Ionic liquids in synthesis:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
|
Schriftenreihe: | Green chemistry
|
Schlagworte: | |
Online-Zugang: | Klappentext Inhaltsverzeichnis |
Beschreibung: | Frühere Aufl. einbändig erschienen |
ISBN: | 9783527312399 |
Internformat
MARC
LEADER | 00000nam a2200000 ca4500 | ||
---|---|---|---|
001 | BV022949350 | ||
003 | DE-604 | ||
005 | 20080221 | ||
007 | t | ||
008 | 071107nuuuuuuuu |||| 00||| eng d | ||
020 | |a 9783527312399 |9 978-3-527-31239-9 | ||
035 | |a (DE-599)BVBBV022949350 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
084 | |a VE 6350 |0 (DE-625)147133:253 |2 rvk | ||
084 | |a CHE 050f |2 stub | ||
084 | |a CHE 138f |2 stub | ||
084 | |a CHE 602f |2 stub | ||
084 | |a CHE 168f |2 stub | ||
084 | |a CHE 010f |2 stub | ||
084 | |a CHE 302f |2 stub | ||
245 | 1 | 0 | |a Ionic liquids in synthesis |c ed. by Peter Wasserscheid ... |
264 | 1 | |a Weinheim |b Wiley-VCH | |
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Green chemistry | |
500 | |a Frühere Aufl. einbändig erschienen | ||
650 | 0 | 7 | |a Lösungsmittel |0 (DE-588)4036160-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrolytlösung |0 (DE-588)4133913-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemische Synthese |0 (DE-588)4133806-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ionische Flüssigkeit |0 (DE-588)7548899-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chemische Synthese |0 (DE-588)4133806-6 |D s |
689 | 0 | 1 | |a Lösungsmittel |0 (DE-588)4036160-3 |D s |
689 | 0 | 2 | |a Elektrolytlösung |0 (DE-588)4133913-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Chemische Synthese |0 (DE-588)4133806-6 |D s |
689 | 1 | 1 | |a Ionische Flüssigkeit |0 (DE-588)7548899-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Wasserscheid, Peter |d 1970- |e Sonstige |0 (DE-588)12089257X |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153844&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153844&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016153844 |
Datensatz im Suchindex
_version_ | 1804137191844085760 |
---|---|
adam_text | Contents
Preface
to the Second Edition
xv
A Note from the Editors
xix
Acknowledgements
xix
List of Contributors
xxi
Volume
1
1
Introduction
1
John S. Wilkes, Peter
Wasserscheid,
and Tom Welton
2
Synthesis and Purification
7
2.1
Synthesis of Ionic Liquids
7
Charles M. Gordon and Mark]. Muldoon
2.1.1
Introduction
7
2.1.2
Quaternization Reactions
9
2.1.3
Anion-exchange Reactions
13
2.1.3.1
Lewis Acid-based Ionic Liquids
13
2.1.3.2
Anion
Metathesis
14
2.1.4
Purification of Ionic Liquids
18
2.1.5
Improving the Sustainability of Ionic Liquids
20
2.1.6
Conclusions
23
2.2
Quality Aspects and Other Questions Related to Commercial
Ionic Liquid Production
26
Markus
Wagner and
Claus Hilgers
2.2.1
Introduction
26
2.2.2
Quality Aspects of Commercial Ionic Liquid Production
27
2.2.2.1
Color
28
2.2.2.2
Organic Starting Material and Other
Volatiles
29
2.2.2.3
Halide
Impurities
30
2.2.2.4
Prouc
Impurities
32
vi
Contents
2.2.2.5
Other Ionic Impurities from Incomplete Metathesis Reactions
33
2.2.2.6
Water
33
2.2.3
Upgrading the Quality of Commercial Ionic Liquids
34
2.2.4
Novel, Halide-Free Ionic Liquids
34
2.2.5
Scale-up of Ionic Liquid Synthesis
36
2.2.6
Health, Safety and Environment
37
2.2
J
Corrosion Behavior of Ionic Liquids
41
2.2.8
Recycling of Ionic Liquids
42
2.2.9
Future Price of Ionic Liquids
43
2.3
Synthesis of Task-specific Ionic Liquids
45
James H. Davis, Jr., updated by Peter
Wasserscheid
2.3.1
Introduction
45
2.3.2
General Synthetic Strategies
47
2.3.3
Functionalized Cations
48
2.3.4
Functionalized Anions
53
2.3.5
Conclusion
53
3
Physicochemical Properties
57
3.1
Physicochemical Properties of Ionic Liquids: Melting Points and
Phase Diagrams
57
John D. Holbrey and Robin D. Rogers
3.1.1
Introduction
57
3.1.2
Measurement of Liquid Range
59
3.1.2.1
Melting Points
60
3.1.2.2
Upper Limit
-
Decomposition Temperature
60
3.1.3
Effect of Ion Sizes on Salt Melting Points
62
3.1.3.1
Anion
Size
63
3.1.3.2
Mixtures of Anions
64
3.1.3.3
Cation Size
65
3.1.3.4
Cation Symmetry
66
3.1.3.5
Imidazolium Salts
67
3.1.3.6
Imidazolium
Substituent
Alkyl
Chain Length
68
3.1.3.7
Branching
69
3.1.4
Summary
70
3.2
Viscosity and Density of Ionic Liquids
72
Rob A. Mantz and Paul C. Tndove
3.2.1
Viscosity of Ionic Liquids
72
3.2.1.1
Viscosity Measurement Methods
73
3.2.1.2
Ionic Liquid Viscosities
75
3.2.2
Density of Ionic Liquids
86
3.2.2.1
Density Measurement
86
3.2.2.2
Ionic Liquid Densities
86
3.3
Solubility and Solvation in Ionic Liquids
89
Violina
A. Cocalia, Ann E.
Visser,
Robin D. Rogers, and John
D. Hoïbrey
Contents
vii
3.3.1
Introduction
89
3.3.2
Metal Salt Solubility
90
3.3.2.1 Halonietallate
Salts
90
3.3.2.2
Metal Complexes
91
3.3.3
Extraction and Separations
92
3.3.4
Organic Compounds
96
3.3.5
Conclusions
101
3.4
Gas Solubilities in Ionic Liquids
Î03
Jessica L. Anderson, Jennifer L. Anthony, Joan
F. Brennecke,
and Edward
J
.
