Mathematics for physics and physicists:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
Princeton [u.a.]
Princeton Univ. Press
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIV, 642 S. Ill., graph. Darst. |
ISBN: | 9780691131023 0691131023 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022935956 | ||
003 | DE-604 | ||
005 | 20240513 | ||
007 | t | ||
008 | 071023s2007 xxuad|| |||| 00||| eng d | ||
020 | |a 9780691131023 |9 978-0-691-13102-3 | ||
020 | |a 0691131023 |9 0-691-13102-3 | ||
035 | |a (OCoLC)255950087 | ||
035 | |a (DE-599)BVBBV022935956 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 1 | |a eng |h fre | |
044 | |a xxu |c US | ||
049 | |a DE-91G |a DE-19 |a DE-29T |a DE-83 |a DE-11 | ||
050 | 0 | |a QC20 | |
082 | 0 | |a 530.15 | |
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a PHY 011f |2 stub | ||
084 | |a 00A06 |2 msc | ||
100 | 1 | |a Appel, Walter |d 1970- |e Verfasser |0 (DE-588)1209620766 |4 aut | |
240 | 1 | 0 | |a Mathématiques pour la physique... et les physiciens! |
245 | 1 | 0 | |a Mathematics for physics and physicists |c Walter Appel |
264 | 1 | |a Princeton [u.a.] |b Princeton Univ. Press |c 2007 | |
300 | |a XXIV, 642 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mathematical physics |v Problems, exercises, etc | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016140694&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805066836864139264 |
---|---|
adam_text |
MATHEMATICS FOR PHYSICS AND PHYSICISTS WALTER APPEL TRANSLATED BY
EMMANUEL KOWALSKI PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD
CONTENTS A BOOK'S APOLOGY XVIII INDEX OF NOTATION XXII 1 REMINDERS:
CONVERGENCE OF SEQUENCES AND SERIES 1 1.1 THE PROBLEM OF LIMITS IN
PHYSICS 1 L.L.A TWO PARADOXES INVOLVING KINETIC ENERGY 1 L.L.B ROMEO,
JULIET, AND VISCOUS FLUIDS 5 L.L.C POTENTIAL WALL IN QUANTUM MECHANICS 7
1.1.D SEMI-INFINITE FILTER BEHAVING AS WAVEGUIDE 9 1.2 SEQUENCES 12
1.2.A SEQUENCES IN A NORMED VECTOR SPACE 12 1.2.B CAUCHY SEQUENCES 13
1.2.C THE FIXED POINT THEOREM 15 1.2.D DOUBLE SEQUENCES 16 1.2.E
SEQUENTIAL DEFINITION OF THE LIMIT OF A FUNCTION 17 1.2.F SEQUENCES OF
FUNCTIONS 18 1.3 SERIES 23 1.3.A SERIES IN A NORMED VECTOR SPACE 23
1.3.B DOUBLY INFINITE SERIES 24 1.3.C CONVERGENCE OF A DOUBLE SERIES 25
1.3.D CONDITIONALLY CONVERGENT SERIES, ABSOLUTELY CONVERGENT SERIES . 26
1.3.E SERIES OF FUNCTIONS 29 1.4 POWER SERIES, ANALYTIC FUNCTIONS 30
1.4.A TAYLOR FORMULAS 31 1.4.B SOME NUMERICAL ILLUSTRATIONS 32 1.4.C
RADIUS OF CONVERGENCE OF A POWER SERIES 34 1.4.D ANALYTIC FUNCTIONS 35
1.5 A QUICK LOOK AT ASYMPTOTIC AND DIVERGENT SERIES 37 1.5.A ASYMPTOTIC
SERIES 37 1.5.B DIVERGENT SERIES AND ASYMPTOTIC EXPANSIONS 38 EXERCISES
43 PROBLEM 46 SOLUTIONS 47 2 MEASURE THEORY AND THE LEBESGUE INTEGRAL 51
2.1 THE INTEGRAL ACCORDING TO MR. RIEMANN 51 2.LA RIEMANN SUMS 51 2.1.B
LIMITATIONS OF RIEMANN'S DEFINITION 54 2.2 THE INTEGRAL ACCORDING TO MR.
LEBESGUE 54 2.2.A PRINCIPLE OF THE METHOD 55 V I CONTENTS 2.2.B BOREL
SUBSETS 56 2.2.C LEBESGUE MEASURE 58 2.2.D THE LEBESGUE A-ALGEBRA 59
2.2.E NEGLIGIBLE SETS 61 2.2.F LEBESGUE MEASURE ON R" 62 2.2.G
DEFINITION OF THE LEBESGUE INTEGRAL 62 2.2.H FUNCTIONS ZERO ALMOST
EVERYWHERE, SPACE L 1 66 2.2.I AND TODAY? 67 EXERCISES 68 SOLUTIONS 71
INTEGRAL CALCULUS 73 3.1 INTEGRABILITY IN PRACTICE 73 3.1.A STANDARD
FUNCTIONS 73 3.1.B COMPARISON THEOREMS 74 3.2 EXCHANGING INTEGRALS AND
LIMITS OR SERIES 75 3.3 INTEGRALS WITH PARAMETERS 77 3.3.A CONTINUITY OF
FUNCTIONS DEFINED BY INTEGRALS 77 3.3.B DIFFERENTIATING UNDER THE
INTEGRAL SIGN 78 3.3.C CASE OF PARAMETERS APPEARING IN THE INTEGRATION
RANGE . 78 3.4 DOUBLE AND MULTIPLE INTEGRALS 79 3.5 CHANGE OF
