.1
Signal Averaging and Partial Saturation
.59
7.2
Presaturation
.61
7.3
Jump and Return (JR) Sequence
.61
7.4
Spin-echo
(SE)
.62
7.4.1
Effect of Inhomogeneity of Bo
.62
7.4.2
Behaviour of J-Coupled Systems
.63
7.4.3
Application of
SE
.66
7.5
Carr-Purcell-Meiboom-Gill (CPMG) Sequence
.66
7.6
Inversion Recovery Experiment
(IR)
.66
8.
COMPARISION OF NMR OTHER PHYSICAL TECHNIQUES
.67
9.
REFERENCES
.68
9.1
Theoretical and Physical Aspects of NMR
.68
9.2
Biological Molecules
.68
9.3
Biomedical
Systems
.68
CONTENTS
VU
CHAPTER
3:
MULTI-DIMENSIONAL NMR
.69
1.
INTRODUCTION
.69
1.1
Multi-Dimensional (MD) NMR
.69
1.2
General Scheme for 2D NMR
.69
1.3
Correlated SpectroscopY (COSY)
.72
1.4
Advantages of 2D NMR
.73
2.
PRODUCT OPERATOR FORMALISM
(POF)
.74
2.1
Product Operators
(PO)
.75
2.2
Coherences
.75
2.3
Observable Coherences
.77
2.4
Effect ofRF Pulses on Product Operators
.77
2.5
Evolution of Product Operators under free Hamiltonian
.78
2.6
Effect of Composite
π
pulses on Product Operators
.78
2.7
Evolution of MQ Coherences
.79
2.8
Evolution of Zero Quantum Coherences
.79
2.9
Evolution of Two Quantum Coherences
.79
3.
HOMONUCLEAR CORRELATION SPECTROSCOPY
.80
3.1
Correlation Spectroscopy (COSY)
.80
3.2
Phase Cycling
.81
3.2.1
CYCLOPS
.82
3.2.2
Axial Peak Suppression
.82
3.3
Relayed COSY
.83
3.4
TOtal Correlation SpectroscopY (TOCSY)
.84
3.5
MQ-Filtered COSY
.85
3.5.1
Multiple-Quantum Filtering
.85
3.5.2
Double-Quantum Filtered COSY (2QF-COSY)
.86
3.5.3
Three-Quantum Filtered COSY (3QF-COSY)
.87
3.5.4
Exclusive COSY
.89
3.6
EXSYandNOESY
.90
3.7
Rotational Nuclear Overhauser Effect SpectroscopY (ROESY)
.91
4.
MULTIPLE-QUANTUM (MQ) SPECTROSCOPY
.92
4.1
2D Double-Quantum (DQ) Experiment
.92
5.
HETERONUCLEAR CORRELATION SPECTROSCOPY
.94
5.1
Insensitive Nuclei Enhanced by Polarization Transfer (INEPT)
.94
5.2
Reverse INEPT
.96
5.3
Refocused INEPT
.96
5.4
Distortionless Enhanced by Polarization Transfer
(DEPT)
.97
5.5
Broadband Decoupling
.97
5.6
Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC)
.99
5.7
Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC)
. 101
5.8
Sensitivity Enhanced HSQC
.101
6.
PULSED FIELD GRADIENTS
.102
6.1
Coherence Pathway Selection using PFG
.103
6.2
Water Suppression by Gradient Tailored Excitation (WATERGATE)
.104
viii CONTENTS
7.
THREE DIMENSIONAL
(3D)
EXPERIMENTS
.105
7.1 3D
Double-Resonance Experiments
.106
7.2 3D
NOESY-tOC/lSN-lH] HSQC
.106
7.3 3D
TOCSY-flSC/lSN-lH] HSQC
.108
7.4 3D
Triple Resonance Experiments
.108
8.
TECHNIQUES FOR SOLUTION NMR OF VERY LARGE
MOLECULES
.108
9.
REFERENCES
.110
9.1
Theoretical and Physical Aspects
.110
9.2
Review Articles
.110
9.3
Three Dimensional NMR
.110
10.APPENDIX3.1
.
Ill
CHAPTER
4:
BIOMOLECULAR STRUCTURES USING NMR:
GENERAL PRINCIPLES
.113
1.
INTRODUCTION
.113
1.1
Conformation of Biological Molecules
.114
1.2
Conformational Theory
.115
1.3
Conformational Domains of Proteins and Nucleic Acids
.118
2.
ELEMENTS OF MACROMOLECULAR STRUCTURES
.119
2.1
Primary Structure
.119
2.2
Secondary Structures
.120
2.3
Tertiary Structures
.120
2.4
Quaternary Structures
.120
2.5
Multi-molecular Assemblies
.121
2.6
Random Coil Structures
.121
3.
SAMPLE PREPARATION FOR NMR: LABELLING TECHNIQUES
.121
3.1
Preparation of Samples for NMR
.122
3.1.1
Cloning and Expression of Proteins
.123
3.1.2
Taming Proteins
.124
3.1.3
Protein Recovery
.125
3.1.4
Protein Purification
.125
3.1.5
Ion-exchange Chromatography
.126
3.1.6
Affinity Chromatography
.126
3.1.7
Gel Filtration
.126
3.1.8
Approaches in Structural Genomics
.126
3.2
Isotope Labelling
.127
3.3
Concentration
.127
3.4
Quality Assessment and Storage
.128
3.5
Synthesis of Nucleic Acids
.128
3.6
RNA
Samples
.128
3.7
Purification of Nucleic Acids
.129
3.8
BC and 15N Labelling of Nucleic Acids
.129
3.9
In-vitro
RNA
Transcription and Purification
.130
4.