Maginn
3.4.1
Introduction
103
3.4.2
Experimental Techniques
104
3.4.2.1
Gas Solubilities and Related Thermodynamic Properties
104
3.4.2.2
The Stoichiometric Technique
106
3.4.2.3
The Gravimetric Technique
107
3.4.2.4
Spectroscopic Techniques
107
3.4.2.5
Gas Chromatography
108
3.4.3
Gas Solubilities
108
3.4.3.1
CO2
109
3.4.3.2
Reaction Gases (O2, H2, CO)
117
3.4.3.3
Other Gases (N2,
Ar, CH4,
C2H6, C2H4, H2O, SO2, CHFs, etc.)
121
3.4.3.4
Mixed Gases
Í22
3.4.3.5
Enthalpies and Entropies
123
3.4.4
Applications
123
3.4.4.1
Reactions Involving Gases
124
ЪАЛ.1
Gas Storage
125
3.4.4.3
Gas Separations
125
3.4.4.4
Extraction of Solutes from Ionic Liquids with Compressed Gases
or Supercritical Fluids
126
3.4.5
Summary
126
3.5
Polarity
130
Tom Welton
3.5.1
Microwave Dielectric Spectroscopy
131
3.5.2 Chromatographie
Measurements
131
3.5.3
Absorption Spectra
133
3.5.4
Antagonistic Behavior in Hydrogen Bonding
136
3.5.5
Fluorescence Spectra
137
3.5.6
Refractive Index
137
3.5.7
EPR Spectroscopy
138
3.5.8
Chemical Reactions
138
3.5.9
Comparison of Polarity Scales
138
3.5.10
Conclusions
140
3.6
Electrochemical Properties of Ionic Liquids
141
Robert A. Mantz
viii
I Contents
3.6.1
Electrochemical Potential Windows
142
3.6.2
Ionic Conductivity
150
3.6.3
Transport Properties
165
4
Molecular Structure and Dynamics
175
4.1
Order in the Liquid State and Structure
175
Chris Hardacre
4.1.1
Neutron Diffraction
175
4.1.2
Formation of Deuterated Samples
176
4.1.3
Neutron Sources
177
4.1.3.1
Pulsed (Spallation) Neutron Sources
177
4.1.3.2
Reactor Sources
178
4.1.4
Neutron Cells for Liquid Samples
178
4.1.5
Examples
178
4.1.5.1
Binary Mixtures
179
4.1.5.2
Simple Salts
182
4.1.6
X-ray Diffraction
184
4.1.6.1
Cells for Liquid Samples
184
4.1.6.2
Examples
185
4.1.7
Extended X-ray Absorption Fine Structure Spectroscopy
190
4.1.7.1
Experimental
191
4.1.7.2
Examples
193
4.1.8
X-ray and Neutron Reflectivity
199
4.1.8.1
Experimental Set-up
199
4.1.8.2
Examples
200
4.1.9
Direct Recoil Spectrometry
(DRS)
201
4.1.9.1
Experimental Set-up
202
4.1.9.2
Examples
202
4.1.10
Conclusions
203
4.2
Computational Modeling of Ionic Liquids
206
Patricia A. Hunt, Edward]. Maginn, Ruth M. Lynden-Bell, and
Mario G. Del
Pòpolo
4.2.1
Introduction
206
4.2.1.1
Classical MD
209
4.2.1.2
Ab
initia
Quantum Chemical Methods
210
4.2.1.3
AhinitioMQ
211
4.2.1.4
Using
Ab
Initio Quantum Chemical Methods to Study
Ionic Liquids
211
4.2.2.1
Introduction
211
4.2.2.2
Acidic Haloaluminate and Related Melts
212
4.2.2.3
Alkyl Imidazolium-based
Ionic Liquids
214
4.2.2.4
The Electronic Structure of Ionic Liquids
218
4.2.3
Atomistic Simulations of Liquids
220
4.2.3.1
Atomistic Potential Models for Ionic Liquid Simulations
221
Contents
I
ix
4.2.3.1
Atomistic Simulations of Neat Ionic Liquids
-
Structure
and Dynamics
226
4.2.4
Simulations of Solutions and Mixtures
236
4.2.5
Simulations of Surfaces
239
4.2.6 Ab initio
Simulations of Ionic Liquids
239
4.2.7
Chemical Reactions and Chemical Reactivity
244
4.3
Translational Diffusion
249
Joachim
Richter,
Axel
Leuchter,
ană
Günter
Palmer
4.3.1
Main Aspects and Terms of Translational Diffusion
249
4.3.2
Use of Translational Diffusion Coefficients
251
4.3.3
Experimental Methods
252
4.3.4
Results for Ionic Liquids
254
4.4
Molecular Reorientational Dynamics
255
Andreas
Dolle,
Phillip
G. Wahlbeck,
ană W.
Robert Carper
4.4.1
Introduction
255
4.4.2
Experimental Methods
256
4.4.3
Theoretical Background
257
4.4.4
Results for Ionic Liquids
258
4.4.5
Chemical Shift Anisotropy Analysis
261
4.4.6
Stepwise Solution of the Combined Dipolar and
NOE
Equations
261
4.4.7
NMR-Viscosity Relationships
264
5
Organic Synthesis
265
5.1
Ionic Liquids in Organic Synthesis: Effects on Rate and Selectivity
265
Cinzia Chiappe
5.1.1
Introduction
265
5.1.2
Ionic Liquid Effects on Reactions Proceeding through
Isopolar
and Radical Transition States
268
5.1.2.1
Energy Transfer, Hydrogen Transfer and Electron Transfer
Reactions
268
5.1.2.2
Diels-Alder Reactions
272
5.1.2.3
Ionic Liquid Effects on Reactions Proceeding through Dipolar
Transition States
274
5.1.3.1
Nucleophilic Substitution Reactions
275
5.1.3.2
Electrophilic Addition Reactions
284
5.1.3.3
Electrophilic Substitution Reactions
287
5.1.4
Conclusions
289
5.2
Stoichiometric Organic Reactions and Acid-catalyzed Reactions in Ionic
Liquids
292
Martyn
Earh
5.2.1
Electrophilic Reactions
294
5.2.1.1
Friedel-Crafts Reactions
294
5.2.1.2 Scholl
and Related Reactions
310
5.2.1.3
Cracking and Isomerization Reactions
312
χ Ι
Contents
5.2.1.4
Electrophilic Nitration Reactions
315
5.2.1.5
Electrophilic Halogenation Reactions
316
5.2.1.6
Electrophilic Phosphylation Reactions
318
5.2.1.7
Electrophilic
Sulfonation
Reactions
318
5.2.2
Nucleophilic Reactions
319
5.2.2.1
Aliphatic Nucleophilic Substitution Reactions
319
5.2.2.2
Aromatic Nucleophilic Substitution Reactions
326
5.2.3
Electrocyclic Reactions
327
5.2.3.1
Diels-Alder Reactions
327
5.2.3.2
Hetero
Diels-Alder Reactions
330
5.2.3.3
The
Ene
Reaction
332
5.2.4
Addition Reactions (to
C
-С
and C=O Double Bonds)
334
5.2.4.1
Esterification Reactions (Addition to C=O)
334
5.2.4.2
Amide Formation Reactions (Addition to C=O)
335
5.2.4.3
The Michael Reaction (Addition to C=C)
336
5.2.4.4
Methylene
Insertion Reactions (Addition to C=O and C=C)
339
5.2.4.5
Addition Reactions Involving Organometallic Reagents
340
5.2.4.6
Miscellaneous Addition Reactions
344
5.2.5
Condensation Reactions
345
5.2.5.1
General Condensation Reactions
345
5.2.5.2
The Mannich Reaction
349
5.2.6
Oxidation Reactions
350
5.2.6.1
Functional Group Oxidation Reactions
350
5.6.6.2
Epoxidation and Related Reactions
353
5.2.6.3
Miscellaneous Oxidation Reactions
355
5.2.7
Reduction Reactions
356
5.2.8
Miscellaneous Reactions in Ionic Liquids
358
Volume
2
5.3
Transition Metal Catalysis in Ionic Liquids
369
Peter
Wasserscheid
and Peter
Schulz
5.3.1
Concepts, Successful Strategies, and Limiting Factors
372
5.3.1.1
Why Use Ionic Liquids as Solvents for Transition Metal Catalysis?