VARIABLES 81 EXERCISES 83 SOLUTIONS 85 COMPLEX ANALYSIS I 87 4.1
HOLOMORPHIC FUNCTIONS 87 4.1.A DEFINITIONS 88 4.1.B EXAMPLES 90 4.1.C
THE OPERATORS D/DZ AND D/DZ 91 4.2 CAUCHY'S THEOREM 93 4.2.A PATH
INTEGRATION 93 4.2.B INTEGRALS ALONG A CIRCLE 95 4.2.C WINDING NUMBER 96
4.2.D VARIOUS FORMS OF CAUCHY'S THEOREM 96 4.2.E APPLICATION 99 4.3
PROPERTIES OF HOLOMORPHIC FUNCTIONS 99 4.3.A THE CAUCHY FORMULA AND
APPLICATIONS 99 4.3.B MAXIMUM MODULUS PRINCIPLE 104 4.3.C OTHER THEOREMS
105 4.3.D CLASSIFICATION OF ZERO SETS OF HOLOMORPHIC FUNCTIONS 106 4.4
SINGULARITIES OF A FUNCTION 108 4.4.A CLASSIFICATION OF SINGULARITIES
108 4.4.B MEROMORPHIC FUNCTIONS 110 4.5 LAURENT SERIES ILL 4.5.A
INTRODUCTION AND DEFINITION ILL 4.5.B EXAMPLES OF LAURENT SERIES 113
4.5.C THE RESIDUE THEOREM 114 4.5.D PRACTICAL COMPUTATIONS OF RESIDUES
116 CONTENTS V I I 4.6 APPLICATIONS TO THE COMPUTATION OF HORRIFYING
INTEGRALS OR GHASTLY SUMS 117 4.6.A JORDAN'S LEMMAS 117 4.6.B INTEGRALS
ON M OF A RATIONAL FUNCTION 118 4.6.C FOURIER INTEGRALS 120 4.6.D
INTEGRAL ON THE UNIT CIRCLE OF A RATIONAL FUNCTION 121 4.6.E COMPUTATION
OF INFINITE SUMS 122 EXERCISES 125 PROBLEM 128 SOLUTIONS 129 COMPLEX
ANALYSIS II 135 5.1 COMPLEX LOGARITHM; MULTIVALUED FUNCTIONS 135 5.LA
THE COMPLEX LOGARITHMS 135 5.1.B THE SQUARE ROOT FUNCTION 137 5.1.C
MULTIVALUED FUNCTIONS, RIEMANN SURFACES 137 5.2 HARMONIC FUNCTIONS 139
5.2.A DEFINITIONS 139 5.2.B PROPERTIES 140 5.2.C A TRICK TO FIND /
KNOWING U 142 5.3 ANALYTIC CONTINUATION 144 5.4 SINGULARITIES AT
INFINITY 146 5.5 THE SADDLE POINT METHOD 148 5.5.A THE GENERAL SADDLE
POINT METHOD 149 5.5.B THE REAL SADDLE POINT METHOD 152 EXERCISES 153
SOLUTIONS 154 CONFORMAL MAPS 155 6.1 CONFORMAL MAPS 155 6.LA
PRELIMINARIES , 155 6.1.B THE RIEMANN MAPPING THEOREM 157 6.1.C EXAMPLES
OF CONFORMAL MAPS 158 6.1.D THE SCHWARZ-CHRISTOFFEL TRANSFORMATION 161
6.2 APPLICATIONS TO POTENTIAL THEORY 163 6.2.A APPLICATION TO
ELECTROSTATICS 165 6.2.B APPLICATION TO HYDRODYNAMICS 167 6.2.C
POTENTIAL THEORY, LIGHTNING RODS, AND PERCOLATION 169 6.3 DIRICHLET
PROBLEM AND POISSON KERNEL 170 EXERCISES 174 SOLUTIONS 176 DISTRIBUTIONS
I 179 7.1 PHYSICAL APPROACH 179 7.1.A THE PROBLEM OF DISTRIBUTION OF
CHARGE 179 7.1.B THE PROBLEM OF MOMENTUM AND FORCES DURING AN ELASTIC
SHOCK 181 7.2 DEFINITIONS AND EXAMPLES OF DISTRIBUTIONS 182 7.2.A
REGULAR DISTRIBUTIONS 184 7.2.B SINGULAR DISTRIBUTIONS 185 7.2.C SUPPORT
OF A DISTRIBUTION 187 VIII CONTENTS 7.2.D OTHER EXAMPLES 187 7.3
ELEMENTARY PROPERTIES. OPERATIONS - 188 7.3.A OPERATIONS ON
DISTRIBUTIONS 188 7.3.B DERIVATIVE OF A DISTRIBUTION 191 7.4 DIRAC AND
ITS DERIVATIVES 193 7.4.A THE HEAVISIDE DISTRIBUTION 193 7.4.B
MULTIDIMENSIONAL DIRAC DISTRIBUTIONS 194 7.4.C THE DISTRIBUTION 8' 196
7.4.D COMPOSITION OF 8 WITH A FUNCTION . . . .* 198 7.4.E CHARGE AND
CURRENT DENSITIES 199 7.5 DERIVATION OF A DISCONTINUOUS FUNCTION 201
7.5.A DERIVATION OF A FUNCTION DISCONTINUOUS AT A POINT 201 7.5.B
DERIVATIVE OF A FUNCTION WITH DISCONTINUITY ALONG A SURFACE S? 204 7.5.C
LAPLACIAN OF A FUNCTION DISCONTINUOUS ALONG A SURFACE SF * . 206 7.5.D
APPLICATION: LAPLACIAN OF 1/R IN 3-SPACE 207 7.6 CONVOLUTION 209 7.6.A
THE TENSOR PRODUCT OF TWO FUNCTIONS 209 7.6.B THE TENSOR PRODUCT OF
DISTRIBUTIONS 209 7.6.C CONVOLUTION OF TWO FUNCTIONS 211 7.6.D "FUZZY"
MEASUREMENT 213 7.6.E CONVOLUTION OF DISTRIBUTIONS 214 7.6.F
APPLICATIONS 215 7.6.G THE POISSON EQUATION 216 7.7 PHYSICAL
INTERPRETATION OF CONVOLUTION OPERATORS . . 217 7.8 DISCRETE CONVOLUTION
220 DISTRIBUTIONS II 223 8.1 CAUCHY PRINCIPAL VALUE 223 8.LA DEFINITION
223 8.1.B APPLICATION TO THE COMPUTATION OF CERTAIN INTEGRALS 224 8.1.C