NMR APPROACH TO STRUCTURAL STUDIES
.130
CONTENTS ix
4.1 NMR
Strategies
.131
4.2 General
Approach for the Resonance Assignments in Biomolecules
.131
5.
NMR PARAMETERS FOR STRUCTURAL STUDIES
.133
5.1
Chemical Shifts: Magnetic Anisotropy of Chemical Groups
.133
5.1.1
Ring Current Effects
.134
5.1.2
Changes in Chemical Shifts and Secondary Structures
.135
5.2
Chemical Shifts and 2H Exchange Rates of Hydrogen Bonded Protons.
135
5.3
Nuclear Overhauser Effect
(NOE)
.136
5.3.1
Limitations of
NOE
.136
5.3.2
Introduction of
NOE
Constraints
.138
5.4
Scalar Coupling Constants (J)
.138
5.4.1
Torsion Angle Dependence of 3J
.139
5.4.2
Coupling Constants across Hydrogen Bonds
.140
5.5
Residual Dipolar Couplings (RDC)
.141
5.5.1
Partial Alignment
.142
5.5.2
Methods of Achieving Partial Alignment of Biological
Molecules
.144
5.5.3
Use of RDC for
3D
Structure Determination
.144
5.5.4
Advantages of RDC
.145
5.6
Use of Cross-Correlated Relaxation
.145
5.7
Covalent Bond Distances
.147
5.8
Stereochemical Assignments
.148
5.9
Removing Undesirable Restraints
.149
6.
PARAMAGNETIC MOLECULES AND REAGENTS
.149
6.1
Contact Shifts
.150
6.2
Pseudo-Contact Shifts
.150
6.3
Relaxation Rates
.151
6.4
Metallo-Proteins
.152
6.5 Lanthanides
Shift Reagents
.152
6.6
Use of Spin Labels
.153
7.
FROM NMR PARAMETERS TO STRUCTURES
.153
7.1
Starting Structures
.153
7.2
Metric Matrix Distance Geometry
.154
7.3
Variable Target Functions: Torsion Angle Approaches
.155
7.4
Molecular Mechanics and Molecular Dynamics Algorithms
.155
7.5
Torsion Angle Dynamics (TAD)
.157
7.6
Restraint Energy Minimization
.158
7.7
Validation of Final Structures
.159
7.8
Presenting the Final Structures
.160
8.
DATA BANKS FOR STRUCTURES AND NMR OF BIOMOLECULES
.160
8.1
Protein and Nucleic Acid Data Banks (PDB)
.160
8.2
Biological Magnetic Resonance Data Bank
(BioMagResBank; BMRB)
.161
8.3
Applications of Data Banks
.161
8.4
Where to look for Literature on NMR Structures
.162
9.
REFERENCES
.162
9.1
Further Reading
.162
9.2
Books
.162
X
CONTENTS
CHAPTER
5:
PROTEIN NMR: GENERAL PRINCIPLES
AND RESONANCE ASSIGNMENTS
.163
1.
INTRODUCTION
.163
1.1
Functions of Proteins
.163
1.2
Conformation and Dynamics of Proteins
.164
1.3
History of Protein Structure Determination
.166
2.
ELEMENTS OF PROTEIN STRUCTURES
.167
2.1
Nomenclature
.167
2.2
Backbone and Side-chain Torsion Angles
.167
2.3
Primary Structure
.169
2.4
Conformational Freedom of Peptides
.170
2.5
Disulfide Bridges and
Proline
Rings
.172
2.6
Secondary Structures
.172
2.6.1
α
-helix.
173
2.6.2 ß-strands
and
ß-sheet.173
2.6.3 ß-turns.175
2.6.4
Collagen
.175
2.6.5
Poly (L-Proline)
.175
2.7
Fibrous Proteins
.176
2.8
Tertiary Structure: Globular Proteins
.176
2.9
Higher Levels of Structural Organization
.176
3.
INTRODUCTION TO NMR OF PROTEINS
.177
3.1
History of NMR of Proteins
.177
3.2
Current Status
.178
3.3
Sample Preparation
.179
3.4
NMR Approach to Protein Structure
.179
3.5
Classification of Chemical Shifts
.180
3.6
13Caand BCP Chemical Shift Statistics
.181
4.
RESONANCE ASSIGNMENT STRATEGIES
.181
4.1
Identification of Networks of J-coupled Spin Systems
.181
4.1.1
Glycine
.182
4.1.2
Amino
acids Containing Methyl Group(s):
Ala, Thr, Val, Ile
and Leu
.182
4.1.3
Asn, Asp, Cys and
Ser
.183
4.1.4
His, Phe,
Trp
and
Tyr
.183
4.1.5
Long Side-chain Residues
.184
4.2
Linking Side Chains to the Respective Amide Protons
.184
4.3
Sequence Specific Resonance Assignments
.184
4.4
Identification of Disulfide Bridges
.185
4.5
Stereo-specific Resonance Assignments
.186
4.6
Higher Dimensional NMR
.186
5. 3D
TRIPLE-RESONANCE EXPERIMENTS FOR PROTEINS
.186
CONTENTS xi
5.1 HNCA.187
5.2
HN(CO)CA.
