Sheaves on manifolds:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
2002
|
Ausgabe: | Second printing |
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften
292 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 512 Seiten Illustrationen, Diagramme |
ISBN: | 9783540518617 9783642080821 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022947603 | ||
003 | DE-604 | ||
005 | 20220407 | ||
007 | t | ||
008 | 071106s2002 a||| |||| 00||| eng d | ||
016 | 7 | |a 942127722 |2 DE-101 | |
020 | |a 9783540518617 |c hardcover |9 978-3-540-51861-7 | ||
020 | |a 9783642080821 |c softcover |9 978-3-642-08082-1 | ||
035 | |a (OCoLC)254573598 | ||
035 | |a (DE-599)BVBBV022947603 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng |a fre | |
049 | |a DE-19 |a DE-355 |a DE-188 |a DE-11 | ||
082 | 0 | |a 514/.224 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 320 |0 (DE-625)143231: |2 rvk | ||
084 | |a MAT 322f |2 stub | ||
100 | 1 | |a Kashiwara, Masaki |d 1947- |e Verfasser |0 (DE-588)122204344 |4 aut | |
245 | 1 | 0 | |a Sheaves on manifolds |c Masaki Kashiwara ; Pierre Schapira |
250 | |a Second printing | ||
264 | 1 | |a Berlin ; Heidelberg |b Springer |c 2002 | |
300 | |a X, 512 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften |v 292 | |
505 | 8 | 0 | |t <<Les>> débuts de la théorie des faisceaux |
650 | 4 | |a Garbentheorie | |
650 | 0 | 7 | |a Garbentheorie |0 (DE-588)4155956-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Garbentheorie |0 (DE-588)4155956-3 |D s |
689 | 0 | 1 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Garbentheorie |0 (DE-588)4155956-3 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Schapira, Pierre |d 1943- |e Verfasser |0 (DE-588)10785130X |4 aut | |
700 | 1 | |a Houzel, Christian |d 1937- |0 (DE-588)1058725467 |4 wat | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-662-02661-8 |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften |v 292 |w (DE-604)BV000000395 |9 292 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016152138&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016152138 | ||
249 | |a <<Les>> débuts de la théorie des faisceaux |v With a short history by Christian Houzel |
Datensatz im Suchindex
_version_ | 1804137189056970752 |
---|---|
adam_text | Table
of
contents
Introduction
.................................................... 1
A Short
History:
Les débuts de la théorie des faisceaux
by
Christian Houzel
............................................. 7
I. Homological algebra
.......................................... 23
Summary ......................................................
23
1.1.
Categories and functors
..................................... 23
1.2.
Abelian categories
.......................................... 26
1.3.
Categories of complexes
..................................... 30
1.4.
Mapping cones
............................................ 34
1.5.
Triangulated categories
..................................... 38
1.6.
Localization of categories
................................... 41
1.7.
Derived categories
......................................... 45
1.8.
Derived functors
........................................... 50
1.9.
Double complexes
.......................................... 54
1.10.
Bifunctors
................................................ 56
1.11.
Ind-objects and pro-objects
.................................. 61
1.12.
The Mittag-Leffler condition
................................. 64
Exercises to Chapter I
........................................... 69
Notes
......................................................... 81
II. Sheaves
..................................................... 83
Summary
...................................................... 83
2.1.
Presheaves
................................................ 83
2.2.
Sheaves
................................................... 85
2.3.
Operations on sheaves
...................................... 90
2.4.
Injective, flabby and flat sheaves
.............................. 98
2.5.
Sheaves on locally compact spaces
............................ 102
2.6.
Cohomology of sheaves
..................................... 109
2.7.
Some vanishing theorems
................................... 116
2.8.
Cohomology of coverings
................................... 123
2.9.
Examples of sheaves on real and complex manifolds
............. 125
VIII Table of
contents
Exercises to Chapter II
........................................... 131
Notes
.........................................................
138
Ш.
Poincaré-Verdier
duality and Fourier-Sato transformation
..........139
Summary
...................................................... 139
3.1.
Poincaré-Verdier
duality
.................................... 140
3.2.
Vanishing theorems on manifolds
............................. 149
3.3.
Orientation and duality
..................................... 151
3.4.
Cohomologically
constructible
sheaves
........................ 158
3.5.
y-t°P°l°§y
................................................
I***
3.6.
Kernels
................................................... 164
3.7.
Fourier-Sato transformation
................................. 167
Exercises to Chapter III
..........................................178
Notes
......................................................... 184
IV. Specialization and microlocalization
............................ 185
Summary
...................................................... 185
4.1.
Normal deformation and normal cones
........................185
4.2.
Specialization
............................................. 190
4.3.
Microlocalization
.......................................... 198
4.4.
