Algebraic K-theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2008
|
Ausgabe: | 2. ed., reprint of the 1995 2. ed. |
Schriftenreihe: | Modern Birkhäuser classics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Originally publ. as volume 90 in the series 'Progress in mathematics' |
Beschreibung: | XVI, 341 S. |
ISBN: | 9780817647360 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022948632 | ||
003 | DE-604 | ||
005 | 20220126 | ||
007 | t | ||
008 | 071107s2008 |||| 00||| eng d | ||
020 | |a 9780817647360 |9 978-0-8176-4736-0 | ||
035 | |a (OCoLC)181090572 | ||
035 | |a (DE-599)BVBBV022948632 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-91G |a DE-20 |a DE-355 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA612.33 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a MAT 552f |2 stub | ||
084 | |a MAT 189f |2 stub | ||
100 | 1 | |a Srinivas, Vasudevan |d 1958- |e Verfasser |0 (DE-588)112913695 |4 aut | |
245 | 1 | 0 | |a Algebraic K-theory |c V. Srinivas |
250 | |a 2. ed., reprint of the 1995 2. ed. | ||
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2008 | |
300 | |a XVI, 341 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Modern Birkhäuser classics | |
500 | |a Originally publ. as volume 90 in the series 'Progress in mathematics' | ||
650 | 4 | |a Algebraic topology | |
650 | 4 | |a K-theory | |
650 | 4 | |a Rings (Algebra) | |
650 | 0 | 7 | |a Algebraische K-Theorie |0 (DE-588)4141839-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a K-Theorie |0 (DE-588)4033335-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebraische K-Theorie |0 (DE-588)4141839-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a K-Theorie |0 (DE-588)4033335-8 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153147&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016153147 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137190724206592 |
---|---|
adam_text | Contents
Preface
to the First Edition
............................... xi
Preface to the Second Edition
............................. xvii
1.
Classical
К-ТЪеоту
..................................... 1
Review of parts of Milnor s book: definitions of
Ко,
Κι,
Кг
of rings;
computation of K of
a noncommutative
local ring; definition of sym¬
bols; statement of Matsumoto s theorem; examples of symbols (norm
residue symbol, Galois symbol, differential symbol); presentation for
Ki of a commutative local ring.
2.
The Plus Construction
.................................... 18
The plus construction; computation that m(BGL(R)+)
S K%(R);
Я
-space structure of BGL(R)+ and products in
Я
-theory {following
Loday); statement of QuiHen s theorem on Ki of a finite field.
3.
The Classifying Space of a Small Gategory
................... 31
Simplicia!
sets; geometric realization; classifying space of a small cate¬
gory; elementary theorems about classifying spaces (compatibility with
products, natural transformations give homotopies, adjoint functors
give homotopy inverses, filtering categories are contractible); example
of the classifying space of a discrete group as the classifying space of
the category with one object, whose endomorphisms equal the group.
4.
Exact Categories and
Quilîen s Q-Construcfcion
............... 38
Exact categories; admissible mono- and epimorphisms; definition of
QC for a small exact category C% definition of Ki{C) for a small ex¬
act category C; statements of theorems about
К, {Ко
agrees with that
defined classically , theorem on exact sequences of functors, resolu¬
tion theorem,
dévissage
theorem, localization theorem); bare hands
construction of a homomorphism Ko{C)
—*
viii
Algebraic
/f-Theory
5.