FEYNMAN'S NOTATION :* 225 8.1.D KRAMERS-KRONIG RELATIONS 227 8.1.E A FEW
EQUATIONS IN THE SENSE OF DISTRIBUTIONS 229 8.2 TOPOLOGY IN &' 230 8.2.A
WEAK CONVERGENCE IN TY 230 8.2.B SEQUENCES OF FUNCTIONS CONVERGING TO 8
231 8.2.C CONVERGENCE IN SI 1 AND CONVERGENCE IN THE SENSE OF FUNCTIONS
234 8.2.D REGULARIZATION OF A DISTRIBUTION 234 8.2.E CONTINUITY OF
CONVOLUTION 235 8.3 CONVOLUTION ALGEBRAS 236 8.4 SOLVING A DIFFERENTIAL
EQUATION WITH INITIAL CONDITIONS 238 8.4.A FIRST ORDER EQUATIONS 238
8.4.B THE CASE OF THE HARMONIC OSCILLATOR 239 8.4.C OTHER EQUATIONS OF
PHYSICAL ORIGIN 240 EXERCISES 241 PROBLEM 244 SOLUTIONS 245 CONTENTS IX
9 HILBERT SPACES; FOURIER SERIES 249 9.1 INSUFFICIENCY OF VECTOR SPACES
249 9.2 PRE-HILBERT SPACES 251 9.2.A THE FINITE-DIMENSIONAL CASE 254
9.2.B PROJECTION ON A FINITE-DIMENSIONAL SUBSPACE 254 9.2.C BESSEL
INEQUALITY 256 9.3 HILBERT SPACES 256 9.3.A HILBERT BASIS 257 9.3.B THE
I 2 SPACE 261 9.3.C THE SPACE L 2 [0,A] 262 9.3.D THE L 2 (R) SPACE 263
9.4 FOURIER SERIES EXPANSION 264 9.4.A FOURIER COEFFICIENTS OF A
FUNCTION 264 9.4.B MEAN-SQUARE CONVERGENCE 265 9.4.C FOURIER SERIES OF A
FUNCTION / E L 1 [0,A] 266 9.4.D POINTWISE CONVERGENCE OF THE FOURIER
SERIES 267 9.4.E UNIFORM CONVERGENCE OF THE FOURIER SERIES 269 9.4.F THE
GIBBS PHENOMENON 270 EXERCISES 270 PROBLEM 271 SOLUTIONS 272 10 FOURIER
TRANSFORM OF FUNCTIONS 277 10.1 FOURIER TRANSFORM OF A FUNCTION IN L 1
277 LO.L.A DEFINITION 278 LO.L.B EXAMPLES 279 LO.L.C THE L 1 SPACE 279
10.1.D ELEMENTARY PROPERTIES 280 LO.L.E INVERSION 282 LO.L.F EXTENSION
OF THE INVERSION FORMULA 284 10.2 PROPERTIES OF THE FOURIER TRANSFORM
.', 285 10.2.A TRANSPOSE AND TRANSLATES 285 10.2.B DILATION ; . . . .
286 10.2.C DERIVATION 286 10.2.D RAPIDLY DECAYING FUNCTIONS 288 10.3
FOURIER TRANSFORM OF A FUNCTION IN L 2 288 10.3.A THE SPACE S? 289
10.3.B THE FOURIER TRANSFORM IN L 2 290 10.4 FOURIER TRANSFORM AND
CONVOLUTION 292 10.4.A CONVOLUTION FORMULA 292 10.4.B CASES OF THE
CONVOLUTION FORMULA 293 EXERCISES 295 SOLUTIONS 296 11 FOURIER TRANSFORM
OF DISTRIBUTIONS 299 11.1 DEFINITION AND PROPERTIES 299 LL.L.A TEMPERED
DISTRIBUTIONS 300 LL.L.B FOURIER TRANSFORM OF TEMPERED DISTRIBUTIONS 301
LL.L.C EXAMPLES 303 CONTENTS LL.L.D HIGHER-DIMENSIONAL FOURIER
TRANSFORMS 305 LL.L.E INVERSION FORMULA - 306 11.2 THE DIRAC COMB 307
11.2.A DEFINITION AND PROPERTIES 307 11.2.B FOURIER TRANSFORM OF A
PERIODIC FUNCTION 308 11.2.C POISSON SUMMATION FORMULA 309 11.2.D
APPLICATION TO THE COMPUTATION OF SERIES 310 11.3 THE GIBBS PHENOMENON
311 11.4 APPLICATION TO PHYSICAL OPTICS 314 11.4.A LINK BETWEEN
DIAPHRAGM AND DIFFRACTION FIGURE 314 11.4.B DIAPHRAGM MADE OF INFINITELY
MANY INFINITELY NARROW SLITS . 315 11.4.C FINITE NUMBER OF INFINITELY
NARROW SLITS 316 11.4.D FINITELY MANY SLITS WITH FINITE WIDTH 318 11.4.E
CIRCULAR LENS 320 11.5 LIMITATIONS OF FOURIER ANALYSIS AND WAVELETS 321
EXERCISES 324 PROBLEM 325 SOLUTIONS 326 12 THE LAPLACE TRANSFORM 331
12.1 DEFINITION AND INTEGRABILITY 331 12.1.A DEFINITION 332 12.1.B
INTEGRABILITY 333 12.1.C PROPERTIES OF THE LAPLACE TRANSFORM 336 12.2
INVERSION 336 12.3 ELEMENTARY PROPERTIES AND EXAMPLES OF LAPLACE
TRANSFORMS 338 12.3.A TRANSLATION 338 12.3.B CONVOLUTION 339 12.3.C
DIFFERENTIATION AND INTEGRATION 339 12.3.D EXAMPLES 341 12.4 LAPLACE
TRANSFORM OF DISTRIBUTIONS . . . : 342 12.4.A DEFINITION 342 12.4.B
PROPERTIES 342 12.4.C EXAMPLES 344 12.4.D THE Z-TRANSFORM 344 12.4.E
RELATION BETWEEN LAPLACE AND FOURIER TRANSFORMS 345 12.5 PHYSICAL
APPLICATIONS, THE CAUCHY PROBLEM 346 12.5.A IMPORTANCE OF THE CAUCHY
PROBLEM 346 12.5.B A SIMPLE EXAMPLE 347 12.5.C DYNAMICS OF THE
ELECTROMAGNETIC FIELD WITHOUT SOURCES . 348 EXERCISES 351 SOLUTIONS
