Filtering theory: with applications to fault detection, isolation, and estimation
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2007
|
Schriftenreihe: | Systems & control
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 723 S. graph. Darst. |
ISBN: | 9780817643010 081764301X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022935834 | ||
003 | DE-604 | ||
005 | 20080409 | ||
007 | t | ||
008 | 071023s2007 d||| |||| 00||| eng d | ||
015 | |a 07,N06,1087 |2 dnb | ||
015 | |a 07,A30,0712 |2 dnb | ||
016 | 7 | |a 98260517X |2 DE-101 | |
020 | |a 9780817643010 |c Pp. : EUR 115.56, sfr 178.00 |9 978-0-8176-4301-0 | ||
020 | |a 081764301X |c Pp. : EUR 115.56, sfr 178.00 |9 0-8176-4301-X | ||
024 | 3 | |a 9780817643010 | |
028 | 5 | 2 | |a 10883921 |
035 | |a (OCoLC)78203590 | ||
035 | |a (DE-599)DNB98260517X | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-824 |a DE-634 | ||
050 | 0 | |a TK5102.5 | |
082 | 0 | |a 621.3815324 |2 22/ger | |
082 | 0 | |a 519.23 |2 22/ger | |
082 | 0 | |a 621.382 |2 22 | |
084 | |a 510 |2 sdnb | ||
084 | |a 620 |2 sdnb | ||
100 | 1 | |a Saberi, Ali |d 1949- |e Verfasser |0 (DE-588)121269493 |4 aut | |
245 | 1 | 0 | |a Filtering theory |b with applications to fault detection, isolation, and estimation |c Ali Saberi ; Anton A. Stoorvogel ; Peddapullaiah Sannuti |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2007 | |
300 | |a XIV, 723 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Systems & control | |
650 | 4 | |a Commande H-infini | |
650 | 4 | |a Commande automatique | |
650 | 4 | |a Commande, Théorie de la | |
650 | 4 | |a Commnade H2 | |
650 | 4 | |a Filtres électriques | |
650 | 4 | |a Automatic control | |
650 | 4 | |a Control theory | |
650 | 4 | |a Telecommunication | |
650 | 0 | 7 | |a Filterung |g Stochastik |0 (DE-588)4121267-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Filterung |g Stochastik |0 (DE-588)4121267-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Stoorvogel, Anton |d 1964- |e Verfasser |0 (DE-588)121269531 |4 aut | |
700 | 1 | |a Sannuti, Peddapullaiah |d 1941- |e Verfasser |0 (DE-588)12126954X |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016140574&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016140574 |
Datensatz im Suchindex
_version_ | 1804137169906827264 |
---|---|
adam_text | Contents
Preface xiii
1 Introduction 1
1.1 Introduction 1
1.2 Filtering problems 3
2 Preliminaries 9
2.1 A list of symbols 9
2.2 A list of acronyms 10
2.3 Matrices, linear spaces, and linear operators 11
2.4 Norms of deterministic signals 16
2.5 Norms of stochastic signals 18
2.6 Norms of linear time or shift invariant systems 19
3 A special coordinate basis (SCB) of linear multivariable systems 27
3.1 Introduction 27
3.2 SCB 27
3.2.1 Observability (detectability) and controllability
(stabilizablity) 33
3.2.2 Left and right invertibility 34
3.2.3 Finite zero structure 35
3.2.4 Infinite zero structure 42
3.2.5 Geometric subspaces 43
3.2.6 Miscellaneous properties of the SCB 48
3.2.7 Additional compact forms of the SCB 50
4 Algebraic Riccati equations and matrix inequalities 53
4.1 Continuous time algebraic Riccati equations 54
4.1.1 Definition of a CARE and its subclasses 55
4.1.2 The Hamiltonian matrix 59
4.1.3 Stabilizing and semi stabilizing solutions of a CARE . . 61
4.1.4 Positive semi definite and positive definite solutions ... 80
4.1.5 Continuity properties 89
4.1.6 Algorithms for the computation of stabilizing solutions . 91
4.1.7 Algorithms for the computation of semi stabilizing
solutions 97
4.2 Standard and generalized discrete time algebraic Riccati equations 98
4.2.1 Definitions 99
4.2.2 Basic structure of a GDARE 103
viii Contents
4.2.3 Solutions of a DARE and deflating subspaces 105
4.2.4 Connections between a DARE and its associated CARE .111
4.2.5 Properties, existence, and computation of various types
of solutions of a DARE 117
4.2.6 Continuity properties of the H2 DARE 130
4.2.7 Connections between a GDARE and its associated DARE 131
4.2.8 Properties, existence, and computation of various types