189
5.3
HNCO
.190
5.4
HNCCA^O
.190
5.5
CBCANH
.191
5.6
CBCA(CO)NH
.191
5.7
HN(CA)HA and
ИЅКСОСА^А
.191
5.8 3D
Experiments used for Side-Chain Resonance Assignments
in Proteins
.192
6.
REDUCED DIMENSIONALITY: G-MATRIX FTNMR FOR PROTEINS
.192
6.1
RDNMR
.193
6.2
GFTNMR
.195
7.
AUTOMATED NMR ASSIGNMENTS IN PROTEINS
.197
7.1
Tracked Automated Assignment in Proteins (TATAPRO)
.198
7.2
Selective Labeling/Unlabeling: Residue Specific
Resonance Assignments
.199
7.3
Side-chain Assignments
.200
7.4
Automated Chemical Shift Prediction Based on Sequence Homology
.200
8.
TECHNIQUES FOR STUDYING LARGE PROTEINS
.201
8.1
Transverse Relaxation Optimized SpectroscopY (TROSY)
.201
8.2
2H labelling
.202
9.
PROTONLESS
MULTI-DIMENSIONAL NMR
.203
9.1
2D
Protonless NMR
.204
9.2
The Problem of Large Homonuclear Couplings
in Acquisition Dimension
.204
9.3 3D
Protonless NMR
.207
lO.REFERENCES
.208
10.1
Historical Foundation of Protein Structure and Function
.208
10.2
General Books on Proteins
.208
10.3
Books on Protein NMR
.209
10.4
Study of Large Proteins
.209
CHAPTER
6:
STRUCTURE, DYNAMICS AND FUNCTION
OF PROTEINS
.211
1.
INTRODUCTION
.211
2.
CHARACTERIZATION OF SECONDARY STRUCTURE ELEMENTS
.211
2.1
Chemical Shift Index
(CSI)
.211
2.2
Secondary Structure using Chemical Shift and Sequence Homology
.213
2.3
Nuclear Overhauser Effect
(NOE)
.213
2.4
Three bond Scalar-couplings (3J)
.215
2.5
'H^H* Exchange
.215
3.
OBTAINING THE FINAL STRUCTURES
.217
3.1 3D
Structure Calculation
.217
3.2
Automated NOESY Assignments
.218
3.3
Structural Statistics and Quality
.218
xii CONTENTS
4. PROTEIN DYNAMICS.219
4.1 NMR Parameters
for Studying
Dynamics.220
4.2 Basic
Theory
.220
4.3 Protein Dynamics
using NMR
.221
4.4
Experimental Results.
222
5. PROTEIN
FOLDING AND UNSTRUCTURED PROTEINS
.223
5.1
Protein Folding Pathways
.223
5.2
NMR Methodologies for Studying Unfolded Protein Structures
.224
5.3
Molten Globules
.225
5.4
Unstructured Functional Proteins
.225
5.5
Protein Structures under High Pressure
.226
6.
NMR STUDIES OF PROTEIN STRUCTURE, DYNAMICS
AND FOLDING: SOME SPECIFIC EXAMPLES
.226
6.1
Basic Pancreatic
Trypsin
Inhibitor (BPTI)
.227
6.2
Human Ubiquitin
.228
6.3
Ribonuclease
.228
6.4
Lysozyme
.228
6.5
EF-hand Calcium Binding Proteins (CaBP)
.230
6.6
Maléate
Synthase
G (MSG)
.231
6.7
GroEL-GroES Complex
.231
6.8
Membrane Proteins Studied in Solutions
.232
7.
PARAMAGNETIC PROTEINS
.232
7.1
Metal Ions of Interest
.233
7.2
Heme
Iron Proteins
.234
7.2.1
High-Spin Iron (III)
.236
7.2.2
Low Spin Iron (III)
.237
7.2.3
High Spin Iron (II)
.237
7.2.4
Diamagnetic Iron
Heme
Proteins
.238
7.3
Iron-Sulfur Proteins
.238
7.4
Other Iron Proteins
.239
7.5
Other Metal Ions
.239
8.
FUNCTIONAL ASPECTS STUDIED BY NMR
.240
8.1
pHTitrations
.240
8.2
Ligand Binding
.241
8.2.1
Diffusion Studies
.242
8.2.2
Mapping of the Binding Site
.242
8.2.3
Conformation of the Bound Ligand
.242
8.2.4
Changes in the Structure and Dynamics of the Protein
.243
8.3
Enzyme Catalysis
.243
8.3.1
Dihydrofolate
Reducíase
(DHFR)
.244
8.3.2
Triosephosphate Isomerase (TIM)
.244
8.4
Multi-Domain Structures
.244
9.
REFERENCES
.244
9.1
Historical Foundation of Protein Structure and Function
.244
9.2
General Books on Proteins
.245
9.3
Books on Protein NMR
.245
CONTENTS
ХІІІ
9.4
Study of Large Proteins
.245
9.5
Protein Structure, Dynamics and Folding
.246
9.6
Paramagnetic Proteins
.246
9.7
Protein Binding and Function
.246
CHAPTER
7:
STRUCTURE AND DYNAMICS OF NUCLEIC ACIDS
.247
1.