352 13 PHYSICAL APPLICATIONS OF THE FOURIER TRANSFORM 355 13.1
JUSTIFICATION OF SINUSOIDAL REGIME ANALYSIS 355 13.2 FOURIER TRANSFORM
OF VECTOR FIELDS: LONGITUDINAL AND TRANSVERSE FIELDS 358 13.3 HEISENBERG
UNCERTAINTY RELATIONS 359 13.4 ANALYTIC SIGNALS 365 13.5 AUTOCORRELATION
OF A FINITE ENERGY FUNCTION 368 CONTENTS X I 13.5.A DEFINITION 368
13.5.B PROPERTIES 368 13.5.C INTERCORRELATION 369 13.6 FINITE POWER
FUNCTIONS 370 13.6.A DEFINITIONS 370 13.6.B AUTOCORRELATION 370 13.7
APPLICATION TO OPTICS: THE WIENER-KHINTCHINE THEOREM 371 EXERCISES 375
SOLUTIONS 376 14 BRAS, KETS, AND ALL THAT SORT OF THING 377 14.1
REMINDERS ABOUT FINITE DIMENSION 377 14.LA SCALAR PRODUCT AND
REPRESENTATION THEOREM 377 14.1.B ADJOINT 378 14.1.C SYMMETRIC AND
HERMITIAN ENDOMORPHISMS 379 14.2 KETS AND BRAS 379 14.2.A KETS | / ) E H
379 14.2.B BRAS { 380 14.2.C GENERALIZED BRAS 382 14.2.D GENERALIZED
KETS 383 14.2.E ID = !; ,,) FO,| 384 14.2.F GENERALIZED BASIS 385 14.3
LINEAR OPERATORS 387 14.3.A OPERATORS 387 14.3.B ADJOINT 389 14.3.C
BOUNDED OPERATORS, CLOSED OPERATORS, CLOSABLE OPERATORS . . . 390 14.3.D
DISCRETE AND CONTINUOUS SPECTRA 391 14.4 HERMITIAN OPERATORS;
SELF-ADJOINT OPERATORS 393 14.4.A DEFINITIONS 394 14.4.B EIGENVECTORS
396 14.4.C GENERALIZED EIGENVECTORS ; 397 14.4.D "MATRIX" REPRESENTATION
398 14.4.E SUMMARY OF PROPERTIES OF THE OPERATORS P AND X 401 EXERCISES
403 SOLUTIONS 404 15 GREEN FUNCTIONS 407 15.1 GENERALITIES ABOUT GREEN
FUNCTIONS 407 15.2 A PEDAGOGICAL EXAMPLE: THE HARMONIC OSCILLATOR 409
15.2.A USING THE LAPLACE TRANSFORM 410 15.2.B USING THE FOURIER
TRANSFORM 410 15.3 ELECTROMAGNETISM AND THE D'ALEMBERTIAN OPERATOR 414
15.3.A COMPUTATION OF THE ADVANCED AND RETARDED GREEN FUNCTIONS 414
15.3.B RETARDED POTENTIALS 418 15.3.C COVARIANT EXPRESSION OF ADVANCED
AND RETARDED GREEN FUNCTIONS 421 15.3.D RADIATION 421 15.4 THE HEAT
EQUATION 422 15.4.A ONE-DIMENSIONAL CASE 423 15.4.B THREE-DIMENSIONAL
CASE 426 X I V CONTENTS 20.10.B APPLICATION: BUFFON'S NEEDLE 549 20.11
INDEPENDANCE, CORRELATION, CAUSALITY 550 21 CONVERGENCE OF RANDOM
VARIABLES: CENTRAL LIMIT THEOREM 553 21.1 VARIOUS TYPES OF CONVERGENCE
553 21.2 THE LAW OF LARGE NUMBERS 555 21.3 CENTRAL LIMIT THEOREM 556
EXERCISES 56 0 PROBLEMS 563 SOLUTIONS 564 APPENDICES A REMINDERS
CONCERNING TOPOLOGY AND NORMED VECTOR SPACES 573 A.I TOPOLOGY,
TOPOLOGICAL SPACES 573 A.2 NORMED VECTOR SPACES 577 A.2.A NORMS,
SEMINORMS 577 A.2.B BALLS AND TOPOLOGY ASSOCIATED TO THE DISTANCE 578
A.2.C COMPARISON OF SEQUENCES 580 A.2.D BOLZANO-WEIERSTRASS THEOREMS 581
A.2.E COMPARISON OF NORMS : 581 A.2.F NORM OF A LINEAR MAP 583 EXERCISE
583 SOLUTION 584 B ELEMENTARY REMINDERS OF DIFFERENTIAL CALCULUS 585 B.I
DIFFERENTIAL OF A REAL-VALUED FUNCTION 585 B.L.A FUNCTIONS OF ONE REAL
VARIABLE . L 585 B.L.B DIFFERENTIAL OF A FUNCTION / : M." -» R 586 B.L.C
TENSOR NOTATION 587 B.2 DIFFERENTIAL OF MAP WITH VALUES IN W 587 B.3
LAGRANGE MULTIPLIERS 588 SOLUTION 591 C MATRICES 593 C.I DUALITY 593 C.2
APPLICATION TO MATRIX REPRESENTATION 594 C.2.A MATRIX REPRESENTING A
FAMILY OF VECTORS 594 C.2.B MATRIX OF A LINEAR MAP 594 C.2.C CHANGE OF
BASIS 595 C.2.D CHANGE OF BASIS FORMULA 595 C.2.E CASE OF AN ORTHONORMAL
BASIS 596 D A FEW PROOFS 597 CONTENTS X V TABLES FOURIER TRANSFORMS 609
LAPLACE TRANSFORMS 613 PROBABILITY LAWS 616 FURTHER READING 617
REFERENCES 621 PORTRAITS 627 SIDEBARS 629 INDEX 631 |
adam_txt |
MATHEMATICS FOR PHYSICS AND PHYSICISTS WALTER APPEL TRANSLATED BY
EMMANUEL KOWALSKI PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD
CONTENTS A BOOK'S APOLOGY XVIII INDEX OF NOTATION XXII 1 REMINDERS:
CONVERGENCE OF SEQUENCES AND SERIES 1 1.1 THE PROBLEM OF LIMITS IN