572
5.3.1.2
The Role of the Ionic Liquid
377
5.3.1.3
Methods for Analysis of Transition Metal Catalysts in
Ionic Liquids
383
5.3.2
Selected Examples of the Application of Ionic Liquids in
Transition Metal Catalysis
390
5.3.2.1
Hydrogénation
390
5.3.2.2
Oxidation Reactions
405
5.3.2.3
Hydroformylation
410
5.3.2.4
Heck Reaction and Other Pd-catalyzed C-C-coupling Reactions
419
5.3.2.5
Dimerization and Oligomerization Reactions
430
5.3.2.6
Olefin
Metathesis
441
Contents
I x¡
5.3.2.7
Catalysis with Nanoparticulate Transition Metal Catalysts
444
5.3.3
Concluding Remarks: Low-hanging Fruits and
High-hanging Fruits
—
Which Transition Metal Catalyzed Reaction
Should Be Carried Out in an Ionic Liquid?
448
5.4
Ionic Liquids in Multiphasic Reactions
464
Hélène Olivier-Bourbigou
and
Frédéric Favre
5.4.1
Multiphasic Reactions: General Features, Scope and Limitations
464
5.4.2
Multiphasic Catalysis: Limitations and Challenges
465
5.4.3
Why Ionic Liquids in Mutiphasic Catalysis?
466
5.4.4
Different Technical Solutions to Catalyst Separation through the Use of
Ionic Liquids
469
5.4.5
Immobilization of Catalysts in Ionic Liquids
473
5.4.6
The Scale-up of Ionic Liquid Technology from Laboratory to
Continuous Pilot Plant Operation
476
5.4.6.1
Dimerization of Alkenes Catalyzed by
Ni
complexes
477
5.4.6.2
Alkylation Reactions
483
5.4.6.3
Industrial Use of Ionic Liquids
485
5.4.7
Concluding Remarks and Outlook
486
5.5
Task-specific Ionic Liquids as New Phases for Supported
Organic Synthesis
488
Michel Vmdtier, Andreas Kirschning, and Vasundhara Singh
5.5.1
Introduction
489
5.5.2
Synthesis of TSILs
490
5.5.2.1
Synthesis of TSILs Bearing a Hydroxy Group
491
5.5.2.2
Parallel Synthesis of Functionalized ILs from a
Michael-type Reaction
495
5.5.2.3
Synthesis of TSILs by Further Functional Group Transformations
496
5.5.2.4
Loading of TSIL Supports
500
5.5.3
TSILs as Supports for Organic Synthesis
501
5.5.3.1
First Generation of TSILs as New Phases for Supported Organic
Synthesis
503
5.5.3.2
Second Generation of TSILs: The BTSILs
510
5.5.3.3
Reactions of Functionalized TSOSs in Molecular Solvents
515
5.5.3.4
Lab on a Chip System Using a TSIL as a Soluble Support
523
5.5.4
Conclusion
523
5.6
Supported Ionic Liquid Phase Catalysts
527
Anders Riisager and Rasmus Fehrmann
5.6.1
Introduction
527
5.6.2
Supported Ionic Liquid Phase Catalysts
527
5.6.2.1
Supported Catalysts Containing Ionic Media
527
5.6.2.1.1
Process and engineering aspects of supported ionic liquid catalysts
528
5.6.2.1.2
Characteristics of ionic liquids on solid supports
529
5.6.2.2
Early Work on Supported Molten Salt and Ionic Liquid
Catalyst Systems
531
5.6.2.2.1
High-temperature supported molten salt catalysts
531
xii
I Contents
5.6.2.2.2
Low-temperature supported catalysts
533
5.6.2.3
Ionic Liquid Catalysts Supported through Covalent Anchoring
534
5.6.2.3.1
Supported Lewis acidic chlorometalate catalysts
534
5.6.2.3.2
Neutral, supported ionic liquid catalysts
537
5.6.2.4
Ionic Liquid Catalysts Supported through Physisorption or
via Electrostatic Interaction
540
5.6.2.4.1
Supported ionic liquid catalysts (SILC)
540
5.6.2.4.2
Supported ionic liquid phase (SILP) catalysts incorporating metal
complexes
543
5.6.2.4.3
Supported ionic liquid catalyst systems containing metal
nanoparticles
552
5.6.2.4.4
Supported ionic liquid catalytic membrane systems containing
enzymes
554
5.6.3
Concluding Remarks
555
5.7
Multiphasic Catalysis Using Ionic Liquids in Combination with
Compressed CO2
558
Peter
Wasserscheid
and
Sven Kuhlmann
5.7.1
Introduction
558
5.7.2
Catalytic Reaction with Subsequent Product Extraction
560
5.7.3
Catalytic Reaction with Simultaneous Product Extraction
561
5.7.4
Catalytic Conversion of CO2 in an Ionic Liquid/scCCh Biphasic
Mixture
562
5.7.5
Continuous Reactions in an Ionic liquid/Compressed
CO2 System
562
5.7.6
Concluding Remarks and Outlook
567
б
Inorganic Synthesis
570
6.1
Directed Inorganic and Organometallic Synthesis
569
Tom Welton
6.1.1
Coordination Compounds
569
6.1.2
Organometallic Compounds
570
6.1.3
Formation of Oxides
572
6.1.4
Other Reactions
574
6.1.5
Outlook
574
6.2
Inorganic Materials by Electrochemical Methods
575
Frank Endres and SherifZdn El Abedin
6.2.1
Electrodeposition of Metals and Semiconductors
576
6.2.1.1
General Considerations
576
6.2.1.2