The ií-Theory
of Rings and Schemes
....................... 46
Statement of the theorem comparing the definitions of Ki of a ring using
the plus and
Q
constructions; definition of Gi(A) as K, of finitely gen¬
erated ^-modules, for Noetherian rings A; computations of Gi{A[t]),
Gi(A[i,i ł])
for Noetherian A, and hence
КААЩ),
Кѓ{АЏ,Г1])
for
Noetherian regular A; definition of Kt(X),
G
AX) for schemes, using
vector bundles and coherent sheaves, respectively; construction of di¬
rect image and inverse image maps for K, and G, of Noetherian schemes
for morphisms satisfying appropriate conditions; action of
Ko on
Ki,
Gì
and projection formulas; Ki, Gi commute with filtered direct lim¬
its; localization for
G
і
of a closed subscheme and the open complement;
Mayer-Vietoris for G%
G¡
of
affine
and
projective
space bundles; fil¬
tration by codimension of support and the BGQ spectral sequence;
Gersten s conjecture for power series rings, and semilocal rings of fi¬
nite sets of points on a smooth variety over an infinite field; Bloch s
formula; Ki of
projective
bundles, of P1 over a noncommutative ring,
and of Severi-Brauer schemes.
6.
Proofs of the Theorems of Chapter
4 ........................ 89
Proofe of the following theorems: ttiBQC)
й Ко (С);
Theorems A and
В
of Quillen; the theorem on exact sequences of functors; the resolution
theorem; the
dévissage
theorem; the localization theorem.
7.
Comparison of the Plus and Q-Constructions
................ 126
Monoidal categories; localization of the action of a monoidal category
on a small category; computation of the homology of the classifying
space of a localized category; the S~1S construction, viewed as a func-
torial version of the plus construction; construction of the homotopy
equivalence S~1S
—>
QBQC for any exact category
С
in which all ex¬
act sequences are split, where <S is the category of isomorphisms in C;
corollary that the plus and Q-constructions yield the same
Aľ-groups
for
projective
modules over a ring.
8.
The Merkurjev-Suslin Theorem
............................ 145
The Galois symbol; statement of the Merkurjev—Suslin theorem;
Hubert s Theorem
90
for
Кг;
proof of the Merkurjev-Suslin theorem;
torsion in Ki torsion in CH2.
9.
Localization for Singular Varieties
.......................... 194
Quillen s localization theorem for the complement of an effective
Cartier
divisor in a quasi-projective scheme with
affine
complement; discussion
of naturality of this sequence (after Swan); proof of the
Fundamentai
Theorem on Ki of polynomial and Laurent polynomial rings; Levine s
localization theorem; computation of
Ko
of the category of modules
of finite length and finite
projective
dimension over the local ring of a
normal surface singularity, in terms of
Ях(/Сг)
of the resolution; com¬
putation of this
Ко
for quotient singularities; Chow groups of surfaces
with quotient singularities.
Contents ix
Appendix
A. Results from Topology
.......................... 230
(A.I) Compactly generated spaces; (A.2)-(A.6) Homotopy groups,
Hurewicz theorems;
(Α.?)
Products; (A.8)-(A.12) CW-complexes,
Whitehead theorem, Milnor s theorem on the homotopy type of map¬
ping spaces, comparison of singular and cellular homology and cohomol¬
ogy; (A.13)-(A.15) Local coefficients, homology and cohomology with
local coefficients for CW-complexes via cellular chains; (A.
16)
Obstruc¬
tion theory for maps and homotopies between CW-complexes (which
may not be simply connected); (A.17)-(A.22) Fibrations, the homotopy
lifting property, long exact homotopy sequence, fiber homotopy equiv¬
alence, fibrations over a contractible base are fiber homotopy equiva¬
lent to a product, local coefficient systems of the homology and coho¬
mology groups of the fibers of a fibration; (A.23)-(A.26) Leray-Serre
spectral sequence for homology and cohomology of a fibration over a
CW-complex; (A.27) Homotopy fibers; (A.28) Spectral sequences for
the homology and cohomology of a covering space;
(
A.29)-( A.35) Quasi
fibrations (some results of
Dold
and Thom); (A.36)-(A.42) NDR-pairs
and cofibrations (following Steenrod); (A.43)-(A.47) if-spaces; (A.48)-
(A.50) Covering spaces of simplicial sets; (A.51)-(A.54) Hurewicz and
Whitehead theorems for non-simply connected
Jï-spaces; (A.55)
Mil¬
nor s theorem on the geometric realization of a product of simplicial
sets.