INTRODUCTION
.247
1.1
Chemical Constitution of Nucleic Acids
.247
1.2
Biological Role of Nucleic Acids
.249
1.3
Historical Background of Nucleic Acid Structures
.250
2.
ELEMENTS OF STRUCTURE OF NUCLEIC ACIDS
.251
2.1
Nomenclature
.251
2.2
The Backbone Torsion Angles
.253
2.3
Glycosidic Bond Rotation
(χ)
.253
2.4
Sugar Pucker: Pseudo-Rotation Angle (P)
.253
2.5
Inter-base Hydrogen Bonding
.255
3.
NMR SPECTROSCOPY OF NUCLEIC ACIDS
.256
3.1
Comparison with Protein NMR
.257
3.2
Classification of Chemical Shifts
.258
3.3
Identification of Networks of Coupled Spin-systems
.258
3.4
Sequence Specific Resonance Assignment Strategies
.261
3.5
Resonance Assignments using 13C and 15N Labelled Nucleic Acids
.262
4.
NMR PARAMETERS IN NUCLEIC ACIDS
.264
4.1
Three Bond Coupling Constants (3J)
.264
4.2
31P-'H Couplings
.265
4.3
Scalar Couplings across Hydrogen Bonds
.265
4.4
Estimation of
Ή-Ή
Distances using
NOE
.266
4.5
Residual Dipolar Couplings (RDC)
.266
4.6
Use of Paramagnetic Labels
.267
5.
STRUCTURE SIMULATIONS OF NUCLEIC ACIDS
.267
5.1
Conformation of Deoxyribose andRibose Rings
.268
5.2
Backbone Torsion Angles
.271
5.3
Glycosidic Torsion Angle
(χ)
.271
5.4
Hydrogen-bond Constraints for Base-pairs
.271
5.5 3D
Structure from NMR data
.272
6.
UNUSUAL
DNA
STRUCTURES
.273
6.1
Sequence Dependent Variations in B-DNA
.273
6.2
Mismatch Base-pairs
.273
6.3
Hairpin Nucleic Acids
.275
6.4
Parallel Stranded (ps)
DNA
Duplex
.276
6.5
Triple Stranded Nucleic Acids
.277
6.6
G-Quartet
.280
6.7
i-motifTetraplex
.281
xiv CONTENTS
6.8
Cruciform Structure
.282
6.9
Holliday or Four-way Junction
.283
7.
POLYMORPHISM IN
DNA.283
7.1
Concentration-induced Conformational Transition
.284
7.2 pH-
Induced Polymorphism
.286
7.3
Effect of Temperature
.286
7.4
Effect of Metal Ions
.287
8.
DYNAMICS OF NUCLEIC ACIDS
.287
9.
REFERENCES
.288
9.1
Further Reading
.288
9.2
Books
.288
9.3 DNA
Structure
.289
9.4
Parallel Stranded
DNA.289
9.5
Triple-Helical Nucleic Acids
.289
9.6
Isotope Labelling of Nucleic Acids
.290
CHAPTER
8:
CARBOHYDRATES, LIPIDS AND
LIPID
ASSEMBLIES
_291
1.
INTRODUCTION
.291
2.
CARBOHYDRATES
.291
2.1
Biological Roles of Carbohydrates
.292
2.2
Building Blocks of Carbohydrates
.293
2.3
Oligosaccharides
.293
2.4
General Features of NMR of Carbohydrates
.294
2.5
Primary Structures of Carbohydrates
.297
2.6
NMR Determination of the Conformation of Monosaccharides
.297
2.7
Assignments of NMR Spectrum of Carbohydrates
.298
2.8
Structure and Dynamics of Polysaccharides
.299
2.9
Glycoconjugates
.300
2.10
Applications in Development of Bacterial Polysaccharides as
Vaccines
.301
2.11
Recognition Motifs in Polysaccharides
.302
2.12Proteoglycans
.302
3.
LIPIDS AND MODEL MEMBRANES
.302
3.1
Elements of Biological Membranes
.303
3.2
Lipids
.303
3.3
Conformation of Phospholipids
.305
3.4
Lipid
Vesicles and Bilayer Structures
.306
3.5
Membrane Architecture
.307
4.
NMR STUDIES OF STRUCTURE AND DYNAMICS
OF
LIPID BILAYERS
.308
4.1
Molecular Motions in Model Membranes
.308
4.2
Phase Transitions
.309
4.3
Lipid
Polymorphism in Model Membranes
.311
4.4
13C NMR Studies of
Segmental
Motions in
Alkyl
Chains
.311
4.5
Molecular Order and 2H NMR Studies of Membrane Organization
.312
4.6
Modulation of Motion and Order of Lipids by Larger Molecules
.313
CONTENTS
XV
4.7
Measurement of
Lateral
Diffusion using NMR
.314
5.
REFERENCES
.314
5.1
Further Reading
.314
5.2
Books and Reviews
.315
CHAPTER
9:
HIGH-RESOLUTION SOLID-STATE NMR
.317
1.
INTRODUCTION
.317
2.
NMR HAMILTONIANS IN SOLID-STATE
.317
2.1
NMR Hamiltonian in Solid-State
.318
2.2
Chemical Shift Anisotropy (Fcsa)
.320
2.3
Heteronuclear Dipolar Interactions [//het(D)]
.323
2.4
Homonuclear Dipolar Interactions [i?homo(D)]
.324
2.5
Quadrupolar Interaction (HQ)
.325
2.6
Scalar Coupling
[Щ
.326
3.