Electrochemical Equipment
577
6.2.1.3
Electrodeposition of Less Noble Elements
578
6.2.1.4
Electrodeposition of Metals That Can Also Be Obtained
From Water
582
6.2.1.5
Electrodeposition of Semiconductors
585
6.2.2
Nanoscale Processes at the Electrode/Ionic liquid Interface
587
6.2.2.1
General Considerations
587
Contents xiii
6.2.2.2
The Scanning Tunneling Microscope
587
6.2.2.3
Results
589
6.2.3
Summary
604
6.3
Ionic Liquids in Material Synthesis: Functional Nanopartides and
Other Inorganic Nanostractures
609
Markus Antonietti, Bernd Smarsly,
and Yong Zhou
6.3.1
Introduction
609
6.3.2
Ionic Liquids for the Synthesis of Chemical Nanostructures
609
7
Polymer Synthesis in Ionic Liquids
619
David M. Haddleton, Tom Welton, and Adrian]. Carmichael
7.1
Introduction
619
7.2
Acid-catalyzed
Canonie
Polymerization and Oligomerization
619
7.3
Free Radical Polymerization
624
7.4
Transition Metal-catalyzed Polymerization
627
7.4.1
Ziegler-Natta Polymerization of Olefms
627
7.4.2
Late Transition Metal-catalyzed Polymerization of Olefins
628
7.4.3
Metathesis Polymerization
630
7.4.4
Living Radical Polymerization
631
7.5
Electrochemical Polymerization
633
7.5.1
Preparation of Conductive Polymers
633
7.6
Polycondensation and Enzymatic Polymerization
634
7.7
Carbene-catalyzed Reactions
635
7.8
Group Transfer Polymerization
636
7.9
Summary
637
8
Biocatalytic
Reactions in Ionic Liquids
641
Sandra Klembt,
Susanne
Dreyer,
Manit
Eckstein, and
Udo Kragl
8.1
Introduction
641
8.2
Biocatalytic Reactions and Their Special Needs
641
8.3
Examples of Biocatalytic Reactions in Ionic liquids
644
8.3.1
Whole Cell Systems and Enzymes Other than Upases in
Ionic Liquids
644
8.3.2
Upases in Ionic Liquids
651
8.4
Stability
and Solubility of Enzymes in Ionic Uquids
655
8.5
Special Techniques for Biocatalysis with Ionic Liquids
657
8.6
Conclusions and Outlook
658
9
Industrial Applications of Ionic Liquids
663
Matthias Maase
9.1
Ionic Uquids in Industrial Processes: Re-invention of the Wheel
or True Innovation?
663
9.2
Possible Fields of Application
664
9.3
Applications in Chemical Processes
666
9.3.1
Add Scavenging: The BASIL™ Process
666
xiv
I Contents
9.3.2
Extractive Distillation
669
9.3.3
Chlorination-with Nucleophilic HCl
670
9.3.4
Cleavage of Ethers
672
9.3.5
Dimerization of Olefins
673
9.3.6
Oligomerization of Olefins
673
9.3.7
Hydrosilylation
674
9.3.8
Fluorination
675
9.4
Applications in Electrochemistry
675
9.4.1
Electroplating of Chromium
675
9.4.2
Electropolishing
676
9.5
Applications as Performance Chemicals and Engineering Fluids
677
9.5.1
Ionic Liquids as Antistatic Additives for Cleaning Fluids
677
9.5.2
Ionic Liquids as Compatibilizers for Pigment Pastes
678
9.5.3
Ionic Liquids for the Storage of Gases
679
9.6
FAQ
-
Frequently Asked Questions Concerning the Commercial Use
of I onic Liquids
681
9.6.1
How Pure are Ionic Liquids?
68І
9.6.2
Is the Color of Ionic Liquids a Problem?
682
9.6.3
How Stable are Ionic Liquids?
682
9.6.4
Are Ionic Liquids Toxic?
683
9.6.5
Are Ionic Liquids Green?
684
9.6.6
How Can Ionic Liquids be Recycled
? 684
9.6.7
How Can Ionic Liquids be Disposed Of?
685
9.6.8
Which is the Right Ionic Liquid?
686
10
Outlook
689
Peter
Wasserscheid
and Tom Welton
Index
705
Oynthetic chemistry has been dominated by
reactions in volatile solvents for a long time.
Since some of these eventually happened to be
toxic or otherwise environmentally damaging,
the introduction of cleaner technologies has
become a major concern in synthetic chemistry.
Chemical synthesis in ionic liquids holds
the advantage of often being more efficient,
thus lowering the amount of raw materials
used and and reducing pollution, not to mention
cost reduction. In addition, both processing
and handling can be much simpler than before.
The second, completely revised and extended
edition of what has become the standard refe¬
rence work in this fascinating and fast-growing
field brings together the latest developments
(industrial processes are already established,
and ionic liquids are now commercially availa¬
ble), supplemented by numerous practical tips.
The editors are two well-known pioneers in the
field and authors of a large number of high
level publications, providing those working in
both research and industry with an indispen¬
sable source of first-hand information.