PHYSICS 1 L.L.A TWO PARADOXES INVOLVING KINETIC ENERGY 1 L.L.B ROMEO,
JULIET, AND VISCOUS FLUIDS 5 L.L.C POTENTIAL WALL IN QUANTUM MECHANICS 7
1.1.D SEMI-INFINITE FILTER BEHAVING AS WAVEGUIDE 9 1.2 SEQUENCES 12
1.2.A SEQUENCES IN A NORMED VECTOR SPACE 12 1.2.B CAUCHY SEQUENCES 13
1.2.C THE FIXED POINT THEOREM 15 1.2.D DOUBLE SEQUENCES 16 1.2.E
SEQUENTIAL DEFINITION OF THE LIMIT OF A FUNCTION 17 1.2.F SEQUENCES OF
FUNCTIONS 18 1.3 SERIES 23 1.3.A SERIES IN A NORMED VECTOR SPACE 23
1.3.B DOUBLY INFINITE SERIES 24 1.3.C CONVERGENCE OF A DOUBLE SERIES 25
1.3.D CONDITIONALLY CONVERGENT SERIES, ABSOLUTELY CONVERGENT SERIES . 26
1.3.E SERIES OF FUNCTIONS 29 1.4 POWER SERIES, ANALYTIC FUNCTIONS 30
1.4.A TAYLOR FORMULAS 31 1.4.B SOME NUMERICAL ILLUSTRATIONS 32 1.4.C
RADIUS OF CONVERGENCE OF A POWER SERIES 34 1.4.D ANALYTIC FUNCTIONS 35
1.5 A QUICK LOOK AT ASYMPTOTIC AND DIVERGENT SERIES 37 1.5.A ASYMPTOTIC
SERIES 37 1.5.B DIVERGENT SERIES AND ASYMPTOTIC EXPANSIONS 38 EXERCISES
43 PROBLEM 46 SOLUTIONS 47 2 MEASURE THEORY AND THE LEBESGUE INTEGRAL 51
2.1 THE INTEGRAL ACCORDING TO MR. RIEMANN 51 2.LA RIEMANN SUMS 51 2.1.B
LIMITATIONS OF RIEMANN'S DEFINITION 54 2.2 THE INTEGRAL ACCORDING TO MR.
LEBESGUE 54 2.2.A PRINCIPLE OF THE METHOD 55 V I CONTENTS 2.2.B BOREL
SUBSETS 56 2.2.C LEBESGUE MEASURE 58 2.2.D THE LEBESGUE A-ALGEBRA 59
2.2.E NEGLIGIBLE SETS 61 2.2.F LEBESGUE MEASURE ON R" 62 2.2.G
DEFINITION OF THE LEBESGUE INTEGRAL 62 2.2.H FUNCTIONS ZERO ALMOST
EVERYWHERE, SPACE L 1 66 2.2.I AND TODAY? 67 EXERCISES 68 SOLUTIONS 71
INTEGRAL CALCULUS 73 3.1 INTEGRABILITY IN PRACTICE 73 3.1.A STANDARD
FUNCTIONS 73 3.1.B COMPARISON THEOREMS 74 3.2 EXCHANGING INTEGRALS AND
LIMITS OR SERIES 75 3.3 INTEGRALS WITH PARAMETERS 77 3.3.A CONTINUITY OF
FUNCTIONS DEFINED BY INTEGRALS 77 3.3.B DIFFERENTIATING UNDER THE
INTEGRAL SIGN 78 3.3.C CASE OF PARAMETERS APPEARING IN THE INTEGRATION
RANGE . 78 3.4 DOUBLE AND MULTIPLE INTEGRALS 79 3.5 CHANGE OF
VARIABLES 81 EXERCISES 83 SOLUTIONS 85 COMPLEX ANALYSIS I 87 4.1
HOLOMORPHIC FUNCTIONS 87 4.1.A DEFINITIONS 88 4.1.B EXAMPLES 90 4.1.C
THE OPERATORS D/DZ AND D/DZ 91 4.2 CAUCHY'S THEOREM 93 4.2.A PATH
INTEGRATION 93 4.2.B INTEGRALS ALONG A CIRCLE 95 4.2.C WINDING NUMBER 96
4.2.D VARIOUS FORMS OF CAUCHY'S THEOREM 96 4.2.E APPLICATION 99 4.3
PROPERTIES OF HOLOMORPHIC FUNCTIONS 99 4.3.A THE CAUCHY FORMULA AND
APPLICATIONS 99 4.3.B MAXIMUM MODULUS PRINCIPLE 104 4.3.C OTHER THEOREMS
105 4.3.D CLASSIFICATION OF ZERO SETS OF HOLOMORPHIC FUNCTIONS 106 4.4
SINGULARITIES OF A FUNCTION 108 4.4.A CLASSIFICATION OF SINGULARITIES
108 4.4.B MEROMORPHIC FUNCTIONS 110 4.5 LAURENT SERIES ILL 4.5.A
INTRODUCTION AND DEFINITION ILL 4.5.B EXAMPLES OF LAURENT SERIES 113
4.5.C THE RESIDUE THEOREM 114 4.5.D PRACTICAL COMPUTATIONS OF RESIDUES
116 CONTENTS V I I 4.6 APPLICATIONS TO THE COMPUTATION OF HORRIFYING
INTEGRALS OR GHASTLY SUMS 117 4.6.A JORDAN'S LEMMAS 117 4.6.B INTEGRALS
ON M OF A RATIONAL FUNCTION 118 4.6.C FOURIER INTEGRALS 120 4.6.D
INTEGRAL ON THE UNIT CIRCLE OF A RATIONAL FUNCTION 121 4.6.E COMPUTATION
OF INFINITE SUMS 122 EXERCISES 125 PROBLEM 128 SOLUTIONS 129 COMPLEX
ANALYSIS II 135 5.1 COMPLEX LOGARITHM; MULTIVALUED FUNCTIONS 135 5.LA
THE COMPLEX LOGARITHMS 135 5.1.B THE SQUARE ROOT FUNCTION 137 5.1.C
MULTIVALUED FUNCTIONS, RIEMANN SURFACES 137 5.2 HARMONIC FUNCTIONS 139
5.2.A DEFINITIONS 139 5.2.B PROPERTIES 140 5.2.C A TRICK TO FIND /
KNOWING U 142 5.3 ANALYTIC CONTINUATION 144 5.4 SINGULARITIES AT
INFINITY 146 5.5 THE SADDLE POINT METHOD 148 5.5.A THE GENERAL SADDLE
POINT METHOD 149 5.5.B THE REAL SADDLE POINT METHOD 152 EXERCISES 153