STRATEGIES FOR OBTAINING HIGH-RESOLUTION NMR
SPECTRA IN SOLID-STATE
.326
3.1
Magic-Angle Spinning (MAS)
.328
3.2
Heteronuclear Dipolar Decoupling (DD)
.329
3.3
Cross Polarization (CP)
.330
3.4
31PNMR
.331
3.5
Spectra of Dilute Spin
1/2
Nuclei
.331
3.6
'HNMR
.332
3.7
Heteronuclear and Homonuclear Correlation Experiments
.333
3.8
2HNMR
.334
3.9
Measurement of Internuciear Distances in Solid-State:
Dipolar Recoupling
.335
3.10
Reintroduction
of CSA
.336
4.
PROTEIN STRUCTURE DETERMINATION USING
SOLID-STATE NMR
.338
4.1
Membrane Proteins
.338
4.2
Polarisation Inversion at Magic Angle: PISA Wheels
.340
4.3
Structure Analysis using MAS Solid-State NMR
.341
4.4
Ion Channel Proteins
.341
4.5
Bacteriorhodopsin (bR)
.342
4.6
Amyloid Proteins
.343
4.7
Structure of the Coat Protein in fd Filamentous Bacteriophage
Particles
.345
4.8
Collagen
.345
4.9
Other Fibrous Proteins
.347
4.10
Other Systems
.347
5.
FUTURE OF SOLID-STATE NMR IN BIOLOGY
.347
6.
REFERENCES
.348
6.1
Further Reading
.348
6.2
Books and Reviews
.349
XVI
CONTENTS
CHAPTER
10: BIOMOLECULAR
INTERACTIONS
AND SUPRAMOLECULAR ASSEMBLIES
.351
1.
INTRODUCTION
.351
2.
INTERMOLECULAR INTERACTIONS
.352
3.
NMR APPROACHES TO STUDY BIOMOLECULAR
INTERACTIONS
.352
3.1
Experimental Considerations
.352
3.2
Use of
NOE
and RDC
.353
3.3
Use of Perturbations in Chemical Shifts (CSPs)
.353
3.4
Relaxation Rates
.354
3.5
Use Paramagnetic Probes
.354
3.6
Cross Saturation Method
.355
3.7
Strategies for Structure Simulations
.356
4.
PROTEIN-PROTEIN INTERACTIONS
.356
5.
PROTEIN-DNA INTERACTIONS
.359
5.1
Biological Importance
.359
5.2
Nature of Protein-Nucleic Acid Interactions
.360
5.3
Structure Calculation of Protein-Nucleic Acid Complexes
.360
5.4
Examples of Protein-DNA Interactions
.361
5.4.1
Myocyte Enhancer Factor 2A (MEF2A)-DNA Complex
.361
5.4.2
Far-upstream Element-Binding Protein (FBP) Bound
to Single-Stranded
DNA:.363
6.
RNA
STRUCTURES AND THEIR INTERACTION WITH PROTEINS
.363
6.1
Structural Motifs in
RNA
Structures
.364
6.2
Introduction to NMR of
RNA
.364
6.3
Transfer
RNA
(tRNA) and its Interaction with Aminoacyl-tRNA
Synthetase
.365
6.4
Ribosomal
RNA
.368
6.5
Protein-RNA Interactions
.369
6.6
NMR Studies of Protein-RNA Interactions
.369
6.6.1
JDV Tat-BIV TAR Complex
.369
6.6.2
HIV-1 Rev peptide-RRE
RNA
complex
.370
6.6.3
Splicing Factor 1-RNA complex
.371
7.
SUPRAMOLECULAR ASSEMBLIES
.371
7.1
Bone
.371
7.2
Skeletal Muscle
.372
7.3
Large
DNA
and its Complexes
.372
7.4
Chlorophyll
.372
8.
FUTURE OF NMR STUDIES ON SUPRAMOLECULAR SYSTEMS
.374
9.
REFERENCES
.374
9.1
Further Reading
.374
9.2
RNA
Structure
.374
9.3
Protein-Nucleic acid Interactions
.375
9.4
Books
.375
CONTENTS
XVii
CHAPTER
11:
MAGNETIC RESONANCE IMAGING
.377
1.
INTRODUCTION
.377
2.
PRINCIPLES OF NMR IMAGING
.377
3.
SPATIAL LOCALIZATION OF THE NUCLEUS TO BE IMAGED
.379
3.1
Slice Selection
.380
3.2
Sensitive-Point Method
.381
3.3
Two-Dimensional Fourier Imaging
.382
3.3.1
Slice Selection
.383
3.3.2
Phase Encoding
.383
3.3.3
Frequency Encoding
.384
3.3.4
Fourier Transform
.384
3.3.5
Multi-slice Imaging
.385
3.4
k-Space
.385
4.
PULSE SEQUENCES IN
MRI
.387
4.1
Spin-echo
(SE)
.388
4.2
Half Fourier Transform Imaging (HFI)
.389
4.3
Inversion Recovery
(IR)
.390
4.4
The Need for Fast Imaging Techniques
.391
4.5
Gradient Echo
(GRE)
.392
4.6
Turbo-Spin-Echo (TSE)
.393
4.7
Single-Shot Techniques: Echo Planar Imaging
(EPI)
.395
4.8
Parallel Imaging
.396
4.9
Three Dimensional Imaging
.397
4.10
Motion Suppression Techniques
.397
4.11
Scan Speed
.397
4.12
Receiver Coils
.398
4.13
Display
.398
4.14
Future
.399
5.