of solutions of a GDARE 137
4.2.9 Continuity properties of the H2 GDARE 139
4.3 Continuous time linear matrix inequalities 140
4.3.1 Connections between a CLMI and its associated CARE . 145
4.3.2 Properties, existence, and computation of various types
of solutions of a CLMI 152
4.3.3 Continuity properties of CLMIs 154
4.4 Discrete time linear matrix inequalities 156
4.4.1 Connections between a DLMI and its associated DARE . 164
4.4.2 Properties, existence, and computation of various types
of solutions of a DLMI 170
4.4.3 Continuity properties of the DLMI 172
4.5 Continuous time quadratic matrix inequalities 173
4.5.1 Connection between a CQMI and its associated CARE . . 176
4. A Linear matrix equations 180
4.B Reduction to the case that H has full normal rank 185
4.C Matrix pencils and generalized eigenvalue problems 188
5 Exact disturbance decoupling via state and full information feedback 191
5.1 Introduction 191
5.2 Problem formulation 191
5.3 Solvability conditions for EDD 197
5.4 Static state feedback laws and associated fixed modes and fixed
decoupling zeros 198
5.4.1 EDD algorithm — left invertible case 200
5.4.2 EDD algorithm—non left invertible case 206
5.4.3 An algorithm for EDD with pole placement 213
5.5 Dynamic state feedback laws and associated fixed modes and
fixed decoupling zeros 215
5.5.1 i7sub is left invertible 215
5.5.2 rsub is not left invertible 219
5.6 Static and dynamic full information feedback laws and associated
fixed modes and fixed decoupling zeros 221
5.A Proofs of Theorems 5.11 and 5.25 223
5.A.1 Proof of Theorem 5.11 223
5.A.2 Proof of Theorem 5.25 225
Contents ix
6 Almost disturbance decoupling via state and full information feed¬
back 229
6.1 Introduction 229
6.2 Problem formulation 230
6.3 Solvability conditions for ADD 234
6.3.1 Solvability conditions for ADD—continuous time .... 234
6.3.2 Solvability conditions for ADD—discrete time 236
6.4 More on ADD finite asymptotic fixed modes 237
6.5 H2 ADD design 239
6.5.1 Computation of Q2S and designing sequences of static
H2 ADD controllers—continuous time 239
6.5.2 Computation of i?^ and designing sequences of static
H2 ADD controllers—discrete time 252
6.6 Hoo ADD design 258
6.6.1 Computation of J?^° and designing sequences of static
Hoo ADD controllers—continuous time 258
6.6.2 Computation of ^° and designing sequences of static
Hoo ADD controllers—discrete time 278
7 Exact input decoupling filters 293
7.1 Introduction 293
7.2 Preliminaries 294
7.3 Statement of EID filtering problem and its solvability conditions . 295
7.4 Uniqueness of EID filters in the sense of transfer function matrix . 300
7.5 Design of EID filters 301
7.5.1 Strictly proper EID filters of CSS architecture 302
7.5.2 Proper EID filters of CSS architecture 308
7.5.3 Reduced order EID filters of CSS architecture 329
7.6 Fixed modes of EID filters with arbitrary architecture 339
7. A Duality between filtering and control 341
8 Almost input decoupled filtering under white noise input 347
8.1 Introduction 347
8.2 Preliminaries 348
8.3 Statement of AID filtering problem and its solvability conditions . 349
8.4 Existence conditions—continuous time case 351
8.5 Existence conditions—discrete time case 354
8.6 Design of a family of #2 AID filters of CSS architecture 356
8.6.1 A family of full order strictly proper H2 AID filters—
CSS architecture 357
8.6.2 A family of full order proper H2 AID filters CSS
architecture 361
8.6.3 A family of reduced order proper H2 AID filters—CSS
architecture 374
x Contents
9 Almost input decoupled filtering without statistical assumptions on
input 383
9.1 Introduction 383
9.2 Preliminaries 383
9.3 Statement of AID filtering problem and its solvability conditions . 384
9.4 Existence conditions for//oo AID filters—continuous time case .386
9.5 Existence conditions for//oo AID filters—discrete time case . . . 391
9.6 Design of a family of//oo AID filters of CSS architecture .... 394
9.6.1 A family of full order strictly proper H^ AID filters—
CSS architecture 395