SOLUTIONS 154 CONFORMAL MAPS 155 6.1 CONFORMAL MAPS 155 6.LA
PRELIMINARIES , 155 6.1.B THE RIEMANN MAPPING THEOREM 157 6.1.C EXAMPLES
OF CONFORMAL MAPS 158 6.1.D THE SCHWARZ-CHRISTOFFEL TRANSFORMATION 161
6.2 APPLICATIONS TO POTENTIAL THEORY 163 6.2.A APPLICATION TO
ELECTROSTATICS 165 6.2.B APPLICATION TO HYDRODYNAMICS 167 6.2.C
POTENTIAL THEORY, LIGHTNING RODS, AND PERCOLATION 169 6.3 DIRICHLET
PROBLEM AND POISSON KERNEL 170 EXERCISES 174 SOLUTIONS 176 DISTRIBUTIONS
I 179 7.1 PHYSICAL APPROACH 179 7.1.A THE PROBLEM OF DISTRIBUTION OF
CHARGE 179 7.1.B THE PROBLEM OF MOMENTUM AND FORCES DURING AN ELASTIC
SHOCK 181 7.2 DEFINITIONS AND EXAMPLES OF DISTRIBUTIONS 182 7.2.A
REGULAR DISTRIBUTIONS 184 7.2.B SINGULAR DISTRIBUTIONS 185 7.2.C SUPPORT
OF A DISTRIBUTION 187 VIII CONTENTS 7.2.D OTHER EXAMPLES 187 7.3
ELEMENTARY PROPERTIES. OPERATIONS - 188 7.3.A OPERATIONS ON
DISTRIBUTIONS 188 7.3.B DERIVATIVE OF A DISTRIBUTION 191 7.4 DIRAC AND
ITS DERIVATIVES 193 7.4.A THE HEAVISIDE DISTRIBUTION 193 7.4.B
MULTIDIMENSIONAL DIRAC DISTRIBUTIONS 194 7.4.C THE DISTRIBUTION 8' 196
7.4.D COMPOSITION OF 8 WITH A FUNCTION . . . .* 198 7.4.E CHARGE AND
CURRENT DENSITIES 199 7.5 DERIVATION OF A DISCONTINUOUS FUNCTION 201
7.5.A DERIVATION OF A FUNCTION DISCONTINUOUS AT A POINT 201 7.5.B
DERIVATIVE OF A FUNCTION WITH DISCONTINUITY ALONG A SURFACE S? 204 7.5.C
LAPLACIAN OF A FUNCTION DISCONTINUOUS ALONG A SURFACE SF * . 206 7.5.D
APPLICATION: LAPLACIAN OF 1/R IN 3-SPACE 207 7.6 CONVOLUTION 209 7.6.A
THE TENSOR PRODUCT OF TWO FUNCTIONS 209 7.6.B THE TENSOR PRODUCT OF
DISTRIBUTIONS 209 7.6.C CONVOLUTION OF TWO FUNCTIONS 211 7.6.D "FUZZY"
MEASUREMENT 213 7.6.E CONVOLUTION OF DISTRIBUTIONS 214 7.6.F
APPLICATIONS 215 7.6.G THE POISSON EQUATION 216 7.7 PHYSICAL
INTERPRETATION OF CONVOLUTION OPERATORS . . 217 7.8 DISCRETE CONVOLUTION
220 DISTRIBUTIONS II 223 8.1 CAUCHY PRINCIPAL VALUE 223 8.LA DEFINITION
223 8.1.B APPLICATION TO THE COMPUTATION OF CERTAIN INTEGRALS 224 8.1.C
FEYNMAN'S NOTATION :* 225 8.1.D KRAMERS-KRONIG RELATIONS 227 8.1.E A FEW
EQUATIONS IN THE SENSE OF DISTRIBUTIONS 229 8.2 TOPOLOGY IN &' 230 8.2.A
WEAK CONVERGENCE IN TY 230 8.2.B SEQUENCES OF FUNCTIONS CONVERGING TO 8
231 8.2.C CONVERGENCE IN SI 1 AND CONVERGENCE IN THE SENSE OF FUNCTIONS
234 8.2.D REGULARIZATION OF A DISTRIBUTION 234 8.2.E CONTINUITY OF
CONVOLUTION 235 8.3 CONVOLUTION ALGEBRAS 236 8.4 SOLVING A DIFFERENTIAL
EQUATION WITH INITIAL CONDITIONS 238 8.4.A FIRST ORDER EQUATIONS 238
8.4.B THE CASE OF THE HARMONIC OSCILLATOR 239 8.4.C OTHER EQUATIONS OF
PHYSICAL ORIGIN 240 EXERCISES 241 PROBLEM 244 SOLUTIONS 245 CONTENTS IX
9 HILBERT SPACES; FOURIER SERIES 249 9.1 INSUFFICIENCY OF VECTOR SPACES
249 9.2 PRE-HILBERT SPACES 251 9.2.A THE FINITE-DIMENSIONAL CASE 254
9.2.B PROJECTION ON A FINITE-DIMENSIONAL SUBSPACE 254 9.2.C BESSEL
INEQUALITY 256 9.3 HILBERT SPACES 256 9.3.A HILBERT BASIS 257 9.3.B THE
I 2 SPACE 261 9.3.C THE SPACE L 2 [0,A] 262 9.3.D THE L 2 (R) SPACE 263
9.4 FOURIER SERIES EXPANSION 264 9.4.A FOURIER COEFFICIENTS OF A
FUNCTION 264 9.4.B MEAN-SQUARE CONVERGENCE 265 9.4.C FOURIER SERIES OF A
FUNCTION / E L 1 [0,A] 266 9.4.D POINTWISE CONVERGENCE OF THE FOURIER
SERIES 267 9.4.E UNIFORM CONVERGENCE OF THE FOURIER SERIES 269 9.4.F THE
GIBBS PHENOMENON 270 EXERCISES 270 PROBLEM 271 SOLUTIONS 272 10 FOURIER
TRANSFORM OF FUNCTIONS 277 10.1 FOURIER TRANSFORM OF A FUNCTION IN L 1
277 LO.L.A DEFINITION 278 LO.L.B EXAMPLES 279 LO.L.C THE L 1 SPACE 279
10.1.D ELEMENTARY PROPERTIES 280 LO.L.E INVERSION 282 LO.L.F EXTENSION
OF THE INVERSION FORMULA 284 10.2 PROPERTIES OF THE FOURIER TRANSFORM
.', 285 10.2.A TRANSPOSE AND TRANSLATES 285 10.2.B DILATION ; . . . .