|
adam_txt |
Contents
Preface
to the Second Edition
xv
A Note from the Editors
xix
Acknowledgements
xix
List of Contributors
xxi
Volume
1
1
Introduction
1
John S. Wilkes, Peter
Wasserscheid,
and Tom Welton
2
Synthesis and Purification
7
2.1
Synthesis of Ionic Liquids
7
Charles M. Gordon and Mark]. Muldoon
2.1.1
Introduction
7
2.1.2
Quaternization Reactions
9
2.1.3
Anion-exchange Reactions
13
2.1.3.1
Lewis Acid-based Ionic Liquids
13
2.1.3.2
Anion
Metathesis
14
2.1.4
Purification of Ionic Liquids
18
2.1.5
Improving the Sustainability of Ionic Liquids
20
2.1.6
Conclusions
23
2.2
Quality Aspects and Other Questions Related to Commercial
Ionic Liquid Production
26
Markus
Wagner and
Claus Hilgers
2.2.1
Introduction
26
2.2.2
Quality Aspects of Commercial Ionic Liquid Production
27
2.2.2.1
Color
28
2.2.2.2
Organic Starting Material and Other
Volatiles
29
2.2.2.3
Halide
Impurities
30
2.2.2.4
Prouc
Impurities
32
vi
Contents
2.2.2.5
Other Ionic Impurities from Incomplete Metathesis Reactions
33
2.2.2.6
Water
33
2.2.3
Upgrading the Quality of Commercial Ionic Liquids
34
2.2.4
Novel, Halide-Free Ionic Liquids
34
2.2.5
Scale-up of Ionic Liquid Synthesis
36
2.2.6
Health, Safety and Environment
37
2.2
J
Corrosion Behavior of Ionic Liquids
41
2.2.8
Recycling of Ionic Liquids
42
2.2.9
Future Price of Ionic Liquids
43
2.3
Synthesis of Task-specific Ionic Liquids
45
James H. Davis, Jr., updated by Peter
Wasserscheid
2.3.1
Introduction
45
2.3.2
General Synthetic Strategies
47
2.3.3
Functionalized Cations
48
2.3.4
Functionalized Anions
53
2.3.5
Conclusion
53
3
Physicochemical Properties
57
3.1
Physicochemical Properties of Ionic Liquids: Melting Points and
Phase Diagrams
57
John D. Holbrey and Robin D. Rogers
3.1.1
Introduction
57
3.1.2
Measurement of Liquid Range
59
3.1.2.1
Melting Points
60
3.1.2.2
Upper Limit
-
Decomposition Temperature
60
3.1.3
Effect of Ion Sizes on Salt Melting Points
62
3.1.3.1
Anion
Size
63
3.1.3.2
Mixtures of Anions
64
3.1.3.3
Cation Size
65
3.1.3.4
Cation Symmetry
66
3.1.3.5
Imidazolium Salts
67
3.1.3.6
Imidazolium
Substituent
Alkyl
Chain Length
68
3.1.3.7
Branching
69
3.1.4
Summary
70
3.2
Viscosity and Density of Ionic Liquids
72
Rob A. Mantz and Paul C. Tndove
3.2.1
Viscosity of Ionic Liquids
72
3.2.1.1
Viscosity Measurement Methods
73
3.2.1.2
Ionic Liquid Viscosities
75
3.2.2
Density of Ionic Liquids
86
3.2.2.1
Density Measurement
86
3.2.2.2
Ionic Liquid Densities
86
3.3
Solubility and Solvation in Ionic Liquids
89
Violina
A. Cocalia, Ann E.
Visser,
Robin D. Rogers, and John
D. Hoïbrey
Contents
vii
3.3.1
Introduction
89
3.3.2
Metal Salt Solubility
90
3.3.2.1 Halonietallate
Salts
90
3.3.2.2
Metal Complexes
91
3.3.3
Extraction and Separations
92
3.3.4
Organic Compounds
96
3.3.5
Conclusions
101
3.4
Gas Solubilities in Ionic Liquids
Î03
Jessica L. Anderson, Jennifer L. Anthony, Joan
F. Brennecke,
and Edward
J
.
Maginn
3.4.1
Introduction
103
3.4.2
Experimental Techniques
104
3.4.2.1
Gas Solubilities and Related Thermodynamic Properties
104
3.4.2.2
The Stoichiometric Technique
106
3.4.2.3
The Gravimetric Technique
107
3.4.2.4
Spectroscopic Techniques
107
3.4.2.5
Gas Chromatography
108
3.4.3
Gas Solubilities
108
3.4.3.1
CO2
109
3.4.3.2
Reaction Gases (O2, H2, CO)
117
3.4.3.3
Other Gases (N2,
Ar, CH4,
C2H6, C2H4, H2O, SO2, CHFs, etc.)
121
3.4.3.4
Mixed Gases
Í22
3.4.3.5
Enthalpies and Entropies
123
3.4.4
Applications
123
3.4.4.1
Reactions Involving Gases
124
ЪАЛ.1
Gas Storage
125
3.4.4.3
Gas Separations
125
3.4.4.4
Extraction of Solutes from Ionic Liquids with Compressed Gases
or Supercritical Fluids
126
3.4.5
Summary
126
3.5
Polarity
130
Tom Welton
3.5.1
Microwave Dielectric Spectroscopy
131
3.5.2 Chromatographie
Measurements
131
3.5.3
Absorption Spectra
133
3.5.4
Antagonistic Behavior in Hydrogen Bonding
136
3.5.5
Fluorescence Spectra
137
3.5.6
Refractive Index
137
3.5.7
EPR Spectroscopy
138
3.5.8
Chemical Reactions
138
3.5.9
Comparison of Polarity Scales
138
3.5.10
Conclusions
140
3.6
Electrochemical Properties of Ionic Liquids
141
Robert A. Mantz
viii
I Contents
3.6.1
Electrochemical Potential Windows
142
3.6.2
Ionic Conductivity
150
3.6.3
Transport Properties
165
4
Molecular Structure and Dynamics
175
4.1
Order in the Liquid State and Structure
175
Chris Hardacre
4.1.1
Neutron Diffraction
175
4.1.2
Formation of Deuterated Samples
176
4.1.3
Neutron Sources
177
4.1.3.1
Pulsed (Spallation) Neutron Sources
177
4.1.3.2
Reactor Sources
178
4.1.4
Neutron Cells for Liquid Samples
178
4.1.5
Examples
178
4.1.5.1
Binary Mixtures
179
4.1.5.2
Simple Salts
182
4.1.6
X-ray Diffraction
184
4.1.6.1
Cells for Liquid Samples
184
4.1.6.2
Examples
185
4.1.7
Extended X-ray Absorption Fine Structure Spectroscopy
190
4.1.7.1
Experimental
191
4.1.7.2
Examples
193
4.1.8
X-ray and Neutron Reflectivity
199
4.1.8.1
Experimental Set-up
199
4.1.8.2
Examples
200
4.1.9
Direct Recoil Spectrometry
(DRS)
201
4.1.9.1
Experimental Set-up
202
4.1.9.2
Examples
202
4.1.10
Conclusions
203
4.2
Computational Modeling of Ionic Liquids
206
Patricia A. Hunt, Edward]. Maginn, Ruth M. Lynden-Bell, and
Mario G. Del
Pòpolo
4.2.1
Introduction
206
4.2.1.1
Classical MD
209
4.2.1.2
Ab
initia
Quantum Chemical Methods
210
4.2.1.3
AhinitioMQ
211
4.2.1.4
Using
Ab
Initio Quantum Chemical Methods to Study
Ionic Liquids
211
4.2.2.1
Introduction
211
4.2.2.2
Acidic Haloaluminate and Related Melts
212
4.2.2.3
Alkyl Imidazolium-based
Ionic Liquids
214
4.2.2.4
The Electronic Structure of Ionic Liquids
218
4.2.3
Atomistic Simulations of Liquids
220
4.2.3.1
Atomistic Potential Models for Ionic Liquid Simulations
221
Contents
I
ix
4.2.3.1
Atomistic Simulations of Neat Ionic Liquids
-
Structure
and Dynamics
226
4.2.4
Simulations of Solutions and Mixtures
236
4.2.5
Simulations of Surfaces
239
4.2.6 Ab initio
Simulations of Ionic Liquids
239
4.2.7
Chemical Reactions and Chemical Reactivity
244
4.3
Translational Diffusion
249
Joachim
Richter,
Axel
Leuchter,
ană
Günter
Palmer
4.3.1
Main Aspects and Terms of Translational Diffusion
249
4.3.2
Use of Translational Diffusion Coefficients
251
4.3.3
Experimental Methods
252
4.3.4
Results for Ionic Liquids
254
4.4
Molecular Reorientational Dynamics
255
Andreas
Dolle,
Phillip
G. Wahlbeck,
ană W.