9.6.2 A family of full order proper //oo AID filters CSS
architecture 398
9.6.3 A family of reduced order proper //oo AID filters—CSS
architecture 409
10 Optimally (suboptimally) input decoupling filtering under white
noise input—H2 filtering 417
10.1 Introduction 417
10.2 Preliminaries 418
10.3 OID and SOID filtering problems with white noise input 419
10.4 Connection between H2 OID (H2 SOID) and E1D (H2 AID)
filtering problems—continuous time case 422
10.5 Computation of y^ and Yp~continuous time case 430
10.5.1 Relationship between y* and y* and the structural
properties of E 431
10.6 Existence of H2 OID and SOID filters—continuous time case . .437
10.7 Connection between H2 OID (H2 SOID) and EID (H2 AID)
filtering problems—discrete time case 439
10.8 Computation of y^ and Yp — discrete time case 447
10.8.1 Relationship between y*p and y* and the structural
properties of U 448
10.9 Existence of//2 OID and SOID filters—discrete time case . . . .452
10.10 Uniqueness of H2 OID filters 455
10.11 Uniqueness of the transfer matrix of H2 OID error dynamics . . . 456
10.12 Design of H2 OID filters—continuous time case 457
10.12.1 Strictly proper H2 OID filters of CSS architecture . . . . 457
10.12.2 Proper H2 OID filters of CSS architecture 467
10.12.3 Reduced order H2 OID filters of CSS architecture . . . . 478
10.13 Design of H2 SOID filters—continuous time case 487
10.13.1 Strictly proper H2 SOID filters of CSS architecture . . . 488
10.13.2 Proper H2 SOID filters of CSS architecture 490
10.13.3 Reduced order H2 SOID filters of CSS architecture . . . 494
10.14 Design of//2 OID filters—discrete time case 499
10.14.1 Strictly proper H2 OID filters of CSS architecture . . . . 499
10.14.2 Proper H2 OID filters of CSS architecture 509
Contents xi
10.14.3 Reduced order H2OID filters of CSS architecture .... 521
10.15 Design of H2 SOID filters—discrete time case 531
10.15.1 Strictly proper H2 SOID filters of CSS architecture . . .531
10.15.2 Proper H2 SOID filters of CSS architecture 533
10.15.3 Reduced order H2 SOID filters of CSS architecture . . . 537
10.16 Fixed modes of H2 OID filters with arbitrary architecture . . . .542
10.17 Performance measure for unbiasedness of filters with CSS
architecture 543
10.17.1 Strictly proper filter of CSS architecture 543
10.17.2 Proper filter of CSS architecture 545
10.17.3 Reduced order filter of CSS architecture 547
11 Optimally (suboptimally) input decoupled filtering without statistical
information on the input—H^ filtering 551
11.1 Introduction 551
11.2 Preliminaries 552
11.3 OID and SOID filtering problems without statistical information
on the input 553
11.4 Computation of y*p and y* 557
11.4.1 Explicit computation of y*p and yp — continuous time
systems 557
11.4.2 Numerical computation of y*p and y* —continuous time
systems 562
11.4.3 Explicit computation of y*p and y* —discrete time
systems 567
11.4.4 Numerical computation of y*p and y* —discrete time
systems 573
11.5 Design of y level H^ SOID filters—continuous time systems . .577
11.5.1 Regular y level H^ SOID filters 577
11.5.2 Singular y level Hoo SOID filters—the system
characterized by (A. B.C. D) has no invariant zeros on
the imaginary axis 599
11.5.3 Singular y level H^ SOID filters—the system
characterized by (A, B.C. D) has invariant zeros on the
imaginary axis 608
11.6 Design of y level//oo SOID filters—discrete time systems . . . .610
11.6.1 Regular y level//oo SOID filters 610
11.6.2 Singular y level // » SOID filters—the system
characterized by (A. B. C. D) has no invariant zeros on
the unit circle 631
11.6.3 Singular y level H^ SOID filters—the system
characterized by (A, B. C. D) has invariant zeros on the
unit circle 639
xii Contents
12 Generalized H2 suboptimally input decoupled filtering 641
12.1 Introduction 641
12.2 Preliminaries 642
12.3 Problem statements 644
12.4 Performance, existence, and uniqueness conditions, design, and
fixed modes 647
12.5 Dependence of performance, existence, and uniqueness
conditions and fixed modes on the input «2 653
12.5.1 Dependency of performance on the input «2 654