Appendix B. Results from Category Theory
.................... 276
Small categories; equivalences; Abelian categories; construction of the
quotient of a small Abelian category by
a Serre subcategory;
examples
of quotients; adjoint functors; filtering categories and direct limits.
Appendix C. Exact Couples
.................................. 287
The spectral sequence of an exact couple; bigraded couples; elementary
discussion of convergence; the BGQ spectral sequence; the spectral
sequence of a filtered complex.
Appendix D. Results from Algebraic Geometry
................. 295
(D.IHD.M) Sheaves; (D.15)-(D.2O) Schemes; (D.21)-(D.41) Some
properties of schemes; (D.42)-(D.59) Coherent and quasi-coherent
sheaves; (D.60)-(D.66) Cohomology and direct images of quasi-coherent
and coherent sheaves; (D.67)-(D.7O) Some miscellaneous topics.
Bibliography
............................................... 339
|
adam_txt |
Contents
Preface
to the First Edition
. xi
Preface to the Second Edition
. xvii
1.
"Classical"
К-ТЪеоту
. 1
Review of parts of Milnor's book: definitions of
Ко,
Κι,
Кг
of rings;
computation of K\ of
a noncommutative
local ring; definition of sym¬
bols; statement of Matsumoto's theorem; examples of symbols (norm
residue symbol, Galois symbol, differential symbol); presentation for
Ki of a commutative local ring.
2.
The Plus Construction
. 18
The plus construction; computation that m(BGL(R)+)
S K%(R);
Я
-space structure of BGL(R)+ and products in
Я
-theory {following
Loday); statement of QuiHen's theorem on Ki of a finite field.
3.
The Classifying Space of a Small Gategory
. 31
Simplicia!
sets; geometric realization; classifying space of a small cate¬
gory; elementary theorems about classifying spaces (compatibility with
products, natural transformations give homotopies, adjoint functors
give homotopy inverses, filtering categories are contractible); example
of the classifying space of a discrete group as the classifying space of
the category with one object, whose endomorphisms equal the group.
4.
Exact Categories and
Quilîen's Q-Construcfcion
. 38
Exact categories; admissible mono- and epimorphisms; definition of
QC for a small exact category C% definition of Ki{C) for a small ex¬
act category C; statements of theorems about
К, {Ко
agrees with that
defined "classically", theorem on exact sequences of functors, resolu¬
tion theorem,
dévissage
theorem, localization theorem); "bare hands"
construction of a homomorphism Ko{C)
—*
viii
Algebraic
/f-Theory
5.
The ií-Theory
of Rings and Schemes
. 46
Statement of the theorem comparing the definitions of Ki of a ring using
the plus and
Q
constructions; definition of Gi(A) as K, of finitely gen¬
erated ^-modules, for Noetherian rings A; computations of Gi{A[t]),
Gi(A[i,i"ł])
for Noetherian A, and hence
КААЩ),
Кѓ{АЏ,Г1])
for
Noetherian regular A; definition of Kt(X),
G
AX) for schemes, using
vector bundles and coherent sheaves, respectively; construction of di¬
rect image and inverse image maps for K, and G, of Noetherian schemes
for morphisms satisfying appropriate conditions; action of
Ko on
Ki,
Gì
and projection formulas; Ki, Gi commute with filtered direct lim¬
its; localization for
G
і
of a closed subscheme and the open complement;
Mayer-Vietoris for G%\
G¡
of
affine
and
projective
space bundles; fil¬
tration by codimension of support and the BGQ spectral sequence;
Gersten's conjecture for power series rings, and semilocal rings of fi¬
nite sets of points on a smooth variety over an infinite field; Bloch's
formula; Ki of
projective
bundles, of P1 over a noncommutative ring,
and of Severi-Brauer schemes.
6.
Proofs of the Theorems of Chapter
4 . 89
Proofe of the following theorems: ttiBQC)
й Ко (С);
Theorems A and
В
of Quillen; the theorem on exact sequences of functors; the resolution
theorem; the
dévissage
theorem; the localization theorem.