Robert Carper
4.4.1
Introduction
255
4.4.2
Experimental Methods
256
4.4.3
Theoretical Background
257
4.4.4
Results for Ionic Liquids
258
4.4.5
Chemical Shift Anisotropy Analysis
261
4.4.6
Stepwise Solution of the Combined Dipolar and
NOE
Equations
261
4.4.7
NMR-Viscosity Relationships
264
5
Organic Synthesis
265
5.1
Ionic Liquids in Organic Synthesis: Effects on Rate and Selectivity
265
Cinzia Chiappe
5.1.1
Introduction
265
5.1.2
Ionic Liquid Effects on Reactions Proceeding through
Isopolar
and Radical Transition States
268
5.1.2.1
Energy Transfer, Hydrogen Transfer and Electron Transfer
Reactions
268
5.1.2.2
Diels-Alder Reactions
272
5.1.2.3
Ionic Liquid Effects on Reactions Proceeding through Dipolar
Transition States
274
5.1.3.1
Nucleophilic Substitution Reactions
275
5.1.3.2
Electrophilic Addition Reactions
284
5.1.3.3
Electrophilic Substitution Reactions
287
5.1.4
Conclusions
289
5.2
Stoichiometric Organic Reactions and Acid-catalyzed Reactions in Ionic
Liquids
292
Martyn
Earh
5.2.1
Electrophilic Reactions
294
5.2.1.1
Friedel-Crafts Reactions
294
5.2.1.2 Scholl
and Related Reactions
310
5.2.1.3
Cracking and Isomerization Reactions
312
χ Ι
Contents
5.2.1.4
Electrophilic Nitration Reactions
315
5.2.1.5
Electrophilic Halogenation Reactions
316
5.2.1.6
Electrophilic Phosphylation Reactions
318
5.2.1.7
Electrophilic
Sulfonation
Reactions
318
5.2.2
Nucleophilic Reactions
319
5.2.2.1
Aliphatic Nucleophilic Substitution Reactions
319
5.2.2.2
Aromatic Nucleophilic Substitution Reactions
326
5.2.3
Electrocyclic Reactions
327
5.2.3.1
Diels-Alder Reactions
327
5.2.3.2
Hetero
Diels-Alder Reactions
330
5.2.3.3
The
Ene
Reaction
332
5.2.4
Addition Reactions (to
C
-С
and C=O Double Bonds)
334
5.2.4.1
Esterification Reactions (Addition to C=O)
334
5.2.4.2
Amide Formation Reactions (Addition to C=O)
335
5.2.4.3
The Michael Reaction (Addition to C=C)
336
5.2.4.4
Methylene
Insertion Reactions (Addition to C=O and C=C)
339
5.2.4.5
Addition Reactions Involving Organometallic Reagents
340
5.2.4.6
Miscellaneous Addition Reactions
344
5.2.5
Condensation Reactions
345
5.2.5.1
General Condensation Reactions
345
5.2.5.2
The Mannich Reaction
349
5.2.6
Oxidation Reactions
350
5.2.6.1
Functional Group Oxidation Reactions
350
5.6.6.2
Epoxidation and Related Reactions
353
5.2.6.3
Miscellaneous Oxidation Reactions
355
5.2.7
Reduction Reactions
356
5.2.8
Miscellaneous Reactions in Ionic Liquids
358
Volume
2
5.3
Transition Metal Catalysis in Ionic Liquids
369
Peter
Wasserscheid
and Peter
Schulz
5.3.1
Concepts, Successful Strategies, and Limiting Factors
372
5.3.1.1
Why Use Ionic Liquids as Solvents for Transition Metal Catalysis?
572
5.3.1.2
The Role of the Ionic Liquid
377
5.3.1.3
Methods for Analysis of Transition Metal Catalysts in
Ionic Liquids
383
5.3.2
Selected Examples of the Application of Ionic Liquids in
Transition Metal Catalysis
390
5.3.2.1
Hydrogénation
390
5.3.2.2
Oxidation Reactions
405
5.3.2.3
Hydroformylation
410
5.3.2.4
Heck Reaction and Other Pd-catalyzed C-C-coupling Reactions
419
5.3.2.5
Dimerization and Oligomerization Reactions
430
5.3.2.6
Olefin
Metathesis
441
Contents
I x¡
5.3.2.7
Catalysis with Nanoparticulate Transition Metal Catalysts
444
5.3.3
Concluding Remarks: "Low-hanging Fruits" and
"High-hanging Fruits"
—
Which Transition Metal Catalyzed Reaction
Should Be Carried Out in an Ionic Liquid?
448
5.4
Ionic Liquids in Multiphasic Reactions
464
Hélène Olivier-Bourbigou
and
Frédéric Favre
5.4.1
Multiphasic Reactions: General Features, Scope and Limitations
464
5.4.2
Multiphasic Catalysis: Limitations and Challenges
465
5.4.3
Why Ionic Liquids in Mutiphasic Catalysis?