12.5.2 Dependency of the solvability conditions on the input i/2 655
12.5.3 Dependency of the fixed modes on the input w2 657
12.6 Performance limitations due to structural properties of a system . 660
12.6.1 Dependence of performance on structural properties of
the given system 660
12.6.2 Performance issues of generalized unbiased filtering . . .661
12.6.3 Impact of the structural properties of £ on J *g 664
12.7 Generalized EID filtering problem 667
12.8 Generalized H2 AID filtering problem 668
13 Generalized //oo suboptimally input decoupled filtering 671
13.1 Introduction 671
13.2 Preliminaries 671
13.3 y level generalized//oo SOID filtering problem statement .... 673
13.4 Computation of y*sp and y* p and the design of y level
generalized // » SOID filters 675
13.5 Dependence of performance on the input u2 678
13.6 Performance limitations due to structural properties of a system . 680
13.7 Generalized//oo AID filtering problem 686
14 Fault detection, isolation, and estimation—exact or almost fault
estimation 689
14.1 Introduction 689
14.2 Problem formulation 690
14.3 Solvability conditions and design of residual generator 693
14.4 Discussion 694
15 Fault detection, isolation, and estimation—optimal fault estimation 697
15.1 Introduction 697
15.2 Problem statements 700
15.3 H2 and //oo deconvolution 704
15.4 Solvability conditions and design 709
Index 713
References 717
|
adam_txt |
Contents
Preface xiii
1 Introduction 1
1.1 Introduction 1
1.2 Filtering problems 3
2 Preliminaries 9
2.1 A list of symbols 9
2.2 A list of acronyms 10
2.3 Matrices, linear spaces, and linear operators 11
2.4 Norms of deterministic signals 16
2.5 Norms of stochastic signals 18
2.6 Norms of linear time or shift invariant systems 19
3 A special coordinate basis (SCB) of linear multivariable systems 27
3.1 Introduction 27
3.2 SCB 27
3.2.1 Observability (detectability) and controllability
(stabilizablity) 33
3.2.2 Left and right invertibility 34
3.2.3 Finite zero structure 35
3.2.4 Infinite zero structure 42
3.2.5 Geometric subspaces 43
3.2.6 Miscellaneous properties of the SCB 48
3.2.7 Additional compact forms of the SCB 50
4 Algebraic Riccati equations and matrix inequalities 53
4.1 Continuous time algebraic Riccati equations 54
4.1.1 Definition of a CARE and its subclasses 55
4.1.2 The Hamiltonian matrix 59
4.1.3 Stabilizing and semi stabilizing solutions of a CARE . . 61
4.1.4 Positive semi definite and positive definite solutions . 80
4.1.5 Continuity properties 89
4.1.6 Algorithms for the computation of stabilizing solutions . 91
4.1.7 Algorithms for the computation of semi stabilizing
solutions 97
4.2 Standard and generalized discrete time algebraic Riccati equations 98
4.2.1 Definitions 99
4.2.2 Basic structure of a GDARE 103
viii Contents
4.2.3 Solutions of a DARE and deflating subspaces 105
4.2.4 Connections between a DARE and its associated CARE .111
4.2.5 Properties, existence, and computation of various types
of solutions of a DARE 117
4.2.6 Continuity properties of the H2 DARE 130
4.2.7 Connections between a GDARE and its associated DARE 131
4.2.8 Properties, existence, and computation of various types
of solutions of a GDARE 137
4.2.9 Continuity properties of the H2 GDARE 139
4.3 Continuous time linear matrix inequalities 140
4.3.1 Connections between a CLMI and its associated CARE . 145
4.3.2 Properties, existence, and computation of various types
of solutions of a CLMI 152
4.3.3 Continuity properties of CLMIs 154
4.4 Discrete time linear matrix inequalities 156
4.4.1 Connections between a DLMI and its associated DARE . 164
4.4.2 Properties, existence, and computation of various types
of solutions of a DLMI 170
4.4.3 Continuity properties of the DLMI 172
4.5 Continuous time quadratic matrix inequalities 173
4.5.1 Connection between a CQMI and its associated CARE . . 176
4. A Linear matrix equations 180
4.B Reduction to the case that H has full normal rank 185
4.C Matrix pencils and generalized eigenvalue problems 188
5 Exact disturbance decoupling via state and full information feedback 191
