Toroidalization of dominant morphisms of 3-folds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
American Math. Soc.
2007
|
Schriftenreihe: | Memoirs of the American Mathematical Society
890 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Volume 190, number 890 (end of volume.) |
Beschreibung: | VI, 222 S. |
ISBN: | 9780821839980 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022947698 | ||
003 | DE-604 | ||
005 | 20071126 | ||
007 | t | ||
008 | 071107s2007 |||| 00||| eng d | ||
020 | |a 9780821839980 |9 978-0-8218-3998-0 | ||
035 | |a (OCoLC)184969062 | ||
035 | |a (DE-599)HBZHT015325288 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-29T |a DE-11 |a DE-188 |a DE-83 | ||
050 | 0 | |a QA564 | |
082 | 0 | |a 516/.11 |2 22 | |
100 | 1 | |a Cutkosky, Steven Dale |e Verfasser |4 aut | |
245 | 1 | 0 | |a Toroidalization of dominant morphisms of 3-folds |c Steven Dale Cutkosky |
264 | 1 | |a Providence, RI |b American Math. Soc. |c 2007 | |
300 | |a VI, 222 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v 890 | |
500 | |a Volume 190, number 890 (end of volume.) | ||
650 | 4 | |a Algèbre commutative | |
650 | 7 | |a Algèbres commutatives |2 ram | |
650 | 4 | |a Géométrie algébrique | |
650 | 7 | |a Géométrie algébrique |2 ram | |
650 | 4 | |a Morphismes (Mathématiques) | |
650 | 7 | |a Morphismes (mathématiques) |2 ram | |
650 | 4 | |a Variétés algébriques | |
650 | 7 | |a Variétés algébriques |2 ram | |
650 | 0 | 7 | |a Geometrische Algebra |0 (DE-588)4156707-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Varietät |0 (DE-588)4581715-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutative Algebra |0 (DE-588)4164821-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Morphismus |0 (DE-588)4149340-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Algebra |0 (DE-588)4156707-9 |D s |
689 | 0 | 1 | |a Morphismus |0 (DE-588)4149340-0 |D s |
689 | 0 | 2 | |a Algebraische Varietät |0 (DE-588)4581715-7 |D s |
689 | 0 | 3 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Memoirs of the American Mathematical Society |v 890 |w (DE-604)BV008000141 |9 890 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016152230&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016152230 |
Datensatz im Suchindex
_version_ | 1804137189216354304 |
---|---|
adam_text | Contents
Chapter 1. Introduction 1
Chapter 2. An outline of the proof 5
Chapter 3. Notation 17
Chapter 4. Toroidal morphisms and prepared morphisms 19
Chapter 5. Toroidal ideals 27
Chapter 6. Toroidalization of morphisms from 3 folds to surfaces 29
Chapter 7. Preparation above 2 and 3 points 33
Chapter 8. Preparation 49
Chapter 9. The r invariant 57
Chapter 10. Super parameters 79
Chapter 11. Good and perfect points 95
Chapter 12. Relations 113
Chapter 13. Well prepared morphisms 119
Chapter 14. Construction of r well prepared diagrams 127
Chapter 15. Construction of a r very well prepared morphism 169
Chapter 16. Toroidalization 211
Chapter 17. Proofs of the main results 217
Chapter 18. List of technical terms 219
Bibliography 221
V
|
adam_txt |
Contents
Chapter 1. Introduction 1
Chapter 2. An outline of the proof 5
Chapter 3. Notation 17
Chapter 4. Toroidal morphisms and prepared morphisms 19
Chapter 5. Toroidal ideals 27
Chapter 6. Toroidalization of morphisms from 3 folds to surfaces 29
Chapter 7. Preparation above 2 and 3 points 33
Chapter 8. Preparation 49
Chapter 9. The r invariant 57
Chapter 10. Super parameters 79
Chapter 11. Good and perfect points 95
Chapter 12. Relations 113
Chapter 13. Well prepared morphisms 119
Chapter 14. Construction of r well prepared diagrams 127
Chapter 15. Construction of a r very well prepared morphism 169
Chapter 16. Toroidalization 211
Chapter 17. Proofs of the main results 217
Chapter 18. List of technical terms 219
Bibliography 221
V |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Cutkosky, Steven Dale |
author_facet | Cutkosky, Steven Dale |
author_role | aut |
author_sort | Cutkosky, Steven Dale |
author_variant | s d c sd sdc |
building | Verbundindex |
bvnumber | BV022947698 |
callnumber-first | Q - Science |
callnumber-label | QA564 |
callnumber-raw | QA564 |
callnumber-search | QA564 |
callnumber-sort | QA 3564 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)184969062 (DE-599)HBZHT015325288 |
dewey-full | 516/.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516/.11 |
dewey-search | 516/.11 |
dewey-sort | 3516 211 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02142nam a2200529 cb4500</leader><controlfield tag="001">BV022947698</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071126 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071107s2007 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821839980</subfield><subfield code="9">978-0-8218-3998-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)184969062</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015325288</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA564</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516/.11</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cutkosky, Steven Dale</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toroidalization of dominant morphisms of 3-folds</subfield><subfield code="c">Steven Dale Cutkosky</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 222 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">890</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Volume 190, number 890 (end of volume.)