TISSUE CONTRAST BASED ON RELAXATION RATES
AND
Ή
DENSITY
.399
5.1
Proton Density (PD)
.400
5.2
Relaxation times
Ti
and T2
.401
5.3
Achieving Contrast
.402
5.4
Lipid
Signals
.404
5.5
Susceptibility Effects: Diamagnetic Interfaces
.404
5.6
Paramagnetic and Ferromagnetic Materials: Contrast
Enhancement
(CE)
.405
5.7
Other Imaging Parameters
.406
6.
IMAGE CONTRAST BASED ON FLOW, DIFFUSION
AND
PERFUSION
.406
6.1
Magnetic Resonance Angiography
(MRA)
.407
6.2
Diffusion-weighted Imaging (DWI)
.408
6.3
Perfusion
.410
6.4
Magnetization Transfer (MT)
.411
7.
FUNCTIONAL
MRI (ÍMRI)
.411
xviii CONTENTS
7.1
Principle of
ÍMRI
.411
7.2
Methodology
.412
7.3
Applications of
fMRI
.413
7.4
Limitations and Future Outlook
.415
8.
MRI
AS A CLINICAL TOOL
.415
8.1
Central Nervous System (CNS)
.415
8.1.1
Ischaemic Stroke
.416
8.1.2
Haemorrhage Stroke
.416
8.1.3
Neurological Diseases
.417
8.2
Musculoskeletal System
.417
8.3
Heart and Cardiovascular System
.418
8.4
Breast
.418
8.5
MRI
in Pregnancy
.420
8.6
Genitourinary System
.420
8.7
Gastrointestinal System
.420
8.8
Prostate Cancer
.420
8.9
Interventional Imaging
.421
8.10
Patient Comfort and Precautions
.421
9.
REFERENCES
.422
9.1
Further Reading
.422
9.2
Books and Reviews
.422
CHAPTER
12:
STUDY OF METABOLISM: CELLS AND TISSUES
.423
1.
INTRODUCTION
.423
1.1
Cell-metabolism is the Bridge between Proteomics and Function
.423
1.2
Measurement of Products of Metabolism
.424
2.
METABOLIC CYCLES AND PATHWAYS
.425
2.1
Glycolysis
.426
2.2
Citric Acid (Kreb's) Cycle
.427
2.3
Oxidative Phosphorylation
.428
2.4
Pentose Phosphate Pathway, Gluconeogenesis and Glycogen
Synthesis
.428
2.5
Fatty Acid Synthesis and Degradation
.429
2.6
Amino
Acid Metabolism
.429
2.7
Integration and Control
.429
2.8
Metabolic Profile and Requirements of each Body Organ
is Different
.430
2.9
31P NMR and Metabolism
.431
2.10'HNMRSpectroscopy
.433
2.11
13C NMR Spectroscopy
.434
3.
STUDIES OF BODY FLUIDS
.435
3.1
Metabolomic Analysis using Biological Fluids
.435
3.2
Ή
and 13C Chemical Shifts of Common Metabolites: Assignments
.437
3.3
Suppression of Water and Other Undesirable Signals
.439
3.4
Multi-dimensional NMR and Quantification
.440
CONTENTS
ХІХ
3.5
Multi-variant Statistical Analysis
.440
3.6
Applications ofMetabonomics
.441
4.
CELLULAR NMR SPECTROSCOPY
.442
4.1
Technical Aspects of NMR in Cells
.443
4.2
Studies on Spermatozoa
.444
4.3
Identification of Low Molecular Weight Compounds in Cells
.444
4.4
Biochemical Changes during Cell Maturation, Modification
and Differentiation
.445
4.5
Glycolysis in Cells
.446
4.6
Effect of Exogenous Compounds on Metabolism
.447
4.7
In-Cell Studies of Macromolecular Structure and Dynamics
.447
5.
STUDIES OF TISSUES USING SOLID-STATE NMR TECHNIQUES
.449
6.
REFERENCES
.451
6.1
Further Reading
.451
6.2
Books and Reviews
.452
CHAPTER
13:
MRS STUDIES OF METABOLISM IN ANIMALS
AND HUMANS
.453
1.
INTRODUCTION
.453
2.
TECHNIQUES FOR DETECTING MR SIGNALS
.454
2.1
Spectral Localization
.454
2.2
Water Suppression
.456
2.3
Depth Resolved Surface Coil Spectroscopy (DRESS)
.456
2.4
Image Guided Protocols
.457
2.5
Image Selected in vivo Spectroscopy (ISIS)
.457
2.6
Stimulated Echo Acquisition Mode Spectroscopy (STEAM)
.458
2.7
Point Resolved Spectroscopy (PRESS)
.459
2.8
Comparison of STEAM and PRESS
.459
2.9
Multiple Volume Spectroscopy (MVSI or
CSI)
.460
2.10
Recent Developments in MRS
.461
2.11
Detection of Metabolites using 2D NMR
.462
3.