286 10.2.C DERIVATION 286 10.2.D RAPIDLY DECAYING FUNCTIONS 288 10.3
FOURIER TRANSFORM OF A FUNCTION IN L 2 288 10.3.A THE SPACE S? 289
10.3.B THE FOURIER TRANSFORM IN L 2 290 10.4 FOURIER TRANSFORM AND
CONVOLUTION 292 10.4.A CONVOLUTION FORMULA 292 10.4.B CASES OF THE
CONVOLUTION FORMULA 293 EXERCISES 295 SOLUTIONS 296 11 FOURIER TRANSFORM
OF DISTRIBUTIONS 299 11.1 DEFINITION AND PROPERTIES 299 LL.L.A TEMPERED
DISTRIBUTIONS 300 LL.L.B FOURIER TRANSFORM OF TEMPERED DISTRIBUTIONS 301
LL.L.C EXAMPLES 303 CONTENTS LL.L.D HIGHER-DIMENSIONAL FOURIER
TRANSFORMS 305 LL.L.E INVERSION FORMULA - 306 11.2 THE DIRAC COMB 307
11.2.A DEFINITION AND PROPERTIES 307 11.2.B FOURIER TRANSFORM OF A
PERIODIC FUNCTION 308 11.2.C POISSON SUMMATION FORMULA 309 11.2.D
APPLICATION TO THE COMPUTATION OF SERIES 310 11.3 THE GIBBS PHENOMENON
311 11.4 APPLICATION TO PHYSICAL OPTICS 314 11.4.A LINK BETWEEN
DIAPHRAGM AND DIFFRACTION FIGURE 314 11.4.B DIAPHRAGM MADE OF INFINITELY
MANY INFINITELY NARROW SLITS . 315 11.4.C FINITE NUMBER OF INFINITELY
NARROW SLITS 316 11.4.D FINITELY MANY SLITS WITH FINITE WIDTH 318 11.4.E
CIRCULAR LENS 320 11.5 LIMITATIONS OF FOURIER ANALYSIS AND WAVELETS 321
EXERCISES 324 PROBLEM 325 SOLUTIONS 326 12 THE LAPLACE TRANSFORM 331
12.1 DEFINITION AND INTEGRABILITY 331 12.1.A DEFINITION 332 12.1.B
INTEGRABILITY 333 12.1.C PROPERTIES OF THE LAPLACE TRANSFORM 336 12.2
INVERSION 336 12.3 ELEMENTARY PROPERTIES AND EXAMPLES OF LAPLACE
TRANSFORMS 338 12.3.A TRANSLATION 338 12.3.B CONVOLUTION 339 12.3.C
DIFFERENTIATION AND INTEGRATION 339 12.3.D EXAMPLES 341 12.4 LAPLACE
TRANSFORM OF DISTRIBUTIONS . . . : 342 12.4.A DEFINITION 342 12.4.B
PROPERTIES 342 12.4.C EXAMPLES 344 12.4.D THE Z-TRANSFORM 344 12.4.E
RELATION BETWEEN LAPLACE AND FOURIER TRANSFORMS 345 12.5 PHYSICAL
APPLICATIONS, THE CAUCHY PROBLEM 346 12.5.A IMPORTANCE OF THE CAUCHY
PROBLEM 346 12.5.B A SIMPLE EXAMPLE 347 12.5.C DYNAMICS OF THE
ELECTROMAGNETIC FIELD WITHOUT SOURCES . 348 EXERCISES 351 SOLUTIONS
352 13 PHYSICAL APPLICATIONS OF THE FOURIER TRANSFORM 355 13.1
JUSTIFICATION OF SINUSOIDAL REGIME ANALYSIS 355 13.2 FOURIER TRANSFORM
OF VECTOR FIELDS: LONGITUDINAL AND TRANSVERSE FIELDS 358 13.3 HEISENBERG
UNCERTAINTY RELATIONS 359 13.4 ANALYTIC SIGNALS 365 13.5 AUTOCORRELATION
OF A FINITE ENERGY FUNCTION 368 CONTENTS X I 13.5.A DEFINITION 368
13.5.B PROPERTIES 368 13.5.C INTERCORRELATION 369 13.6 FINITE POWER
FUNCTIONS 370 13.6.A DEFINITIONS 370 13.6.B AUTOCORRELATION 370 13.7
APPLICATION TO OPTICS: THE WIENER-KHINTCHINE THEOREM 371 EXERCISES 375
SOLUTIONS 376 14 BRAS, KETS, AND ALL THAT SORT OF THING 377 14.1
REMINDERS ABOUT FINITE DIMENSION 377 14.LA SCALAR PRODUCT AND
REPRESENTATION THEOREM 377 14.1.B ADJOINT 378 14.1.C SYMMETRIC AND
HERMITIAN ENDOMORPHISMS 379 14.2 KETS AND BRAS 379 14.2.A KETS | / ) E H
379 14.2.B BRAS { 380 14.2.C GENERALIZED BRAS 382 14.2.D GENERALIZED
KETS 383 14.2.E ID = !; ,,) FO,| 384 14.2.F GENERALIZED BASIS 385 14.3
LINEAR OPERATORS 387 14.3.A OPERATORS 387 14.3.B ADJOINT 389 14.3.C
BOUNDED OPERATORS, CLOSED OPERATORS, CLOSABLE OPERATORS . . . 390 14.3.D
DISCRETE AND CONTINUOUS SPECTRA 391 14.4 HERMITIAN OPERATORS;
SELF-ADJOINT OPERATORS 393 14.4.A DEFINITIONS 394 14.4.B EIGENVECTORS
396 14.4.C GENERALIZED EIGENVECTORS ; 397 14.4.D "MATRIX" REPRESENTATION
398 14.4.E SUMMARY OF PROPERTIES OF THE OPERATORS P AND X 401 EXERCISES
403 SOLUTIONS 404 15 GREEN FUNCTIONS 407 15.1 GENERALITIES ABOUT GREEN
FUNCTIONS 407 15.2 A PEDAGOGICAL EXAMPLE: THE HARMONIC OSCILLATOR 409
15.2.A USING THE LAPLACE TRANSFORM 410 15.2.B USING THE FOURIER
TRANSFORM 410 15.3 ELECTROMAGNETISM AND THE D'ALEMBERTIAN OPERATOR 414
15.3.A COMPUTATION OF THE ADVANCED AND RETARDED GREEN FUNCTIONS 414
15.3.B RETARDED POTENTIALS 418 15.3.C COVARIANT EXPRESSION OF ADVANCED
AND RETARDED GREEN FUNCTIONS 421 15.3.D RADIATION 421 15.4 THE HEAT
EQUATION 422 15.4.A ONE-DIMENSIONAL CASE 423 15.4.B THREE-DIMENSIONAL
CASE 426 X I V CONTENTS 20.10.B APPLICATION: BUFFON'S NEEDLE 549 20.11
INDEPENDANCE, CORRELATION, CAUSALITY 550 21 CONVERGENCE OF RANDOM
VARIABLES: CENTRAL LIMIT THEOREM 553 21.1 VARIOUS TYPES OF CONVERGENCE
553 21.2 THE LAW OF LARGE NUMBERS 555 21.3 CENTRAL LIMIT THEOREM 556
EXERCISES 56 0 PROBLEMS 563 SOLUTIONS 564 APPENDICES A REMINDERS
CONCERNING TOPOLOGY AND NORMED VECTOR SPACES 573 A.I TOPOLOGY,
TOPOLOGICAL SPACES 573 A.2 NORMED VECTOR SPACES 577 A.2.A NORMS,
SEMINORMS 577 A.2.B BALLS AND TOPOLOGY ASSOCIATED TO THE DISTANCE 578
A.2.C COMPARISON OF SEQUENCES 580 A.2.D BOLZANO-WEIERSTRASS THEOREMS 581
A.2.E COMPARISON OF NORMS : 581 A.2.F NORM OF A LINEAR MAP 583 EXERCISE
583 SOLUTION 584 B ELEMENTARY REMINDERS OF DIFFERENTIAL CALCULUS 585 B.I
DIFFERENTIAL OF A REAL-VALUED FUNCTION 585 B.L.A FUNCTIONS OF ONE REAL