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbre commutative</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbres commutatives</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie algébrique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Géométrie algébrique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morphismes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Morphismes (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés algébriques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Variétés algébriques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Varietät</subfield><subfield code="0">(DE-588)4581715-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Morphismus</subfield><subfield code="0">(DE-588)4149340-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Algebra</subfield><subfield code="0">(DE-588)4156707-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Morphismus</subfield><subfield code="0">(DE-588)4149340-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algebraische Varietät</subfield><subfield code="0">(DE-588)4581715-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">890</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">890</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016152230&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016152230</subfield></datafield></record></collection> |
id | DE-604.BV022947698 |
illustrated | Not Illustrated |
index_date | 2024-07-02T19:00:37Z |
indexdate | 2024-07-09T21:08:20Z |
institution | BVB |
isbn | 9780821839980 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016152230 |
oclc_num | 184969062 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T DE-11 DE-188 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-29T DE-11 DE-188 DE-83 |
physical | VI, 222 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | American Math. Soc. |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Cutkosky, Steven Dale Verfasser aut Toroidalization of dominant morphisms of 3-folds Steven Dale Cutkosky Providence, RI American Math. Soc. 2007 VI, 222 S. txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society 890 Volume 190, number 890 (end of volume.) Algèbre commutative Algèbres commutatives ram Géométrie algébrique Géométrie algébrique ram Morphismes (Mathématiques) Morphismes (mathématiques) ram Variétés algébriques Variétés algébriques ram Geometrische Algebra (DE-588)4156707-9 gnd rswk-swf Algebraische Varietät (DE-588)4581715-7 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 gnd rswk-swf Morphismus (DE-588)4149340-0 gnd rswk-swf Geometrische Algebra (DE-588)4156707-9 s Morphismus (DE-588)4149340-0 s Algebraische Varietät (DE-588)4581715-7 s Kommutative Algebra (DE-588)4164821-3 s DE-604 Memoirs of the American Mathematical Society 890 (DE-604)BV008000141 890 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016152230&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cutkosky, Steven Dale Toroidalization of dominant morphisms of 3-folds Memoirs of the American Mathematical Society Algèbre commutative Algèbres commutatives ram Géométrie algébrique Géométrie algébrique ram Morphismes (Mathématiques) Morphismes (mathématiques) ram Variétés algébriques Variétés algébriques ram Geometrische Algebra (DE-588)4156707-9 gnd Algebraische Varietät (DE-588)4581715-7 gnd Kommutative Algebra (DE-588)4164821-3 gnd Morphismus (DE-588)4149340-0 gnd |
subject_GND | (DE-588)4156707-9 (DE-588)4581715-7 (DE-588)4164821-3 (DE-588)4149340-0 |
title | Toroidalization of dominant morphisms of 3-folds |
title_auth | Toroidalization of dominant morphisms of 3-folds |
title_exact_search | Toroidalization of dominant morphisms of 3-folds |
title_exact_search_txtP | Toroidalization of dominant morphisms of 3-folds |
title_full | Toroidalization of dominant morphisms of 3-folds Steven Dale Cutkosky |
title_fullStr | Toroidalization of dominant morphisms of 3-folds Steven Dale Cutkosky |
title_full_unstemmed | Toroidalization of dominant morphisms of 3-folds Steven Dale Cutkosky |
title_short | Toroidalization of dominant morphisms of 3-folds |
title_sort | toroidalization of dominant morphisms of 3 folds |
topic | Algèbre commutative Algèbres commutatives ram Géométrie algébrique Géométrie algébrique ram Morphismes (Mathématiques) Morphismes (mathématiques) ram Variétés algébriques Variétés algébriques ram Geometrische Algebra (DE-588)4156707-9 gnd Algebraische Varietät (DE-588)4581715-7 gnd Kommutative Algebra (DE-588)4164821-3 gnd Morphismus (DE-588)4149340-0 gnd |
topic_facet | Algèbre commutative Algèbres commutatives Géométrie algébrique Morphismes (Mathématiques) Morphismes (mathématiques) Variétés algébriques Geometrische Algebra Algebraische Varietät Kommutative Algebra Morphismus |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016152230&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT cutkoskystevendale toroidalizationofdominantmorphismsof3folds |