5.1 Introduction 191
5.2 Problem formulation 191
5.3 Solvability conditions for EDD 197
5.4 Static state feedback laws and associated fixed modes and fixed
decoupling zeros 198
5.4.1 EDD algorithm — left invertible case 200
5.4.2 EDD algorithm—non left invertible case 206
5.4.3 An algorithm for EDD with pole placement 213
5.5 Dynamic state feedback laws and associated fixed modes and
fixed decoupling zeros 215
5.5.1 i7sub is left invertible 215
5.5.2 rsub is not left invertible 219
5.6 Static and dynamic full information feedback laws and associated
fixed modes and fixed decoupling zeros 221
5.A Proofs of Theorems 5.11 and 5.25 223
5.A.1 Proof of Theorem 5.11 223
5.A.2 Proof of Theorem 5.25 225
Contents ix
6 Almost disturbance decoupling via state and full information feed¬
back 229
6.1 Introduction 229
6.2 Problem formulation 230
6.3 Solvability conditions for ADD 234
6.3.1 Solvability conditions for ADD—continuous time . 234
6.3.2 Solvability conditions for ADD—discrete time 236
6.4 More on ADD finite asymptotic fixed modes 237
6.5 H2 ADD design 239
6.5.1 Computation of Q2S and designing sequences of static
H2 ADD controllers—continuous time 239
6.5.2 Computation of i?^ and designing sequences of static
H2 ADD controllers—discrete time 252
6.6 Hoo ADD design 258
6.6.1 Computation of J?^° and designing sequences of static
Hoo ADD controllers—continuous time 258
6.6.2 Computation of ^° and designing sequences of static
Hoo ADD controllers—discrete time 278
7 Exact input decoupling filters 293
7.1 Introduction 293
7.2 Preliminaries 294
7.3 Statement of EID filtering problem and its solvability conditions . 295
7.4 Uniqueness of EID filters in the sense of transfer function matrix . 300
7.5 Design of EID filters 301
7.5.1 Strictly proper EID filters of CSS architecture 302
7.5.2 Proper EID filters of CSS architecture 308
7.5.3 Reduced order EID filters of CSS architecture 329
7.6 Fixed modes of EID filters with arbitrary architecture 339
7. A Duality between filtering and control 341
8 Almost input decoupled filtering under white noise input 347
8.1 Introduction 347
8.2 Preliminaries 348
8.3 Statement of AID filtering problem and its solvability conditions . 349
8.4 Existence conditions—continuous time case 351
8.5 Existence conditions—discrete time case 354
8.6 Design of a family of #2 AID filters of CSS architecture 356
8.6.1 A family of full order strictly proper H2 AID filters—
CSS architecture 357
8.6.2 A family of full order proper H2 AID filters CSS
architecture 361
8.6.3 A family of reduced order proper H2 AID filters—CSS
architecture 374
x Contents
9 Almost input decoupled filtering without statistical assumptions on
input 383
9.1 Introduction 383
9.2 Preliminaries 383
9.3 Statement of AID filtering problem and its solvability conditions . 384
9.4 Existence conditions for//oo AID filters—continuous time case .386
9.5 Existence conditions for//oo AID filters—discrete time case . . . 391
9.6 Design of a family of//oo AID filters of CSS architecture . 394
9.6.1 A family of full order strictly proper H^ AID filters—
CSS architecture 395
9.6.2 A family of full order proper //oo AID filters CSS
architecture 398
9.6.3 A family of reduced order proper //oo AID filters—CSS
architecture 409
10 Optimally (suboptimally) input decoupling filtering under white
noise input—H2 filtering 417
10.1 Introduction 417
10.2 Preliminaries 418
10.3 OID and SOID filtering problems with white noise input 419
10.4 Connection between H2 OID (H2 SOID) and E1D (H2 AID)
filtering problems—continuous time case 422
10.5 Computation of y^ and Yp~continuous time case 430
10.5.1 Relationship between y* and y* and the structural
properties of E 431
10.6 Existence of H2 OID and SOID filters—continuous time case . .437
10.7 Connection between H2 OID (H2 SOID) and EID (H2 AID)
filtering problems—discrete time case 439
10.8 Computation of y^ and Yp — discrete time case 447
10.8.1 Relationship between y*p and y* and the structural
properties of U 448