The functor
џАот
..........................................201
Exercises to Chapter IV
..........................................214
Notes
.........................................................215
V. Micro-support of sheaves
......................................217
Summary
......................................................217
5.1.
Equivalent definitions of the micro-support
....................218
5.2.
Propagation
...............................................222
5.3.
Examples: micro-supports associated with locally closed subsets
... 226
5.4.
Functorial properties of the micro-support
.....................229
5.5.
Micro-support of conic sheaves
...............................241
Exercises to Chapter V
............................................245
Notes
.........................................................247
VI. Micro-support and microlocalization
............................249
Summary
......................................................249
6.1.
The category Ob(X;Q)
......................................250
6.2.
Normal cones in cotangent bundles
...........................258
6.3.
Direct images
..............................................263
6.4.
Microlocalization
..........................................268
6.5.
Involutivity and propagation
................................271
Table
of
contents
IX
6.6.
Sheaves in a neighborhood of an involutive manifold
............274
6.7.
Microlocalization and inverse images
.........................275
Exercises to Chapter VI
..........................................279
Notes
.........................................................281
VII.
Contact transformations and pure sheaves
.......................283
Summary
......................................................283
7.1.
Microlocal
kernels
......................................... 284
7.2.
Contact transformations for sheaves
.......................... 289
7.3.
Microlocal
composition of kernels
............................ 293
7.4.
Integral transformations for sheaves associated with submanifolds
. 298
7.5.
Pure sheaves
.............................................. 309
Exercises to Chapter
VII
......................................... 318
Notes
......................................................... 318
VIII.
Constructible
sheaves
.......................................320
Summary
......................................................320
8.1.
Constructible
sheaves on a simplicial complex
..................321
8.2.
Subanalytic sets
............................................327
8.3.
Subanalytic
isotropie
sets and
μ
-stratifications
..................
328
8.4.
K-constructible sheaves
.....................................338
8.5.
C-constructible sheaves
.....................................344
8.6.
Nearby-cycle functor and vanishing-cycle functor
...............350
Exercises to Chapter
VIII ........................................356
Notes
.........................................................358
IX. Characteristic cycles
.........................................360
Summary
......................................................360
9.1.
Index formula
............................................. 361
9.2.
Subanalytic chains and subanalytic cycles
...................... 366
9.3.
Lagrangian cycles
.......................................... 373
9.4.
Characteristic cycles
........................................ 377
9.5.
Microlocal
index formulas
................................... 384
9.6.
Lefschetz fixed point formula
................................ 389
9.7.
Constructible
functions and Lagrangian cycles
.................. 398
Exercises to Chapter IX
.......................................... 406
Notes
......................................................... 409
X. Perverse sheaves
.............................................411
Summary
......................................................411
10.1.
i-structures
...............................................411
10.2.
Perverse sheaves on real manifolds
...........................419
X Table of
contents
10.3.
Perverse sheaves on complex manifolds
.......................426
Exercises to Chapter X
...........................................438
Notes
.........................................................440
XL Applications to C-modules and ©-modules
.......................441
Summary
......................................................441
11.1.
The sheaf Gx
.............................................442
11.2.
^-modules
..............................................445
11.3.
Holomorphic solutions of ^-modules
.......................453
11.4.
Microlocal
study of Gx
.....................................459
11.5.
Microfunctions
...........................................466
Exercises to Chapter XI
..........................................471
Notes
.........................................................474
Appendix: Symplectic geometry
....................................477
Summary
......................................................477
A.I
.
Symplectic vector spaces
....................................477
A.2. Homogeneous symplectic manifolds
..........................481
A.3. Inertia index
....,..........................................486
Exercises to the Appendix
........................................493
Notes
.........................................................495
Bibliography
...................................................496
List of notations and conventions
...................................502
Index
.........................................................509
|
adam_txt |
Table
of
contents
Introduction
. 1
A Short
History:
Les débuts de la théorie des faisceaux
by
Christian Houzel
. 7
I. Homological algebra
. 23
Summary .
23
1.1.
Categories and functors
. 23
1.2.
Abelian categories
. 26
1.3.
Categories of complexes
. 30
1.4.
Mapping cones
. 34
1.5.
Triangulated categories
. 38
1.6.
Localization of categories
. 41
1.7.
Derived categories
. 45
1.8.
Derived functors
. 50
1.9.
Double complexes
. 54
1.10.
Bifunctors
. 56
1.11.
Ind-objects and pro-objects
. 61
1.12.
The Mittag-Leffler condition
. 64
Exercises to Chapter I
. 69
Notes
. 81
II. Sheaves
. 83
Summary
. 83
2.1.
Presheaves
. 83
2.2.
Sheaves
. 85
2.3.