UNDERSTANDING THE CHEMISTRY OF BRAIN THROUGH MRS
.462
3.1
Ή
NMR Spectroscopy
.463
3.2
13C NMR: The
Glu,
Gin,
GABA
Cycle
.465
3.3
Age and Disease Related Changes in MRS of Brain
.466
4.
MRS OF OTHER ORGANS
.466
4.1
Muscle
.467
4.2
Insulin Regulation of Glycogen Metabolism
.469
4.3
Breast
.469
4.4
Prostrate
.471
4.5
Cardiovascular Disorders
.472
5.
MR IMAGING AND SPECTOSCOPY USING OTHER
NUCLEIAR SPINS
.472
5.1
Difficulties in vivo
Spectroscopie
Studies using other Spins
.473
5.2
19F
.473
XX
CONTENTS
5.3
2Н
.475
5.4
7Li
.475
5.5 23Na.476
5.6 3Heand129Xe.476
5.7
Other Nuclear
Spins.477
6. APPLICATIONS
OF
NMR IN
DRUG
DEVELOPMENT.477
6.1
Stages in
Drag Development.477
6.2 Target
Validation and Receptor Identification
.478
6.3
Structural Approach to Drag-design.
479
6.4
Drag-Receptor Binding
.480
6.5
Lead Identification: Ligands for Hot Spot
.480
6.6
Second Binding Site: The Linked-Fragment Strategy
.482
6.7
Lead Optimization
.482
6.8
Pre-clinical Studies: Drag Metabolism using Body Fluids
.482
6.9
Human Trials
.483
6.10
Drag purity: Interfacing NMR with LC and MS
.484
6.11
Use of Solid-State NMR for Drag Powders
.484
7.
REFERENCES
.485
7.1
Further Reading
.485
7.2
Books and Reviews
.486
CHAPTER
14:
STRUCTURE AND METABOLISM OF PLANTS
.487
1.
INTRODUCTION
.487
1.1
Cell Structure of Plants
.487
1.2
Biochemistry of Plants
.488
1.3
Importance of NMR in Plant Biochemistry
.488
2.
UNIQUE METABOLIC PATHWAYS IN PLANTS
.489
2.1
Photosynthesis
.489
2.2
Nitrogen Metabolism
.489
2.3
Photorespiration
.489
2.4
Sulphur Metabolism
.490
3.
NMR OF PLANTS: GENERAL FEATURES
.490
3.1
Handling Whole Plants
.490
3.2
Tissues and Small Plants
.492
3.3
General Features of Plant NMR
.492
3.4
Scope of Plant NMR
.493
3.5
Nuclear Spins used in Plant NMR
.493
3.6
Interpretation of Spectra
.495
3.7
Compartmentation in Plant Cells
.495
4.
PLANT METABOLISM USING NMR
.496
4.1
Tissues, Cells and Cell Extracts
.496
4.2
Nitrogen Metabolism
.497
4.3
Amino
Acid Metabolism
.499
4.4
Photosynthesis
.499
4.5
Carbon Metabolism
.500
CONTENTS
ХХІ
4.6
Sulphur Metabolism
.500
4.7
Phosphorus Metabolism
.501
4.8
Other ions and Substrates
.501
4.9
Paramagnetic Reagents
.501
4.10
Effect of Physiological Conditions
.502
4.11
Secondary Metabolic Pathways
.502
4.12
Plant-Fungal Relations
.502
5.
METABOLIC FLUXES AND PLANT METABOLOMICS
.502
5.1
Analysis of Metabolic Fluxes
.503
5.2
Secondary Products of Plant Metabolism
.503
5.3
Plant Metabolomics
.503
6.
IMAGING AND MICROSCOPY IN PLANTS
.503
6.1
NMR Microscopy
.504
6.2
Studies of Plant Water
.504
6.3
Studies of Roots
.505
6.4
Stems, Leaves and Flowers
.505
6.5
Fruits and Seeds
.505
6.6
Chemical Shift Imaging
.506
7.
SOLID-STATE NMR STUDIES
.506
7.1
Studies on Plant Organelles
.506
7.2
Solid-State NMR on PS I and PS II
.507
7.3
Chlorosomal Bacteriochlophylls
.508
8.