7.
Comparison of the Plus and Q-Constructions
. 126
Monoidal categories; localization of the action of a monoidal category
on a small category; computation of the homology of the classifying
space of a localized category; the S~1S construction, viewed as a "func-
torial" version of the plus construction; construction of the homotopy
equivalence S~1S
—>
QBQC for any exact category
С
in which all ex¬
act sequences are split, where <S is the category of isomorphisms in C;
corollary that the plus and Q-constructions yield the same
Aľ-groups
for
projective
modules over a ring.
8.
The Merkurjev-Suslin Theorem
. 145
The Galois symbol; statement of the Merkurjev—Suslin theorem;
Hubert's Theorem
90
for
Кг;
proof of the Merkurjev-Suslin theorem;
torsion in Ki\ torsion in CH2.
9.
Localization for Singular Varieties
. 194
Quillen's localization theorem for the complement of an effective
Cartier
divisor in a quasi-projective scheme with
affine
complement; discussion
of naturality of this sequence (after Swan); proof of the
"Fundamentai
Theorem" on Ki of polynomial and Laurent polynomial rings; Levine's
localization theorem; computation of
Ko
of the category of modules
of finite length and finite
projective
dimension over the local ring of a
normal surface singularity, in terms of
Ях(/Сг)
of the resolution; com¬
putation of this
Ко
for quotient singularities; Chow groups of surfaces
with quotient singularities.
Contents ix
Appendix
A. Results from Topology
. 230
(A.I) Compactly generated spaces; (A.2)-(A.6) Homotopy groups,
Hurewicz theorems;
(Α.?)
Products; (A.8)-(A.12) CW-complexes,
Whitehead theorem, Milnor's theorem on the homotopy type of map¬
ping spaces, comparison of singular and cellular homology and cohomol¬
ogy; (A.13)-(A.15) Local coefficients, homology and cohomology with
local coefficients for CW-complexes via cellular chains; (A.
16)
Obstruc¬
tion theory for maps and homotopies between CW-complexes (which
may not be simply connected); (A.17)-(A.22) Fibrations, the homotopy
lifting property, long exact homotopy sequence, fiber homotopy equiv¬
alence, fibrations over a contractible base are fiber homotopy equiva¬
lent to a product, local coefficient systems of the homology and coho¬
mology groups of the fibers of a fibration; (A.23)-(A.26) Leray-Serre
spectral sequence for homology and cohomology of a fibration over a
CW-complex; (A.27) Homotopy fibers; (A.28) Spectral sequences for
the homology and cohomology of a covering space;
(
A.29)-( A.35) Quasi
fibrations (some results of
Dold
and Thom); (A.36)-(A.42) NDR-pairs
and cofibrations (following Steenrod); (A.43)-(A.47) if-spaces; (A.48)-
(A.50) Covering spaces of simplicial sets; (A.51)-(A.54) Hurewicz and
Whitehead theorems for non-simply connected
Jï-spaces; (A.55)
Mil¬
nor's theorem on the geometric realization of a product of simplicial
sets.
Appendix B. Results from Category Theory
. 276
Small categories; equivalences; Abelian categories; construction of the
quotient of a small Abelian category by
a Serre subcategory;
examples
of quotients; adjoint functors; filtering categories and direct limits.
Appendix C. Exact Couples
. 287
The spectral sequence of an exact couple; bigraded couples; elementary
discussion of convergence; the BGQ spectral sequence; the spectral
sequence of a filtered complex.
Appendix D. Results from Algebraic Geometry
. 295
(D.IHD.M) Sheaves; (D.15)-(D.2O) Schemes; (D.21)-(D.41) Some
properties of schemes; (D.42)-(D.59) Coherent and quasi-coherent
sheaves; (D.60)-(D.66) Cohomology and direct images of quasi-coherent
and coherent sheaves; (D.67)-(D.7O) Some miscellaneous topics.