466
5.4.4
Different Technical Solutions to Catalyst Separation through the Use of
Ionic Liquids
469
5.4.5
Immobilization of Catalysts in Ionic Liquids
473
5.4.6
The Scale-up of Ionic Liquid Technology from Laboratory to
Continuous Pilot Plant Operation
476
5.4.6.1
Dimerization of Alkenes Catalyzed by
Ni
complexes
477
5.4.6.2
Alkylation Reactions
483
5.4.6.3
Industrial Use of Ionic Liquids
485
5.4.7
Concluding Remarks and Outlook
486
5.5
Task-specific Ionic Liquids as New Phases for Supported
Organic Synthesis
488
Michel Vmdtier, Andreas Kirschning, and Vasundhara Singh
5.5.1
Introduction
489
5.5.2
Synthesis of TSILs
490
5.5.2.1
Synthesis of TSILs Bearing a Hydroxy Group
491
5.5.2.2
Parallel Synthesis of Functionalized ILs from a
Michael-type Reaction
495
5.5.2.3
Synthesis of TSILs by Further Functional Group Transformations
496
5.5.2.4
Loading of TSIL Supports
500
5.5.3
TSILs as Supports for Organic Synthesis
501
5.5.3.1
First Generation of TSILs as New Phases for Supported Organic
Synthesis
503
5.5.3.2
Second Generation of TSILs: The BTSILs
510
5.5.3.3
Reactions of Functionalized TSOSs in Molecular Solvents
515
5.5.3.4
Lab on a Chip System Using a TSIL as a Soluble Support
523
5.5.4
Conclusion
523
5.6
Supported Ionic Liquid Phase Catalysts
527
Anders Riisager and Rasmus Fehrmann
5.6.1
Introduction
527
5.6.2
Supported Ionic Liquid Phase Catalysts
527
5.6.2.1
Supported Catalysts Containing Ionic Media
527
5.6.2.1.1
Process and engineering aspects of supported ionic liquid catalysts
528
5.6.2.1.2
Characteristics of ionic liquids on solid supports
529
5.6.2.2
Early Work on Supported Molten Salt and Ionic Liquid
Catalyst Systems
531
5.6.2.2.1
High-temperature supported molten salt catalysts
531
xii
I Contents
5.6.2.2.2
Low-temperature supported catalysts
533
5.6.2.3
Ionic Liquid Catalysts Supported through Covalent Anchoring
534
5.6.2.3.1
Supported Lewis acidic chlorometalate catalysts
534
5.6.2.3.2
Neutral, supported ionic liquid catalysts
537
5.6.2.4
Ionic Liquid Catalysts Supported through Physisorption or
via Electrostatic Interaction
540
5.6.2.4.1
Supported ionic liquid catalysts (SILC)
540
5.6.2.4.2
Supported ionic liquid phase (SILP) catalysts incorporating metal
complexes
543
5.6.2.4.3
Supported ionic liquid catalyst systems containing metal
nanoparticles
552
5.6.2.4.4
Supported ionic liquid catalytic membrane systems containing
enzymes
554
5.6.3
Concluding Remarks
555
5.7
Multiphasic Catalysis Using Ionic Liquids in Combination with
Compressed CO2
558
Peter
'Wasserscheid
and
Sven Kuhlmann
5.7.1
Introduction
558
5.7.2
Catalytic Reaction with Subsequent Product Extraction
560
5.7.3
Catalytic Reaction with Simultaneous Product Extraction
561
5.7.4
Catalytic Conversion of CO2 in an Ionic Liquid/scCCh Biphasic
Mixture
562
5.7.5
Continuous Reactions in an Ionic liquid/Compressed
CO2 System
562
5.7.6
Concluding Remarks and Outlook
567
б
Inorganic Synthesis
570
6.1
Directed Inorganic and Organometallic Synthesis
569
Tom Welton
6.1.1
Coordination Compounds
569
6.1.2
Organometallic Compounds
570
6.1.3
Formation of Oxides
572
6.1.4
Other Reactions
574
6.1.5
Outlook
574
6.2
Inorganic Materials by Electrochemical Methods
575
Frank Endres and SherifZdn El Abedin
6.2.1
Electrodeposition of Metals and Semiconductors
576
6.2.1.1
General Considerations
576
6.2.1.2
Electrochemical Equipment
577
6.2.1.3
Electrodeposition of Less Noble Elements
578
6.2.1.4
Electrodeposition of Metals That Can Also Be Obtained
From Water
582
6.2.1.5
Electrodeposition of Semiconductors
585
6.2.2
Nanoscale Processes at the Electrode/Ionic liquid Interface
587
6.2.2.1
General Considerations
587
Contents xiii
6.2.2.2
The Scanning Tunneling Microscope
587
6.2.2.3
Results
589
6.2.3
Summary
604
6.3
Ionic Liquids in Material Synthesis: Functional Nanopartides and
Other Inorganic Nanostractures
609
Markus Antonietti, Bernd Smarsly,
and Yong Zhou
6.3.1
Introduction
609
6.3.2
Ionic Liquids for the Synthesis of Chemical Nanostructures
609
7
Polymer Synthesis in Ionic Liquids
619
David M. Haddleton, Tom Welton, and Adrian]. Carmichael
7.1
Introduction
619
7.2
Acid-catalyzed
Canonie
Polymerization and Oligomerization
619
7.3
Free Radical Polymerization
624
7.4
Transition Metal-catalyzed Polymerization
627
7.4.1
Ziegler-Natta Polymerization of Olefms
627
7.4.2
Late Transition Metal-catalyzed Polymerization of Olefins
628
7.4.3
Metathesis Polymerization
630
7.4.4
Living Radical Polymerization
631
7.5
Electrochemical Polymerization
633
7.5.1
Preparation of Conductive Polymers
633
7.6
Polycondensation and Enzymatic Polymerization
634
7.7
Carbene-catalyzed Reactions
635
7.8
Group Transfer Polymerization
636
7.9
Summary
637
8
Biocatalytic
Reactions in Ionic Liquids
641
Sandra Klembt,
Susanne
Dreyer,
Manit
Eckstein, and
Udo Kragl
8.1
Introduction
641
8.2
Biocatalytic Reactions and Their Special Needs
641
8.3
Examples of Biocatalytic Reactions in Ionic liquids
644
8.3.1
Whole Cell Systems and Enzymes Other than Upases in
Ionic Liquids
644
8.3.2
Upases in Ionic Liquids
651
8.4
Stability
and Solubility of Enzymes in Ionic Uquids
655
8.5
Special Techniques for Biocatalysis with Ionic Liquids
657
8.6
Conclusions and Outlook
658
9
Industrial Applications of Ionic Liquids
663
Matthias Maase
9.1
Ionic Uquids in Industrial Processes: Re-invention of the Wheel
or True Innovation?