REFERENCES
.509
8.1
Further Reading
.509
8.2
Books and Reviews
.510
INDEX
.511 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Chary, Kandala V. R. Govil, Girjesh |
author_facet | Chary, Kandala V. R. Govil, Girjesh |
author_role | aut aut |
author_sort | Chary, Kandala V. R. |
author_variant | k v r c kvr kvrc g g gg |
building | Verbundindex |
bvnumber | BV022955982 |
callnumber-first | Q - Science |
callnumber-label | QH324 |
callnumber-raw | QH324.9.N8 QP519.9.N83 |
callnumber-search | QH324.9.N8 QP519.9.N83 |
callnumber-sort | QH 3324.9 N8 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | VG 9500 WC 2600 WC 3460 |
classification_tum | CHE 808f BIO 040f CHE 244f |
ctrlnum | (OCoLC)174130522 (DE-599)DNB985455993 |
dewey-full | 570.28 616.07/548 |
dewey-hundreds | 500 - Natural sciences and mathematics 600 - Technology (Applied sciences) |
dewey-ones | 570 - Biology 616 - Diseases |
dewey-raw | 570.28 616.07/548 |
dewey-search | 570.28 616.07/548 |
dewey-sort | 3570.28 |
dewey-tens | 570 - Biology 610 - Medicine and health |
discipline | Chemie / Pharmazie Biologie Chemie Medizin |
discipline_str_mv | Chemie / Pharmazie Biologie Chemie Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02659nam a2200637 cb4500</leader><controlfield tag="001">BV022955982</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100816 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071109s2008 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N38,0851</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">985455993</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402066795</subfield><subfield code="c">Gb. : EUR 101.60 (freier Pr.), sfr 165.50 (freier Pr.)</subfield><subfield code="9">978-1-402-06679-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1402066791</subfield><subfield code="c">Gb. : EUR 101.60 (freier Pr.), sfr 165.50 (freier Pr.)</subfield><subfield code="9">1-402-06679-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781402066795</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12085965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)174130522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB985455993</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH324.9.N8</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP519.9.N83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570.28</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">616.07/548</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 9500</subfield><subfield code="0">(DE-625)147241:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 2600</subfield><subfield code="0">(DE-625)148071:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 3460</subfield><subfield code="0">(DE-625)148086:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 808f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 040f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 244f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chary, Kandala V. R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NMR in biological systems</subfield><subfield code="b">from molecules to humans</subfield><subfield code="c">by K. V. R. Chary and Girjesh Govil</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVII, 521 S.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Focus on Structural Biology</subfield><subfield code="v">6</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This title caters to the needs of graduate students who mostly learn such techniques from senior post-docs in the laboratory, and those who are not experts in NMR but wish to understand if a particular problem in animal, plant, medical and pharmaceutical sciences can be answered by NMR. --back cover.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biological systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biology</subfield><subfield code="x">Technique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biomolecules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear magnetic resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteins</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biologisches System</subfield><subfield code="0">(DE-588)4122930-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetische Kernresonanz</subfield><subfield code="0">(DE-588)4037005-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Magnetische Kernresonanz</subfield><subfield code="0">(DE-588)4037005-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biologisches System</subfield><subfield code="0">(DE-588)4122930-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Govil, Girjesh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Focus on Structural Biology</subfield><subfield code="v">6</subfield><subfield code="w">(DE-604)BV014030722</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016160396&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016160396</subfield></datafield></record></collection> |
id | DE-604.BV022955982 |
illustrated | Not Illustrated |
index_date | 2024-07-02T19:03:17Z |
indexdate | 2024-07-09T21:08:31Z |
institution | BVB |
isbn | 9781402066795 1402066791 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016160396 |
oclc_num | 174130522 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-M49 DE-BY-TUM DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-M49 DE-BY-TUM DE-355 DE-BY-UBR DE-11 |
physical | XXXVII, 521 S. 235 mm x 155 mm |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Focus on Structural Biology |
series2 | Focus on Structural Biology |
spelling | Chary, Kandala V. R. Verfasser aut NMR in biological systems from molecules to humans by K. V. R. Chary and Girjesh Govil Dordrecht Springer 2008 XXXVII, 521 S. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Focus on Structural Biology 6 This title caters to the needs of graduate students who mostly learn such techniques from senior post-docs in the laboratory, and those who are not experts in NMR but wish to understand if a particular problem in animal, plant, medical and pharmaceutical sciences can be answered by NMR. --back cover. Biological systems Biology Technique Biomolecules Nuclear magnetic resonance Proteins Biologisches System (DE-588)4122930-7 gnd rswk-swf Magnetische Kernresonanz (DE-588)4037005-7 gnd rswk-swf Magnetische Kernresonanz (DE-588)4037005-7 s Biologisches System (DE-588)4122930-7 s DE-604 Govil, Girjesh Verfasser aut Focus on Structural Biology 6 (DE-604)BV014030722 6 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016160396&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Chary, Kandala V. R. Govil, Girjesh NMR in biological systems from molecules to humans Focus on Structural Biology Biological systems Biology Technique Biomolecules Nuclear magnetic resonance Proteins Biologisches System (DE-588)4122930-7 gnd Magnetische Kernresonanz (DE-588)4037005-7 gnd |
subject_GND | (DE-588)4122930-7 (DE-588)4037005-7 |
title | NMR in biological systems from molecules to humans |
title_auth | NMR in biological systems from molecules to humans |
title_exact_search | NMR in biological systems from molecules to humans |
title_exact_search_txtP | NMR in biological systems from molecules to humans |
title_full | NMR in biological systems from molecules to humans by K. V. R. Chary and Girjesh Govil |
title_fullStr | NMR in biological systems from molecules to humans by K. V. R. Chary and Girjesh Govil |
title_full_unstemmed | NMR in biological systems from molecules to humans by K. V. R. Chary and Girjesh Govil |
title_short | NMR in biological systems |
title_sort | nmr in biological systems from molecules to humans |
title_sub | from molecules to humans |
topic | Biological systems Biology Technique Biomolecules Nuclear magnetic resonance Proteins Biologisches System (DE-588)4122930-7 gnd Magnetische Kernresonanz (DE-588)4037005-7 gnd |
topic_facet | Biological systems Biology Technique Biomolecules Nuclear magnetic resonance Proteins Biologisches System Magnetische Kernresonanz |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016160396&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014030722 |
work_keys_str_mv | AT charykandalavr nmrinbiologicalsystemsfrommoleculestohumans AT govilgirjesh nmrinbiologicalsystemsfrommoleculestohumans |