10.9 Existence of//2 OID and SOID filters—discrete time case . . . .452
10.10 Uniqueness of H2 OID filters 455
10.11 Uniqueness of the transfer matrix of H2 OID error dynamics . . . 456
10.12 Design of H2 OID filters—continuous time case 457
10.12.1 Strictly proper H2 OID filters of CSS architecture . . . . 457
10.12.2 Proper H2 OID filters of CSS architecture 467
10.12.3 Reduced order H2 OID filters of CSS architecture . . . . 478
10.13 Design of H2 SOID filters—continuous time case 487
10.13.1 Strictly proper H2 SOID filters of CSS architecture . . . 488
10.13.2 Proper H2 SOID filters of CSS architecture 490
10.13.3 Reduced order H2 SOID filters of CSS architecture . . . 494
10.14 Design of//2 OID filters—discrete time case 499
10.14.1 Strictly proper H2 OID filters of CSS architecture . . . . 499
10.14.2 Proper H2 OID filters of CSS architecture 509
Contents xi
10.14.3 Reduced order H2OID filters of CSS architecture . 521
10.15 Design of H2 SOID filters—discrete time case 531
10.15.1 Strictly proper H2 SOID filters of CSS architecture . . .531
10.15.2 Proper H2 SOID filters of CSS architecture 533
10.15.3 Reduced order H2 SOID filters of CSS architecture . . . 537
10.16 Fixed modes of H2 OID filters with arbitrary architecture . . . .542
10.17 Performance measure for unbiasedness of filters with CSS
architecture 543
10.17.1 Strictly proper filter of CSS architecture 543
10.17.2 Proper filter of CSS architecture 545
10.17.3 Reduced order filter of CSS architecture 547
11 Optimally (suboptimally) input decoupled filtering without statistical
information on the input—H^ filtering 551
11.1 Introduction 551
11.2 Preliminaries 552
11.3 OID and SOID filtering problems without statistical information
on the input 553
11.4 Computation of y*p and y* 557
11.4.1 Explicit computation of y*p and yp — continuous time
systems 557
11.4.2 Numerical computation of y*p and y* —continuous time
systems 562
11.4.3 Explicit computation of y*p and y* —discrete time
systems 567
11.4.4 Numerical computation of y*p and y* —discrete time
systems 573
11.5 Design of y level H^ SOID filters—continuous time systems . .577
11.5.1 Regular y level H^ SOID filters 577
11.5.2 Singular y level Hoo SOID filters—the system
characterized by (A. B.C. D) has no invariant zeros on
the imaginary axis 599
11.5.3 Singular y level H^ SOID filters—the system
characterized by (A, B.C. D) has invariant zeros on the
imaginary axis 608
11.6 Design of y level//oo SOID filters—discrete time systems . . . .610
11.6.1 Regular y level//oo SOID filters 610
11.6.2 Singular y level // » SOID filters—the system
characterized by (A. B. C. D) has no invariant zeros on
the unit circle 631
11.6.3 Singular y level H^ SOID filters—the system
characterized by (A, B. C. D) has invariant zeros on the
unit circle 639
xii Contents
12 Generalized H2 suboptimally input decoupled filtering 641
12.1 Introduction 641
12.2 Preliminaries 642
12.3 Problem statements 644
12.4 Performance, existence, and uniqueness conditions, design, and
fixed modes 647
12.5 Dependence of performance, existence, and uniqueness
conditions and fixed modes on the input «2 653
12.5.1 Dependency of performance on the input «2 654
12.5.2 Dependency of the solvability conditions on the input i/2 655
12.5.3 Dependency of the fixed modes on the input w2 657
12.6 Performance limitations due to structural properties of a system . 660
12.6.1 Dependence of performance on structural properties of
the given system 660
12.6.2 Performance issues of generalized unbiased filtering . . .661
12.6.3 Impact of the structural properties of £ on J *g 664
12.7 Generalized EID filtering problem 667
12.8 Generalized H2 AID filtering problem 668
13 Generalized //oo suboptimally input decoupled filtering 671
13.1 Introduction 671
13.2 Preliminaries 671
13.3 y level generalized//oo SOID filtering problem statement . 673
13.4 Computation of y*sp and y* p and the design of y level
generalized // » SOID filters 675
13.5 Dependence of performance on the input u2 678
13.6 Performance limitations due to structural properties of a system . 680