663
9.2
Possible Fields of Application
664
9.3
Applications in Chemical Processes
666
9.3.1
Add Scavenging: The BASIL™ Process
666
xiv
I Contents
9.3.2
Extractive Distillation
669
9.3.3
Chlorination-with "Nucleophilic HCl"
670
9.3.4
Cleavage of Ethers
672
9.3.5
Dimerization of Olefins
673
9.3.6
Oligomerization of Olefins
673
9.3.7
Hydrosilylation
674
9.3.8
Fluorination
675
9.4
Applications in Electrochemistry
675
9.4.1
Electroplating of Chromium
675
9.4.2
Electropolishing
676
9.5
Applications as Performance Chemicals and Engineering Fluids
677
9.5.1
Ionic Liquids as Antistatic Additives for Cleaning Fluids
677
9.5.2
Ionic Liquids as Compatibilizers for Pigment Pastes
678
9.5.3
Ionic Liquids for the Storage of Gases
679
9.6
FAQ
-
Frequently Asked Questions Concerning the Commercial Use
of I onic Liquids
681
9.6.1
How Pure are Ionic Liquids?
68І
9.6.2
Is the Color of Ionic Liquids a Problem?
682
9.6.3
How Stable are Ionic Liquids?
682
9.6.4
Are Ionic Liquids Toxic?
683
9.6.5
Are Ionic Liquids Green?
684
9.6.6
How Can Ionic Liquids be Recycled
? 684
9.6.7
How Can Ionic Liquids be Disposed Of?
685
9.6.8
Which is the Right Ionic Liquid?
686
10
Outlook
689
Peter
Wasserscheid
and Tom Welton
Index
705
Oynthetic chemistry has been dominated by
reactions in volatile solvents for a long time.
Since some of these eventually happened to be
toxic or otherwise environmentally damaging,
the introduction of cleaner technologies has
become a major concern in synthetic chemistry.
Chemical synthesis in ionic liquids holds
the advantage of often being more efficient,
thus lowering the amount of raw materials
used and and reducing pollution, not to mention
cost reduction. In addition, both processing
and handling can be much simpler than before.
The second, completely revised and extended
edition of what has become the standard refe¬
rence work in this fascinating and fast-growing
field brings together the latest developments
(industrial processes are already established,
and ionic liquids are now commercially availa¬
ble), supplemented by numerous practical tips.
The editors are two well-known pioneers in the
field and authors of a large number of high
level publications, providing those working in
both research and industry with an indispen¬
sable source of first-hand information. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)12089257X |
building | Verbundindex |
bvnumber | BV022949350 |
classification_rvk | VE 6350 |
classification_tum | CHE 050f CHE 138f CHE 602f CHE 168f CHE 010f CHE 302f |
ctrlnum | (DE-599)BVBBV022949350 |
discipline | Chemie / Pharmazie Physik Chemie |
discipline_str_mv | Chemie / Pharmazie Physik Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02067nam a2200481 ca4500</leader><controlfield tag="001">BV022949350</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080221 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071107nuuuuuuuu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527312399</subfield><subfield code="9">978-3-527-31239-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022949350</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 6350</subfield><subfield code="0">(DE-625)147133:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 138f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 602f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 168f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 010f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 302f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ionic liquids in synthesis</subfield><subfield code="c">ed. by Peter Wasserscheid ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Green chemistry</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Frühere Aufl. einbändig erschienen</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösungsmittel</subfield><subfield code="0">(DE-588)4036160-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrolytlösung</subfield><subfield code="0">(DE-588)4133913-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Synthese</subfield><subfield code="0">(DE-588)4133806-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ionische Flüssigkeit</subfield><subfield code="0">(DE-588)7548899-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chemische Synthese</subfield><subfield code="0">(DE-588)4133806-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lösungsmittel</subfield><subfield code="0">(DE-588)4036160-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elektrolytlösung</subfield><subfield code="0">(DE-588)4133913-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chemische Synthese</subfield><subfield code="0">(DE-588)4133806-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Ionische Flüssigkeit</subfield><subfield code="0">(DE-588)7548899-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wasserscheid, Peter</subfield><subfield code="d">1970-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)12089257X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153844&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153844&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016153844</subfield></datafield></record></collection> |
id | DE-604.BV022949350 |
illustrated | Not Illustrated |
index_date | 2024-07-02T19:01:28Z |
indexdate | 2024-07-09T21:08:23Z |
institution | BVB |
isbn | 9783527312399 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016153844 |
open_access_boolean | |
publishDateSort | 0000 |
publisher | Wiley-VCH |
record_format | marc |
series2 | Green chemistry |
spelling | Ionic liquids in synthesis ed. by Peter Wasserscheid ... Weinheim Wiley-VCH txt rdacontent n rdamedia nc rdacarrier Green chemistry Frühere Aufl. einbändig erschienen Lösungsmittel (DE-588)4036160-3 gnd rswk-swf Elektrolytlösung (DE-588)4133913-7 gnd rswk-swf Chemische Synthese (DE-588)4133806-6 gnd rswk-swf Ionische Flüssigkeit (DE-588)7548899-1 gnd rswk-swf Chemische Synthese (DE-588)4133806-6 s Lösungsmittel (DE-588)4036160-3 s Elektrolytlösung (DE-588)4133913-7 s DE-604 Ionische Flüssigkeit (DE-588)7548899-1 s Wasserscheid, Peter 1970- Sonstige (DE-588)12089257X oth Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153844&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Klappentext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153844&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ionic liquids in synthesis Lösungsmittel (DE-588)4036160-3 gnd Elektrolytlösung (DE-588)4133913-7 gnd Chemische Synthese (DE-588)4133806-6 gnd Ionische Flüssigkeit (DE-588)7548899-1 gnd |
subject_GND | (DE-588)4036160-3 (DE-588)4133913-7 (DE-588)4133806-6 (DE-588)7548899-1 |
title | Ionic liquids in synthesis |
title_auth | Ionic liquids in synthesis |
title_exact_search | Ionic liquids in synthesis |
title_exact_search_txtP | Ionic liquids in synthesis |
title_full | Ionic liquids in synthesis ed. by Peter Wasserscheid ... |
title_fullStr | Ionic liquids in synthesis ed. by Peter Wasserscheid ... |
title_full_unstemmed | Ionic liquids in synthesis ed. by Peter Wasserscheid ... |
title_short | Ionic liquids in synthesis |
title_sort | ionic liquids in synthesis |
topic | Lösungsmittel (DE-588)4036160-3 gnd Elektrolytlösung (DE-588)4133913-7 gnd Chemische Synthese (DE-588)4133806-6 gnd Ionische Flüssigkeit (DE-588)7548899-1 gnd |
topic_facet | Lösungsmittel Elektrolytlösung Chemische Synthese Ionische Flüssigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153844&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153844&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wasserscheidpeter ionicliquidsinsynthesis |