Operations on sheaves
. 90
2.4.
Injective, flabby and flat sheaves
. 98
2.5.
Sheaves on locally compact spaces
. 102
2.6.
Cohomology of sheaves
. 109
2.7.
Some vanishing theorems
. 116
2.8.
Cohomology of coverings
. 123
2.9.
Examples of sheaves on real and complex manifolds
. 125
VIII Table of
contents
Exercises to Chapter II
. 131
Notes
.
138
Ш.
Poincaré-Verdier
duality and Fourier-Sato transformation
.139
Summary
. 139
3.1.
Poincaré-Verdier
duality
. 140
3.2.
Vanishing theorems on manifolds
. 149
3.3.
Orientation and duality
. 151
3.4.
Cohomologically
constructible
sheaves
. 158
3.5.
y-t°P°l°§y
.
I***
3.6.
Kernels
. 164
3.7.
Fourier-Sato transformation
. 167
Exercises to Chapter III
.178
Notes
. 184
IV. Specialization and microlocalization
. 185
Summary
. 185
4.1.
Normal deformation and normal cones
.185
4.2.
Specialization
. 190
4.3.
Microlocalization
. 198
4.4.
The functor
џАот
.201
Exercises to Chapter IV
.214
Notes
.215
V. Micro-support of sheaves
.217
Summary
.217
5.1.
Equivalent definitions of the micro-support
.218
5.2.
Propagation
.222
5.3.
Examples: micro-supports associated with locally closed subsets
. 226
5.4.
Functorial properties of the micro-support
.229
5.5.
Micro-support of conic sheaves
.241
Exercises to Chapter V
.245
Notes
.247
VI. Micro-support and microlocalization
.249
Summary
.249
6.1.
The category Ob(X;Q)
.250
6.2.
Normal cones in cotangent bundles
.258
6.3.
Direct images
.263
6.4.
Microlocalization
.268
6.5.
Involutivity and propagation
.271
Table
of
contents
IX
6.6.
Sheaves in a neighborhood of an involutive manifold
.274
6.7.
Microlocalization and inverse images
.275
Exercises to Chapter VI
.279
Notes
.281
VII.
Contact transformations and pure sheaves
.283
Summary
.283
7.1.
Microlocal
kernels
. 284
7.2.
Contact transformations for sheaves
. 289
7.3.
Microlocal
composition of kernels
. 293
7.4.
Integral transformations for sheaves associated with submanifolds
. 298
7.5.
Pure sheaves
. 309
Exercises to Chapter
VII
. 318
Notes
. 318
VIII.
Constructible
sheaves
.320
Summary
.320
8.1.
Constructible
sheaves on a simplicial complex
.321
8.2.
Subanalytic sets
.327
8.3.
Subanalytic
isotropie
sets and
μ
-stratifications
.
328
8.4.
K-constructible sheaves
.338
8.5.
C-constructible sheaves
.344
8.6.
Nearby-cycle functor and vanishing-cycle functor
.350
Exercises to Chapter
VIII .356
Notes
.358
IX. Characteristic cycles
.360
Summary
.360
9.1.
Index formula
. 361
9.2.
Subanalytic chains and subanalytic cycles
. 366
9.3.
Lagrangian cycles
. 373
9.4.
Characteristic cycles
. 377
9.5.
Microlocal
index formulas
. 384
9.6.
Lefschetz fixed point formula
. 389
9.7.
Constructible
functions and Lagrangian cycles
. 398
Exercises to Chapter IX
. 406
Notes
. 409
X. Perverse sheaves
.411
Summary
.411
10.1.
i-structures
.411
10.2.
Perverse sheaves on real manifolds
.419
X Table of
contents
10.3.
Perverse sheaves on complex manifolds
.426
Exercises to Chapter X
.438
Notes
.440
XL Applications to C-modules and ©-modules
.441
Summary
.441
11.1.
The sheaf Gx
.442
11.2.
^-modules
.445
11.3.
Holomorphic solutions of ^-modules
.453
11.4.
Microlocal
study of Gx
.459
11.5.
Microfunctions
.466
Exercises to Chapter XI
.471
Notes
.474
Appendix: Symplectic geometry
.477
Summary
.477
A.I
.