13.7 Generalized//oo AID filtering problem 686
14 Fault detection, isolation, and estimation—exact or almost fault
estimation 689
14.1 Introduction 689
14.2 Problem formulation 690
14.3 Solvability conditions and design of residual generator 693
14.4 Discussion 694
15 Fault detection, isolation, and estimation—optimal fault estimation 697
15.1 Introduction 697
15.2 Problem statements 700
15.3 H2 and //oo deconvolution 704
15.4 Solvability conditions and design 709
Index 713
References 717 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Saberi, Ali 1949- Stoorvogel, Anton 1964- Sannuti, Peddapullaiah 1941- |
author_GND | (DE-588)121269493 (DE-588)121269531 (DE-588)12126954X |
author_facet | Saberi, Ali 1949- Stoorvogel, Anton 1964- Sannuti, Peddapullaiah 1941- |
author_role | aut aut aut |
author_sort | Saberi, Ali 1949- |
author_variant | a s as a s as p s ps |
building | Verbundindex |
bvnumber | BV022935834 |
callnumber-first | T - Technology |
callnumber-label | TK5102 |
callnumber-raw | TK5102.5 |
callnumber-search | TK5102.5 |
callnumber-sort | TK 45102.5 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
ctrlnum | (OCoLC)78203590 (DE-599)DNB98260517X |
dewey-full | 621.3815324 519.23 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) 500 - Natural sciences and mathematics |
dewey-ones | 621 - Applied physics 519 - Probabilities and applied mathematics |
dewey-raw | 621.3815324 519.23 621.382 |
dewey-search | 621.3815324 519.23 621.382 |
dewey-sort | 3621.3815324 |
dewey-tens | 620 - Engineering and allied operations 510 - Mathematics |
discipline | Maschinenbau / Maschinenwesen Mathematik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Maschinenbau / Maschinenwesen Mathematik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02136nam a2200577 c 4500</leader><controlfield tag="001">BV022935834</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080409 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071023s2007 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N06,1087</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,A30,0712</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98260517X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817643010</subfield><subfield code="c">Pp. : EUR 115.56, sfr 178.00</subfield><subfield code="9">978-0-8176-4301-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">081764301X</subfield><subfield code="c">Pp. : EUR 115.56, sfr 178.00</subfield><subfield code="9">0-8176-4301-X</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780817643010</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10883921</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)78203590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB98260517X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5102.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815324</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.23</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saberi, Ali</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121269493</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Filtering theory</subfield><subfield code="b">with applications to fault detection, isolation, and estimation</subfield><subfield code="c">Ali Saberi ; Anton A. Stoorvogel ; Peddapullaiah Sannuti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 723 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Systems & control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commande H-infini</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commande automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commande, Théorie de la</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commnade H2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Filtres électriques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Telecommunication</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Filterung</subfield><subfield code="g">Stochastik</subfield><subfield code="0">(DE-588)4121267-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Filterung</subfield><subfield code="g">Stochastik</subfield><subfield code="0">(DE-588)4121267-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stoorvogel, Anton</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121269531</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sannuti, Peddapullaiah</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12126954X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016140574&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016140574</subfield></datafield></record></collection> |