VARIABLE . L 585 B.L.B DIFFERENTIAL OF A FUNCTION / : M." -» R 586 B.L.C
TENSOR NOTATION 587 B.2 DIFFERENTIAL OF MAP WITH VALUES IN W 587 B.3
LAGRANGE MULTIPLIERS 588 SOLUTION 591 C MATRICES 593 C.I DUALITY 593 C.2
APPLICATION TO MATRIX REPRESENTATION 594 C.2.A MATRIX REPRESENTING A
FAMILY OF VECTORS 594 C.2.B MATRIX OF A LINEAR MAP 594 C.2.C CHANGE OF
BASIS 595 C.2.D CHANGE OF BASIS FORMULA 595 C.2.E CASE OF AN ORTHONORMAL
BASIS 596 D A FEW PROOFS 597 CONTENTS X V TABLES FOURIER TRANSFORMS 609
LAPLACE TRANSFORMS 613 PROBABILITY LAWS 616 FURTHER READING 617
REFERENCES 621 PORTRAITS 627 SIDEBARS 629 INDEX 631 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Appel, Walter 1970- |
author_GND | (DE-588)1209620766 |
author_facet | Appel, Walter 1970- |
author_role | aut |
author_sort | Appel, Walter 1970- |
author_variant | w a wa |
building | Verbundindex |
bvnumber | BV022935956 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20 |
callnumber-search | QC20 |
callnumber-sort | QC 220 |
callnumber-subject | QC - Physics |
classification_rvk | SK 950 |
classification_tum | PHY 011f |
ctrlnum | (OCoLC)255950087 (DE-599)BVBBV022935956 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV022935956</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240513</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071023s2007 xxuad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691131023</subfield><subfield code="9">978-0-691-13102-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691131023</subfield><subfield code="9">0-691-13102-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255950087</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022935956</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 011f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">00A06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Appel, Walter</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1209620766</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Mathématiques pour la physique... et les physiciens!</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics for physics and physicists</subfield><subfield code="c">Walter Appel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton [u.a.]</subfield><subfield code="b">Princeton Univ. Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 642 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield><subfield code="v">Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016140694&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV022935956 |
illustrated | Illustrated |
index_date | 2024-07-02T18:56:30Z |
indexdate | 2024-07-20T03:24:39Z |
institution | BVB |
isbn | 9780691131023 0691131023 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016140694 |
oclc_num | 255950087 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-83 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-83 DE-11 |
physical | XXIV, 642 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Princeton Univ. Press |
record_format | marc |
spelling | Appel, Walter 1970- Verfasser (DE-588)1209620766 aut Mathématiques pour la physique... et les physiciens! Mathematics for physics and physicists Walter Appel Princeton [u.a.] Princeton Univ. Press 2007 XXIV, 642 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mathematische Physik Mathematical physics Mathematical physics Problems, exercises, etc Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016140694&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Appel, Walter 1970- Mathematics for physics and physicists Mathematische Physik Mathematical physics Mathematical physics Problems, exercises, etc Mathematische Physik (DE-588)4037952-8 gnd |
subject_GND | (DE-588)4037952-8 |
title | Mathematics for physics and physicists |
title_alt | Mathématiques pour la physique... et les physiciens! |
title_auth | Mathematics for physics and physicists |
title_exact_search | Mathematics for physics and physicists |
title_exact_search_txtP | Mathematics for physics and physicists |
title_full | Mathematics for physics and physicists Walter Appel |
title_fullStr | Mathematics for physics and physicists Walter Appel |
title_full_unstemmed | Mathematics for physics and physicists Walter Appel |
title_short | Mathematics for physics and physicists |
title_sort | mathematics for physics and physicists |
topic | Mathematische Physik Mathematical physics Mathematical physics Problems, exercises, etc Mathematische Physik (DE-588)4037952-8 gnd |
topic_facet | Mathematische Physik Mathematical physics Mathematical physics Problems, exercises, etc |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016140694&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT appelwalter mathematiquespourlaphysiqueetlesphysiciens AT appelwalter mathematicsforphysicsandphysicists |