Symplectic vector spaces
.477
A.2. Homogeneous symplectic manifolds
.481
A.3. Inertia index
.,.486
Exercises to the Appendix
.493
Notes
.495
Bibliography
.496
List of notations and conventions
.502
Index
.509 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kashiwara, Masaki 1947- Schapira, Pierre 1943- |
author_GND | (DE-588)122204344 (DE-588)10785130X (DE-588)1058725467 |
author_facet | Kashiwara, Masaki 1947- Schapira, Pierre 1943- |
author_role | aut aut |
author_sort | Kashiwara, Masaki 1947- |
author_variant | m k mk p s ps |
building | Verbundindex |
bvnumber | BV022947603 |
classification_rvk | SK 240 SK 320 |
classification_tum | MAT 322f |
contents | <<Les>> débuts de la théorie des faisceaux |
ctrlnum | (OCoLC)254573598 (DE-599)BVBBV022947603 |
dewey-full | 514/.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.224 |
dewey-search | 514/.224 |
dewey-sort | 3514 3224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Second printing |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02231nam a2200529 cb4500</leader><controlfield tag="001">BV022947603</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220407 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071106s2002 a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">942127722</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540518617</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-3-540-51861-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642080821</subfield><subfield code="c">softcover</subfield><subfield code="9">978-3-642-08082-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254573598</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022947603</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield><subfield code="a">fre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.224</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 320</subfield><subfield code="0">(DE-625)143231:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 322f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kashiwara, Masaki</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122204344</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sheaves on manifolds</subfield><subfield code="c">Masaki Kashiwara ; Pierre Schapira</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second printing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 512 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">292</subfield></datafield><datafield tag="505" ind1="8" ind2="0"><subfield code="t"><<Les>> débuts de la théorie des faisceaux</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Garbentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Garbentheorie</subfield><subfield code="0">(DE-588)4155956-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Garbentheorie</subfield><subfield code="0">(DE-588)4155956-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Garbentheorie</subfield><subfield code="0">(DE-588)4155956-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schapira, Pierre</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)10785130X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Houzel, Christian</subfield><subfield code="d">1937-</subfield><subfield code="0">(DE-588)1058725467</subfield><subfield code="4">wat</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-662-02661-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">292</subfield><subfield code="w">(DE-604)BV000000395</subfield><subfield code="9">292</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016152138&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016152138</subfield></datafield><datafield tag="249" ind1=" " ind2=" "><subfield code="a"><<Les>> débuts de la théorie des faisceaux</subfield><subfield code="v">With a short history by Christian Houzel</subfield></datafield></record></collection> |
id | DE-604.BV022947603 |
illustrated | Illustrated |
index_date | 2024-07-02T19:00:32Z |
indexdate | 2024-07-09T21:08:20Z |
institution | BVB |
isbn | 9783540518617 9783642080821 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016152138 |
oclc_num | 254573598 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-188 DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-188 DE-11 |
physical | X, 512 Seiten Illustrationen, Diagramme |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften |
series2 | Grundlehren der mathematischen Wissenschaften |
spelling | Kashiwara, Masaki 1947- Verfasser (DE-588)122204344 aut Sheaves on manifolds Masaki Kashiwara ; Pierre Schapira Second printing Berlin ; Heidelberg Springer 2002 X, 512 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Grundlehren der mathematischen Wissenschaften 292 <<Les>> débuts de la théorie des faisceaux Garbentheorie Garbentheorie (DE-588)4155956-3 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Garbentheorie (DE-588)4155956-3 s Mannigfaltigkeit (DE-588)4037379-4 s DE-604 Schapira, Pierre 1943- Verfasser (DE-588)10785130X aut Houzel, Christian 1937- (DE-588)1058725467 wat Erscheint auch als Online-Ausgabe 978-3-662-02661-8 Grundlehren der mathematischen Wissenschaften 292 (DE-604)BV000000395 292 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016152138&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis <<Les>> débuts de la théorie des faisceaux With a short history by Christian Houzel |
spellingShingle | Kashiwara, Masaki 1947- Schapira, Pierre 1943- Sheaves on manifolds Grundlehren der mathematischen Wissenschaften <<Les>> débuts de la théorie des faisceaux Garbentheorie Garbentheorie (DE-588)4155956-3 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4155956-3 (DE-588)4037379-4 |
title | Sheaves on manifolds |
title_alt | <<Les>> débuts de la théorie des faisceaux |
title_auth | Sheaves on manifolds |
title_exact_search | Sheaves on manifolds |
title_exact_search_txtP | Sheaves on manifolds |
title_full | Sheaves on manifolds Masaki Kashiwara ; Pierre Schapira |
title_fullStr | Sheaves on manifolds Masaki Kashiwara ; Pierre Schapira |
title_full_unstemmed | Sheaves on manifolds Masaki Kashiwara ; Pierre Schapira |
title_short | Sheaves on manifolds |
title_sort | sheaves on manifolds |
topic | Garbentheorie Garbentheorie (DE-588)4155956-3 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Garbentheorie Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016152138&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000395 |
work_keys_str_mv | AT kashiwaramasaki sheavesonmanifolds AT schapirapierre sheavesonmanifolds AT houzelchristian sheavesonmanifolds |