id | DE-604.BV022935834 |
illustrated | Illustrated |
index_date | 2024-07-02T18:56:27Z |
indexdate | 2024-07-09T21:08:02Z |
institution | BVB |
isbn | 9780817643010 081764301X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016140574 |
oclc_num | 78203590 |
open_access_boolean | |
owner | DE-706 DE-824 DE-634 |
owner_facet | DE-706 DE-824 DE-634 |
physical | XIV, 723 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Birkhäuser |
record_format | marc |
series2 | Systems & control |
spelling | Saberi, Ali 1949- Verfasser (DE-588)121269493 aut Filtering theory with applications to fault detection, isolation, and estimation Ali Saberi ; Anton A. Stoorvogel ; Peddapullaiah Sannuti Boston [u.a.] Birkhäuser 2007 XIV, 723 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Systems & control Commande H-infini Commande automatique Commande, Théorie de la Commnade H2 Filtres électriques Automatic control Control theory Telecommunication Filterung Stochastik (DE-588)4121267-8 gnd rswk-swf Filterung Stochastik (DE-588)4121267-8 s DE-604 Stoorvogel, Anton 1964- Verfasser (DE-588)121269531 aut Sannuti, Peddapullaiah 1941- Verfasser (DE-588)12126954X aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016140574&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Saberi, Ali 1949- Stoorvogel, Anton 1964- Sannuti, Peddapullaiah 1941- Filtering theory with applications to fault detection, isolation, and estimation Commande H-infini Commande automatique Commande, Théorie de la Commnade H2 Filtres électriques Automatic control Control theory Telecommunication Filterung Stochastik (DE-588)4121267-8 gnd |
subject_GND | (DE-588)4121267-8 |
title | Filtering theory with applications to fault detection, isolation, and estimation |
title_auth | Filtering theory with applications to fault detection, isolation, and estimation |
title_exact_search | Filtering theory with applications to fault detection, isolation, and estimation |
title_exact_search_txtP | Filtering theory with applications to fault detection, isolation, and estimation |
title_full | Filtering theory with applications to fault detection, isolation, and estimation Ali Saberi ; Anton A. Stoorvogel ; Peddapullaiah Sannuti |
title_fullStr | Filtering theory with applications to fault detection, isolation, and estimation Ali Saberi ; Anton A. Stoorvogel ; Peddapullaiah Sannuti |
title_full_unstemmed | Filtering theory with applications to fault detection, isolation, and estimation Ali Saberi ; Anton A. Stoorvogel ; Peddapullaiah Sannuti |
title_short | Filtering theory |
title_sort | filtering theory with applications to fault detection isolation and estimation |
title_sub | with applications to fault detection, isolation, and estimation |
topic | Commande H-infini Commande automatique Commande, Théorie de la Commnade H2 Filtres électriques Automatic control Control theory Telecommunication Filterung Stochastik (DE-588)4121267-8 gnd |
topic_facet | Commande H-infini Commande automatique Commande, Théorie de la Commnade H2 Filtres électriques Automatic control Control theory Telecommunication Filterung Stochastik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016140574&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT saberiali filteringtheorywithapplicationstofaultdetectionisolationandestimation AT stoorvogelanton filteringtheorywithapplicationstofaultdetectionisolationandestimation AT sannutipeddapullaiah filteringtheorywithapplicationstofaultdetectionisolationandestimation |