Bibliography
. 339 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Srinivas, Vasudevan 1958- |
author_GND | (DE-588)112913695 |
author_facet | Srinivas, Vasudevan 1958- |
author_role | aut |
author_sort | Srinivas, Vasudevan 1958- |
author_variant | v s vs |
building | Verbundindex |
bvnumber | BV022948632 |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.33 |
callnumber-search | QA612.33 |
callnumber-sort | QA 3612.33 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 230 SK 320 |
classification_tum | MAT 552f MAT 189f |
ctrlnum | (OCoLC)181090572 (DE-599)BVBBV022948632 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed., reprint of the 1995 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02051nam a2200529 c 4500</leader><controlfield tag="001">BV022948632</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220126 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071107s2008 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647360</subfield><subfield code="9">978-0-8176-4736-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)181090572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022948632</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA612.33</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 552f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 189f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Srinivas, Vasudevan</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112913695</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic K-theory</subfield><subfield code="c">V. Srinivas</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., reprint of the 1995 2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 341 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modern Birkhäuser classics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Originally publ. as volume 90 in the series 'Progress in mathematics'</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K-theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rings (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische K-Theorie</subfield><subfield code="0">(DE-588)4141839-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische K-Theorie</subfield><subfield code="0">(DE-588)4141839-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">K-Theorie</subfield><subfield code="0">(DE-588)4033335-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153147&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016153147</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022948632 |
illustrated | Not Illustrated |
index_date | 2024-07-02T19:01:10Z |
indexdate | 2024-07-09T21:08:22Z |
institution | BVB |
isbn | 9780817647360 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016153147 |
oclc_num | 181090572 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-20 DE-355 DE-BY-UBR DE-11 DE-188 |
owner_facet | DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-20 DE-355 DE-BY-UBR DE-11 DE-188 |
physical | XVI, 341 S. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Birkhäuser |
record_format | marc |
series2 | Modern Birkhäuser classics |
spelling | Srinivas, Vasudevan 1958- Verfasser (DE-588)112913695 aut Algebraic K-theory V. Srinivas 2. ed., reprint of the 1995 2. ed. Boston [u.a.] Birkhäuser 2008 XVI, 341 S. txt rdacontent n rdamedia nc rdacarrier Modern Birkhäuser classics Originally publ. as volume 90 in the series 'Progress in mathematics' Algebraic topology K-theory Rings (Algebra) Algebraische K-Theorie (DE-588)4141839-6 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf K-Theorie (DE-588)4033335-8 gnd rswk-swf Algebraische K-Theorie (DE-588)4141839-6 s DE-604 K-Theorie (DE-588)4033335-8 s 1\p DE-604 Algebra (DE-588)4001156-2 s 2\p DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153147&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Srinivas, Vasudevan 1958- Algebraic K-theory Algebraic topology K-theory Rings (Algebra) Algebraische K-Theorie (DE-588)4141839-6 gnd Algebra (DE-588)4001156-2 gnd K-Theorie (DE-588)4033335-8 gnd |
subject_GND | (DE-588)4141839-6 (DE-588)4001156-2 (DE-588)4033335-8 |
title | Algebraic K-theory |
title_auth | Algebraic K-theory |
title_exact_search | Algebraic K-theory |
title_exact_search_txtP | Algebraic K-theory |
title_full | Algebraic K-theory V. Srinivas |
title_fullStr | Algebraic K-theory V. Srinivas |
title_full_unstemmed | Algebraic K-theory V. Srinivas |
title_short | Algebraic K-theory |
title_sort | algebraic k theory |
topic | Algebraic topology K-theory Rings (Algebra) Algebraische K-Theorie (DE-588)4141839-6 gnd Algebra (DE-588)4001156-2 gnd K-Theorie (DE-588)4033335-8 gnd |
topic_facet | Algebraic topology K-theory Rings (Algebra) Algebraische K-Theorie Algebra K-Theorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016153147&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT srinivasvasudevan algebraicktheory |